build touch screen out of lcd panel factory
Since 1990, AccuView is dedicated to delivering fully customized LCD display solutions for our customers. Our strength lies in understanding and meeting our customers" EXACT requirements coupled with AccuView"s comprehensive manufacturing capabilities and expertise to deliver the right LCD display solution. Let AccuView be your total video solution provider.
Our industrial display touch screen monitors can help your factory personnel and workshops handle complex industrial tasks on intuitive factory grade touch screens. Our wide range of rugged LCD displays with multi-touch and various touch technologies such as resisitive, SAW, optical imaging, projected capacitive and infrared are tough and suitable for virtually any industrial applications. We can help you choose the best touch screen technology and solution that fits best with your needs, and close the gap between your vision and implementation of the digital factory.
Viewsonic"s Touch Screen Solutions helped us simplify the hassle of operating complex machinery in our factory. It really helped us improve our factory line operations and reduced labor input.”
Remanufacturer and distributor of liquid crystal, panel and touch screen displays. Available with 100 VAC to 240 VAC power supply. Features include front bezels, USB support, windows, auto-adjust buttons, built-in power supply and USB cable brackets. AutoCAD files accepted. Most items available in stock. 24/7 services provided. RoHS compliant. UL and cUL listed. CE certified. Two year warranty.
Manufacturer of standard and custom liquid crystal display (LCD) displays. Thin film transistor (TFT) and graphical displays are available. Offered with LED backlight and integrated capacitive or resistive touchscreen. Suitable for medical devices, embedded systems, airplanes, amusement parks, golf carts and vehicles. Serves automotive, automation, gaming, security and OEM industries.
Distributor of touch screen panel liquid crystal displays (LCDs). Available in 10.1 in. sizes. Inventory management services are also offered. Serves the electronics, computer, telecommunications, aerospace, aviation, medical, automotive and transportation industries. ITAR registered. Stock items available.
Manufacturer of optically bonded, non-touch and touchscreen displays. Features vary depending upon model, including vision 2 display controllers with quad-core multimedia processors, liquid crystal displays, auto-dimmable display backlights, housings with powder-coated die-cast front, horizontal and vertical viewing angles, membrane keyboards, internal temperature sensors, programmable software and resistive touch screens. Meets ASME and OHSAS 18001 standards. CSA and NFPA approved. API registered. CE certified.
Manufacturer of flat-panel industrial monitors and displays rated for Division 1 and Division 2 environments. Custom engineered, designed, and manufactured to handle the dust, dirt, debris and chemical exposure common to rugged and hazardous applications in the oil and gas, pharmaceutical and food processing, manufacturing and chemical industries. Types of monitors include military grade, LCD, rugged, washdown, high definition, wide screen, panel mount, rack mount, flush mount, gas purged, and more.
Manufacturer of resistive touchscreen HMI displays with anodized aluminum housings, USB and Ethernet. Available in four screen sizes, 6.102 to 11.535 in. width, 2.283 in. depth and 5.315 to 8.78 in. height. Surrounding air operating temperature ranges up to +55 degrees C. Serves the automotive, railway system, power engineering, building, lighting, marine, offshore and process industries. Most items available in stock. RoHS compliant. UL listed. CE certified. JIT delivery.
Manufacturer of power, control and information solutions. Products and technologies include: circuit and load protection, computers and operator interfaces, connection devices, drives and motors, energy monitoring, input/output modules, lighting control, motion control, networks and communications, power supplies, programmable controllers, push buttons and signaling devices, relays and timers, safety products, sensors and switches, signal conditioners, software solutions, turbomachinery control.
Distributor of integrated touch screen displays. LCD, sunlight readable TFT, monochrome, chip on glass, TFT LCD, LED, automotive rear seat and OLED displays are also available. Vendor managed inventory (VMI) programs and stock items available. Meets AS9100 Rev C standards. Kanban and JIT delivery.
Manufacturer of Industrial touchscreen displays suitable for railway sign, airport control tower, digital signage, agriculture, factory automation, kiosk and retail applications. Available in 10.4 to 21.5 in. display size, -10 to 60 degrees C operating temperature and 9 to 50 volts DC voltage. Some monitors are offered with fanless and rugged design, LCD display, front panel IP65 waterproof, dual speakers, resistive and capacitive (PCAP) touch options available. EPA registered.
Manufacturer of standard and custom thin film transistor liquid crystal displays (LCD) including human machine interface diagonal touchscreens. Available in 5 VDC power at 200 mA current, 4.3 in. screen sizes, 0.92 in. depth, 4.75 in. width and 3.70 in. height. Features include programmable, graphical operating systems, front panel mountable enclosures, protective overlays, built-in copy protection options and power management controllers. Serves the pharmaceutical packaging identification, instrumentation, emergency response service, recording and bioprocessing industries. Made in the USA.
Manufacturer of touchscreen panel displays for medical and industrial applications. Available in 10.1 to 27 in. display sizes. Features vary depending upon model, including LED backlights, plastic design, USB, flat, power connectors, optional side brackets, input video signal interfaces and terminals. Accessories such as power adaptors, cords, cables and stands offered. Meets EN 60601-1-2 standards. Custom options depending upon applications are also provided.
Manufacturer of custom rugged displays for military, marine, industrial, avionic, medical, transportation, commercial and other applications. Diverse engineering team able to design to fit any enclousure. Many types of touch screen technologies available, including surface capacitive, projected capacitive, resistive, SAW, infrared, optical, DST. Other features include sunlight readable, NVIS, waterproof, flip-up, flip-down, rack mount drawer, panel or rack mount, and much more. All sizes are available, from small to large. Suitable for workstations, cockpits, medical devices and other safety- or mission-critical applications. Manufactured, serviced, and supported in the USA.
Manufacturer of standard and custom electric and electronic components including connectors, switches, fuses, block filters, and pulse transformers. Available in various voltage and current ratings, breaking capacity, operating temperature, and features. Also offers PCB assembly services. Serves the energy, aviation and space, automotive, data and communication, medical, and industrial electronic markets. Provides design and product life cycle management services. Meets various international standards including IEC, TUV, VDE, KME, and cURus. RoHS compliant.
Manufacturer and distributor of touchscreen, sound, video and theatrical displays. Types include counter top, back-up, extension, dual USB charger, heads up and four sided color changing displays. Available in a variety of configurations. Features vary depending upon model and include LED light strips, wireless remote control, LCD widescreen rear view mirrors and license plate cameras.
Manufacturer of alphanumeric, touchscreen and LCD displays. Features vary depending upon model, including built-in Ethernet ports, hand-held versions, single port multi access (SPMA), integrated simulation functions, analog resistive touch, multiple communications, compact flash memory cards and FTP web interfaces. Serves the automotive, food/packaging, electronics, life sciences, material handling, machine tool, oil and gas, water, wastewater, security, detection, entertainment and other industries. 24/7 predictive maintenance services also provided.
Manufacturer of touchscreen displays for home automation, video intercom and door entry system. Features include up to 16 control functions, intuitive operation and capacitive touch display. Lifecycle management, engineering, consulting, installation, maintenance, replacement and training services are provided. Serves the automotive, chemical, marine, metal, food, beverage, mining, power generation or distribution, solar power, printing, aluminum, cement, automation, water, wind power, pulp and paper industries.
ISO 9001 certified worldwide manufacturer of touchscreen terminals, monitors & displays. Graphics touchscreen terminals enable operating, monitoring & control of large scale projects with different PLC"s simultaneously. Features include plain text messages & graphical overview screens for user-friendly diagnostics. Touchscreen terminals are available in sizes of 5.7 in., 6.5 in., 10.4 in. 12.1 in. & 15 in. Terminal features also include Microsoft Windows ® CE.net operating system, USB interfaces, serial interfaces, Ethernet interface, IP65 front, IP20 back & PCMCIA slots.
Six Sigma capable, ISO 9001:2008 & ISO 14000 certified manufacturer of touchscreen displays including flat panel monitors. Types of flat panel monitors include DVI/RGB and hazardous location compatible. Flat panel monitors feature front USB interface, 256K or 16 million color display, analog resistive touch panel, serial/USB touch interfaces, on-screen-display menu for brightness & contrast control, & VESA standard wall mounts. Available with a 2-year warranty. Markets served include industrial, automotive, oil & gas, water/wastewater, semiconductors & agriculture. Modbus-IDA, OMAC & ODVA affiliated. Products are UL® listed, CSA® approved, and ATEX & CE certified. Products are RoHS compliant.
Custom manufacturer of touchscreen LCD displays. Various capabilities include design, testing, engineering, cutting, plating and potting. Electronics, medical, telecommunications, gaming and other industries served. Meets IPC standards. JIT delivery.
Custom manufacturer of touchscreen displays for stationary storage, equipment, electric and hybrid vehicles. Battery management systems and vehicle control systems are offered. Fleet management software is also provided. Consulting is available as value added service. Serves the e-mobility, automotive and mobile robotics industries.
Precision CNC machining, sheet metal fabrication and assembly services. Repair services are also provided. Fiber optic junction boxes, converters, latches and switches are offered. Uninterruptible power supplies (UPS), liquid crystal displays (LCD), racks, consoles, multiplexers, control panels and quad-core processors and servers are also available. Serves aerospace and defense industries.
Distributor of LCD touch screen displays. Available in various sizes. Various applications include assembly, automotive, chassis, front panels, lighting, medical, PCB, power train, rear panels, solar and wiring. RoHS compliant.
Manufacturer of 5.7 in. color graphic touchscreen displays. Operating temperature ranges from -4 to +158 degrees F. Features include programmable system setup, plug and play device display detection, programmable screen savers, LED backlights, dual power over Ethernet and high speed communication ports. Suitable for industrial facilities, commercial enterprises, government and public services and power utilities. RoHS and IEEE 1519 compliant. UL listed. CE certified.
Custom manufacturer of touchscreen displays. TFT high resolution and high brightness displays are available in resistive, capacitive and infrared touch types. Offered in display sizes ranging from 6.5 in. to 19 in. Capabilities include designing, prototyping, small volume production, lean manufacturing, automated optical inspection and testing. Markets served include industrial, commercial, automation, transportation, telecommunications, aerospace, OEM, power generation, military and medical. ITAR compliant.
Important technical improvements of LCD, such as LED backlighting and wide viewing Angle, are directly related to LCD. And account for an LCD display 80% of the cost of the LCD panel, enough to show that the LCD panel is the core part of the entire display, the quality of the LCD panel, can be said to directly determine the quality of an LCD display.
The production of civil LCD displays is just an assembly process. The LCD panel, the main control circuit, shell, and other parts of the main assembly, basically will not have too complex technical problems.
Does this mean that LCDS are low-tech products? In fact, it is not. The production and manufacturing process of the LCD panels is very complicated, requiring at least 300 process processes. The whole process needs to be carried out in a dust-free environment and with precise technology.
The general structure of the LCD panel is not very complex, now the structure of the LCD panel is divided into two parts: the LCD panel and the backlight system.
Due to the LCD does not shine, so you need to use another light source to illuminate, the function of the backlight system is to this, but currently used CCFL lamp or LED backlight, don’t have the characteristics of the surface light source, so you need to guide plate, spreadsheet components, such as linear or point sources of light evenly across the surface, in order to make the entire LCD panel on the differences of luminous intensity is the same, but it is very difficult, to achieve the ideal state can be to try to reduce brightness non-uniformity, the backlight system has a lot to the test of design and workmanship.
In addition, there is a driving IC and printed circuit board beside the LCD panel, which is mainly used to control the rotation of LCD molecules in the LCD panel and the transmission of display signals. The LCD plate is thin and translucent without electricity. It is roughly shaped like a sandwich, with an LCD sandwiched between a layer of TFT glass and a layer of colored filters.
LCD with light refraction properties of solid crystals, with fluid flow characteristics at the same time, under the drive of the electrode, can be arranged in a way that, in accordance with the master want to control the strength of the light through, and then on the color filter, through the red, green, blue three colors of each pixel toning, eventually get the full-screen image.
According to the functional division, the LCD panel can be divided into the LCD panel and the backlight system. However, to produce an LCD panel, it needs to go through three complicated processes, namely, the manufacturing process of the front segment Array,the manufacturing process of the middle segment Cell, and the assembly of the rear segment module. Today we will be here, for you in detail to introduce the production of the LCD panel manufacturing process.
The manufacturing process of the LCD panel Array is mainly composed of four parts: film, yellow light, etch and peel film. If we just look at it in this way, many netizens do not understand the specific meaning of these four steps and why they do so.
First of all, the motion and arrangement of LCD molecules need electrons to drive them. Therefore, on the TFT glass, the carrier of LCD, there must be conductive parts to control the motion of LCD. In this case, we use ITO (Indium Tin Oxide) to do this.ITO is transparent and also acts as a thin-film conductive crystal so that it doesn’t block the backlight.
The different arrangement of LCD molecules and the rapid motion change can ensure that each pixel displays the corresponding color accurately and the image changes accurately and quickly, which requires the precision of LCD molecule control.ITO film needs special treatment, just like printing the circuit on the PCB board, drawing the conductive circuit on the whole LCD board.
Next, a photoresist is applied to the glass on which ITO film is deposited, and a uniform photoresist layer is formed on the ITO glass. After baking for a period of time, the solvent of the photoresist was partially volatilized to increase the adhesion of the photoresist material to the ITO glass.
Ultraviolet light (UV) is used to illuminate the surface of the photoresist through a pre-made electrode pattern mask, which causes the photoresist layer to react. The photoresist is selectively exposed under ultraviolet light by covering the photoresist on the glass coated with the photoresist.
The exposed part of the photoresist is then washed away with the developer, leaving only the unexposed part, and the dissolved photoresist is then washed away with deionized water.
Then etch off the ITO film without photoresist covering with appropriate acid etching solution, and only retain the ITO film under the photoresist. ITO glass is conductive glass (In2O3 and SnO2). The ITO film not covered by photoresist is easy to react with acid, while the ITO film covered by photoresist can be retained to obtain the corresponding wire electrode.
Stripping: High concentration of alkali solution (NaOH solution) is used as a stripping solution to peel off the remaining photoresist on the glass so that ITO glass can form ITO graphics exactly consistent with the photolithography mask.
Rinse the basic label of glass with an organic solution and remove the photolithographic tape after reaction to keep the glass clean. This completes the first thin-film conductive crystal process, which generally requires at least five identical processes to form a complex and sophisticated pattern of electrodes on the glass.
This completes the previous Array process. It is not difficult to see from the whole process that ITO film is deposited, photoresist coated, exposed, developed, and etched on TFT glass, and finally, ITO electrode pattern designed in the early stage is formed on TFT glass to control the movement of LCD molecules on the glass. The general steps of the whole production process are not complicated, but the technical details and precautions are very complicated, so we will not introduce them here. Interested friends can consult relevant materials by themselves.
The glass that the LCD board uses makes a craft also very exquisite. (The manufacturing process flow of the LCD display screen)At present, the world’s largest LCD panel glass, mainly by the United States Corning, Japan Asahi glass manufacturers, located in the upstream of the production of LCD panel, these manufacturers have mastered the glass production technology patents. A few months ago, the earthquake caused a corning glass furnace shutdown incident, which has caused a certain impact on the LCD panel industry, you can see its position in the industry.
As mentioned earlier, the LCD panel is structured like a sandwich, with an LCD sandwiched between the lower TFT glass and the upper color filter. The terminal Cell process in LCD panel manufacturing involves the TFT glass being glued to the top and bottom of a colored filter, but this is not a simple bonding process that requires a lot of technical detail.
As you can see from the figure above, the glass is divided into 6 pieces of the same size. In other words, the LCD made from this glass is finally cut into 6 pieces, and the size of each piece is the final size. When the glass is cast, the specifications and sizes of each glass have been designed in advance.
Then, the organic polymer directional material is coated on the surface of the glass, that is, a uniform directional layer is applied to the appropriate position of ITO glass by the method of selective coating. Meanwhile, the directional layer is cured.
Directional friction:Flannelette material is used to rub the surface of the layer in a specific direction so that the LCD molecules can be arranged along the friction direction of the aligned layer in the future to ensure the consistency of the arrangement of LCD molecules. After the alignment friction, there will be some contaminants such as flannelette thread, which need to be washed away through a special cleaning process.
After the TFT glass substrate is cleaned, a sealant coating is applied to allow the TFT glass substrate to be bonded to the color filter and to prevent LCD outflow.
Finally, the conductive adhesive is applied to the frame in the bonding direction of the glass of the color filter to ensure that external electrons can flow into the LCD layer. Then, according to the bonding mark on the TFT glass substrate and the color filter, two pieces of glass are bonded together, and the bonding material is solidified at high temperatures to make the upper and lower glasses fit statically.
Color filters are very important components of LCD panels. Manufacturers of color filters, like glass substrate manufacturers, are upstream of LCD panel manufacturers. Their oversupply or undersupply can directly affect the production schedule of LCD panels and indirectly affect the end market.
As can be seen from the above figure, each LCD panel is left with two edges after cutting. What is it used for? You can find the answer in the later module process
Finally, a polarizer is placed on both sides of each LCD substrate, with the horizontal polarizer facing outwards and the vertical polarizer facing inwards.
A polarizer is an optical plate that allows only light from a certain direction to pass through. It is an optical element that converts natural light into straight polarized light. The mechanism of action is to make the vertical direction light pass through the straight incident light after passing through the vertical polarizer, and the other horizontal direction light is absorbed, or use reflection and scattering and other effects to make its shade.
When making LCD panel, must up and down each use one, and presents the alternating direction, when has the electric field and does not have the electric field, causes the light to produce the phase difference and to present the light and dark state, uses in the display subtitle or the pattern.
The rear Module manufacturing process is mainly the integration of the drive IC pressing of the LCD substrate and the printed circuit board. This part can transmit the display signal received from the main control circuit to the drive IC to drive the LCD molecules to rotate and display the image. In addition, the backlight part will be integrated with the LCD substrate at this stage, and the complete LCD panel is completed.
Firstly, the heteroconductive adhesive is pressed on the two edges, which allows external electrons to enter the LCD substrate layer and acts as a bridge for electronic transmission
Next is the drive IC press. The main function of the drive IC is to output the required voltage to each pixel and control the degree of torsion of the LCD molecules. The drive IC is divided into two types. The source drive IC located in the X-axis is responsible for the input of data. It is characterized by high frequency and has an image function. The gate drive IC located in the Y-axis is responsible for the degree and speed of torsion of LCD molecules, which directly affects the response time of the LCD display. However, there are already many LCD panels that only have driving IC in the X-axis direction, perhaps because the Y-axis drive IC function has been integrated and simplified.
The press of the flexible circuit board can transmit data signals and act as the bridge between the external printed circuit and LCD. It can be bent and thus becomes a flexible or flexible circuit board
The manufacturing process of the LCD substrate still has a lot of details and matters needing attention, for example, rinse with clean, dry, dry, dry, ultrasonic cleaning, exposure, development and so on and so on, all have very strict technical details and requirements, so as to produce qualified eyes panel, interested friends can consult relevant technical information by a search engine.
LCD (LC) is a kind of LCD, which has the properties of light transmission and refraction of solid Crystal, as well as the flow property of Liquid. It is because of this property that it will be applied to the display field.
However, LCD does not emit light autonomously, so the display equipment using LCD as the display medium needs to be equipped with another backlight system.
First, a backplate is needed as the carrier of the light source. The common light source for LCD display equipment is CCFL cold cathode backlight, but it has started to switch to an LED backlight, but either one needs a backplate as the carrier.
CCFL backlight has been with LCD for a long time. Compared with LED backlight, CCFL backlight has many defects. However, it has gradually evolved to save 50% of the lamp and enhance the transmittance of the LCD panel, so as to achieve the purpose of energy-saving.
With the rapid development of LED in the field of lighting, the cost has been greatly reduced.LCD panels have also started to use LED as the backlight on a large scale. Currently, in order to control costs, an LED backlight is placed on the side rather than on the backplate, which can reduce the number of LED grains.
However, no matter CCFL backlight or LED backlight is placed in various ways, the nature of the backlight source cannot be a surface light source, but a linear light source or point light source. Therefore, other components are needed to evenly distribute the light to the whole surface. This task is accomplished by the diffuser plate and diffuser plate.
On the transparent diffuser plate, point-like printing can block part of the light. The LED backlight on the side drives the light from the side of the diffuser plate, and the light reflects and refracts back and forth in the diffuser plate, distributing the light evenly to the whole surface. Point-like printing blocks part of the light, screening the light evenly like a sieve.
At the top of the diffusion plate, there will be 3~4 diffuser pieces, constantly uniform light to the whole surface, improve the uniformity of light, which is directly related to the LCD panel display effect. Professional LCD in order to better control the brightness uniformity of the screen, panel procurement, the later backlight control circuit, will make great efforts to ensure the quality of the panel.
The backlight system also includes a backlight module laminator, located behind the backplane. In the CCFL backlight era, you can often see the long strip laminator like the one above, with each coil responsible for a set of tubes.
However, it is much simpler to use a side white LED as a backlight. The small circuit board on the far left of the figure above is the backlight of the LED.
This is the general structure of the backlight system. Since I have never seen the backlight mode of R.G.B LED, I cannot tell you what the backlight mode is like. I will share it with you when I see it in the future.
Since the LCD substrate and the backlight system are not fixed by bonding, a metal or rubber frame is needed to be added to the outer layer to fix the LCD substrate and the backlight system.
After the period of the Module, the process is completed in LCM (LCDModule) factory, the core of this part of the basic does not involve the use of LCD manufacturing technology, mainly is some assembly work, so some machine panel factories such as chi mei, Korea department such as Samsung panel factory, all set with LCM factories in mainland China, Duan Mo group after the LCD panel assembly, so that we can convenient mainland area each big monitor procurement contract with LCD TV manufacturers, can reduce the human in the whole manufacturing and transportation costs.
However, neither Taiwan nor Korea has any intention to set up factories in mainland China for the LCD panel front and middle manufacturing process involving core technologies. Therefore, there is still a long way to go for China to have its own LCD panel industry.
LCD displays and touch screens are in demand. They offer a sleeker, less cumbersome alternative to a mouse and keyboard or wired touch pad. And since the user can interact directly with the device’s interface, the possibilities for innovation are endless — from elevators and mobile medical equipment to industrial automation.
For many years, electronic device manufacturers generally incorporated five to seven layers of touch screen technology in the manufacture of their products — the LCD panel layers, the touch sensor layer, and the protective top cover or outer glass. Typically a touch screen is mounted on top of the LCD display and either secured with a high-performance double-sided tape, which leaves an air gap, or a silicone gel, called optical bonding, that fills air gaps and enhances readability.
Since 2012, in-cell and on-cell touch screen technologies have taken the high volume consumer segments by storm, in particular, smartphones and tablets. Born out of similar strategies of combining layers for improved functionality, in-cell technology incorporates touch sensors into the actual LCD display panel. On-cell or G2 technology moves the touch sensor to the top cover or outer glass layer.
With fewer layers, in-cell and on-cell touch screens provide designers and engineers the ability to develop much thinner devices, locate touch sensors close to the displays, create better color saturation and visual clarity, and reduce glare. All of which make users feel like they are actually touching the display and not just the outer glass layer.
Fewer layers are beneficial to a manufacturing process as well. It reduces costs by integrating the touch screen sensor as one of the layers of the LCD display, and optical bonding takes place as part of the initial production line, eliminating the need for a secondary bonding process.
For high volume consumer manufacturers who are used to frequent product launches and relatively short product lifecycles, this market-disruptive technology can be a game-changer for both manufacturing and sales. But for specialty original equipment manufacturers (OEMs) like those in the healthcare, military, and industrial automation industries, this technology could create another type of disruption — if not vetted properly, it could compromise the entire production line.
At EmbedTek, we make it our priority to maintain a manufacturing and quality system that is agile, flexible, automated, and adaptable to reduce the burden on our customers and eliminate errors. And we frequently design new features and functions for our customer product lines to improve reliability, cost, and performance in a new way. Before we recommend any change to the design, components, or partners involved in the manufacture of a product, device, or equipment solution, we carefully analyze its impact on the entire supply chain.
On-cell and in-cell technologies are still evolving and establishing themselves. Be aware of how they’re developing and consider the following dynamics.
Durability— On-cell and in-cell displays are not, at this point, appropriate for most specialty OEM applications because the cover glass thickness is minimal. If a thicker cover glass is needed to protect against scratches, cracks, and wear, it can affect touch performance and accuracy. Add-on cases and covers that may be needed to improve durability also add costs and steps in the supply chain.
Supply Certainty — Supply and demand can work for or against you as an early adopter. Specialty OEMs rely on trusted partners for at least five years as a product is developed, manufactured, sold, and maintained. They need to feel confident that not only will quality components be around throughout that time period, but that the provider will be, too.
Once you have all of your questions answered and long-term vision in place, you can begin to layout the integration approach that is in the best interest of the business.
Asia has long dominated the display module TFT LCD manufacturers’ scene. After all, most major display module manufacturers can be found in countries like China, South Korea, Japan, and India.
However, the United States doesn’t fall short of its display module manufacturers. Most American module companies may not be as well-known as their Asian counterparts, but they still produce high-quality display products for both consumers and industrial clients.
In this post, we’ll list down 7 best display module TFT LCD manufacturers in the USA. We’ll see why these companies deserve recognition as top players in the American display module industry.
STONE Technologies is a leading display module TFT LCD manufacturer in the world. The company is based in Beijing, China, and has been in operations since 2010. STONE quickly grew to become one of the most trusted display module manufacturers in 14 years.
Now, let’s move on to the list of the best display module manufacturers in the USA. These companies are your best picks if you need to find a display module TFT LCD manufacturer based in the United States:
Planar Systems is a digital display company headquartered in Hillsboro, Oregon. It specializes in providing digital display solutions such as LCD video walls and large format LCD displays.
The company started in 1983 as a corporate spin-off from the American oscilloscope company Tektronix. In 2015, Planar Systems became a subsidiary of the Chinese manufacturer Leyard Optoelectronics.
Microtips Technology is a global electronics manufacturer based in Orlando, Florida. The company was established in 1990 and has grown into a strong fixture in the LCD industry.
Taiwan and Mainland China are two Asian countries where Microtips set up their manufacturing plants. The factories boast of modern equipment, high-quality raw materials, and stringent quality control measures. Microtips even earned ISO9001 and ISO14001 certifications for excellent quality management.
What makes Microtips a great display module TFT LCD manufacturer in the USA lies in its close ties with all its customers. It does so by establishing a good rapport with its clients starting from the initial product discussions. Microtips manages to keep this exceptional rapport throughout the entire client relationship by:
Displaytech is an American display module TFT LCD manufacturer headquartered in Carlsbad, California. It was founded in 1989 and is part of several companies under the Seacomp group. The company specializes in manufacturing small to medium-sized LCD modules for various devices across all possible industries.
The company also manufactures embedded TFT devices, interface boards, and LCD development boards. Also, Displaytech offers design services for embedded products, display-based PCB assemblies, and turnkey products.
Displaytech makes it easy for clients to create their own customized LCD modules. There is a feature called Design Your Custom LCD Panel found on their site. Clients simply need to input their specifications such as their desired dimensions, LCD configuration, attributes, connector type, operating and storage temperature, and other pertinent information. Clients can then submit this form to Displaytech to get feedback, suggestions, and quotes.
Clients are assured of high-quality products from Displaytech. This is because of the numerous ISO certifications that the company holds for medical devices, automotive, and quality management. Displaytech also holds RoHS and REACH certifications.
A vast product range, good customization options, and responsive customer service – all these factors make Displaytech among the leading LCD manufacturers in the USA.
Products that Phoenix Display offers include standard, semi-custom, and fully-customized LCD modules. Specifically, these products comprise Phoenix Display’s offerings:
Clients flock to Phoenix Display because of their decades-long experience in the display manufacturing field. The company also combines its technical expertise with its competitive manufacturing capabilities to produce the best possible LCD products for its clients.
True Vision Displays is an American display module TFT LCD manufacturing company located at Cerritos, California. It specializes in LCD display solutions for special applications in modern industries. Most of their clients come from highly-demanding fields such as aerospace, defense, medical, and financial industries.
The company produces several types of TFT LCD products. Most of them are industrial-grade and comes in various resolution types such as VGA, QVGA, XGA, and SXGA. Clients may also select product enclosures for these modules.
All products feature high-bright LCD systems that come from the company’s proprietary low-power LED backlight technology. The modules and screens also come in ruggedized forms perfect for highly-demanding outdoor industrial use.
Slow but steady growth has always been True Vision Display’s business strategy. And the company continues to be known globally through its excellent quality display products, robust research and development team, top-of-the-line manufacturing facilities, and straightforward client communication.
LXD Incorporated is among the earliest LCD manufacturers in the world. The company was founded in 1968 by James Fergason under the name International Liquid Xtal Company (ILIXCO). Its first headquarters was in Kent, Ohio. At present, LXD is based in Raleigh, North Carolina.
All of their display modules can be customized to fit any kind of specifications their clients may require. Display modules also pass through a series of reliability tests before leaving the manufacturing line. As such, LXD’s products can withstand extreme outdoor environments and operates on a wide range of temperature conditions.
LXD has research centers and factories in both the United States and China. The US-based headquarters feature a massive 30,000 square feet of manufacturing and research development centers. Meanwhile, LXD’s Chinese facilities feature a large 5,000 square meters of cleanrooms for manufacturing modular and glass products.
Cystalfontz America is a leading supplier and manufacturer of HMI display solutions. The company is located in Spokane Valley, Washington. It has been in the display solutions business since 1998.
Crystalfontz takes pride in its ISO 9001 certification, meaning the company has effective quality control measures in place for all of its products. After all, providing high-quality products to all customers remains the company’s topmost priority. Hence, many clients from small hobbyists to large top-tier American companies partner with Crystalfontz for their display solution needs.
We’ve listed the top 7 display module TFT LCD manufacturers in the USA. All these companies may not be as well-known as other Asian manufacturers are, but they are equally competent and can deliver high-quality display products according to the client’s specifications. Contact any of them if you need a US-based manufacturer to service your display solutions needs.
We also briefly touched on STONE Technologies, another excellent LCD module manufacturer based in China. Consider partnering with STONE if you want top-of-the-line smart LCD products and you’re not necessarily looking for a US-based manufacturer. STONE will surely provide the right display solution for your needs anywhere you are on the globe.
TRU-Vu offers the largest selection of industrial-grade small LCD monitors and touch screens in the world. Choose from over 125 models of 8.4 inch to 12″ industrial-grade small lcd monitors, including small HDMI monitors, waterproof monitors, Sunlight Readable monitors, 4:3 and 16:9 aspect ratio, panel-mount and custom displays.
TRU-Vu offers over 235 standard, off-the shelf 13.3” to 19” industrial-grade LCD monitors and touch screens. Industrial LCD monitors offer many advantages over consumer or commercial-grade displays. They are more rugged, have higher shock and vibration resistance and can be modified or customized to meet your needs. Industrial and medical-grade monitors, Sunlight Readable, waterproof, open frame monitors and more.
TRU-Vu offers the largest selection of industrial LCD monitors and large touch screens in the world. We have an impressive line-up of over 175 off-the-shelf industrial LCD monitors with large screen sizes from 21.5" to 75". This includes Medical-Grade, Sunlight Readable, open frame, bezel-less, waterproof, 4K, custom and OEM widescreen monitors, with a wide range of configurations and enclosure types.
TRU-Vu Sunlight Readable Monitors and Daylight Screens (with Optical Bonding) and touch screen monitors are ideal for use in direct sunlight, or in other high-ambient light environments. These outdoor monitors offer 1,000 nits to 2,500 screen brightness. They are ideal for outdoor digital signage, military, law enforcement, amusement parks, way-finding, marine, and more.
Industrial-grade monitors and touch screens with standard brightness (250-350 nits) are ideal for use indoors or in environments without sunlight or bright lighting. We offer waterproof monitors, panel mount monitors, custom LCD displays, private label monitors, Medical Grade monitors, outdoor monitors, 16:9 and 4:3 aspect ratio, and more, from 7" to 65" lcd monitor screen sizes.
Our waterproof monitors and water proof touch screens are perfect for use as outdoor monitors, or in industrial settings where high humidity, liquids, and daily wash-downs may exist. Stand-alone or panel mount waterproof enclosures are available in stainless steel, painted steel or aluminum, with protection ratings up to IP68.
We offer a wide range of rugged and waterproof Touch Screen monitors for both indoor and outdoor use. Select from 5-wire resistive touch, surface capacitive, P-Cap, IR touch and SAW touch screen technologies in order to best meet your specific application requirements. Large touch screen monitors up to 46", and small touchscreen monitors down to 8.4".
TRU-Vu Medical-Grade displays and Medical touch screens are certified to the latest UL and IEC 60601 standards. They are ideal for use in hospital surgical operating rooms, on medical diagnostic equipment and medical carts. Their bezel-less monitor design provides added benefits of improved aesthetics, and increased safety and hygiene, and IP65 liquid protection.
Panel mount monitors and panel mount touch screens can be flush-mounted into doors, walls, kiosks and cabinets for improved ergonomics and safety. They are available with standard and high brightness screens, waterproof front face, and 4:3 and 16:9 aspect ratio, in a wide range of sizes and configurations.
With our background in high-caliber German engineering, coupled with efficient production and design in Shenzhen, China, has made faytech NA a world-renowned player in the touch device marketplace. faytech NA also specializes in developing customized products and project-based applications, creating loyal customers in over six continents across the globe. faytech North America is based in New York City, with offices and distribution centers throughout the US, Canada and Mexico
Faytech NA products are used in an array of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. Due to our wide range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can accomodate for a wide range of industries, businesses, and technologies.
Faytech NA products are used in an array of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. Due to our wide range of manufacturing capabilities, experience with product customization, and our trained professionals, faytech can accomodate for a wide range of industries, businesses, and technologies.
Faytech NA products are in use throughout a number of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. With our range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can service a wide range of industries, businesses, and technologies.
Faytech NA products are in use throughout a number of industries, from consumer products and POS systems to ruggedized industrial solutions. Our engineering, design and production teams create the opportunity for our customers to discover the right solution and product for their respective application. With our range of manufacturing capabilities, experience with product customization, and our trained professionals, Faytech NA can service a wide range of industries, businesses, and technologies.
Industrial Display Systems provide a wide range of reliable displays from 5.7" to 55" including LCD displays, touch screen panels, outdoor displays and digital signage displays, and a series of industrial monitors including open frame monitors and panel mount monitors, which work perfectly with embedded boards and systems to fulfill various application needs.
We have thousands of standard products that are in stock and available from our Seattle, WA and Hong Kong warehouses to support fast product development and preproduction without MOQ. The stock covers TN, STN LCD display panels, COB, COG character LCD display, graphic LCD display, PMOLED, AMOLED display, TFT display, IPS display, high brightness and transflective, blanview sunlight readable display, super high contrast ratio display, lightning fast response displays, efficient low power consumption display, extreme temperature range display, HMI display, HDMI display, Raspberry Pi Display, Arduino display, embedded display, capacitive touch screen, LED backlight etc. Customers can easily purchase samples directly from our website to avoid time delays with setting up accounts and credit terms and shipping within 24 hours.
Many of our customers require customized OEM display solutions. With over two decades of experience, we apply our understanding of available display solutions to meet our customer’s requirements and assist from project concept to mass production. Using your ideas and requirements as a foundation, we work side by side with you to develop ideas/concepts into drawings, build prototypes and to final production seamlessly. In order to meet the fast changing world, we can provide the fastest turnaround in the industry, it takes only 3-4 weeks to produce LCD panels samples and 4-6 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen samples. The production time is only 4-5 weeks for LCD panels and 5-8 weeks for LCD display module, TFT LCD, IPS LCD display, and touch screen.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
The first reason why the resistive touch screen is different from the capacitive touch screen is that the physical stack up of the resistive touch screen is more complicated than the cap touch screens. Resistive touch screens are typically cheaper than their counterparts and can work with nonconductive stylus pens and gloves.
Resistive touch screens only rely on the force – conductive or not – the force will be enough for the touchscreen to work. One drawback of resistive touch sensors is that they require more strength and won’t be as sensitive to touch.
Since cap touch sensors rely on conductivity to act, they are more touch-sensitive. Projective capacitive touch screens work by emitting an electric field above the screen. Once a finger gets close to the screen, the chip connected to the tail reads that a conductive force has interrupted the electric field. From there, the chip lets the device know what section of the display was touched. Another cool feature for PCAP touch screens is that they are more visible in high-lighting environments. This makes them a great interface solution for operating equipment outside. Usually, the major drawback is that they are more expensive than resistive touch screens. Read more about the basics of capacitive touch here.
NOTE: When SupportAssist does not show up in the search results, go to the SupportAssist for PCs and tablets page for information about downloading and installing SupportAssist.
Performance issues may occur if there is any type of damage that is caused to the display cables or the LCD screen. LCD screen may show that symptoms like LCD screen stops working, work intermittently, color mismatch, flickering, display horizontal or vertical lines if there is damage to the display cables or the LCD screen.
If you do notice a physical damage, contact Dell Technical Support to learn more about repair options that are available in your region. If there is no damage, go to the next step.
Dell monitors provide a self-test feature check (SFTC) and an integrated self-test (BIST) or integrated diagnostic (BID) tool that helps determine if the screen abnormality you are experiencing is an inherent problem with the Dell monitor or with the video card (GPU) and computer settings.
When you notice screen abnormalities like flickering, distortion, clarity issues, fuzzy or blurry image, horizontal or vertical lines, color fade, it is a good practice to isolate the monitor by running a diagnostic test on the Dell monitor.
To learn more about running a diagnostic test on your Dell monitor, see the Dell knowledge base article How to Run a Diagnostic Test on a Dell Monitor.
NOTE: Self-test feature check (SFTC) helps check if the Dell monitor is working normally as a stand-alone device. To check for screen abnormalities such as flickering, distortion, clarity issues, fuzzy or blurry image, horizontal or vertical lines, color fade, and so on, run the integrated self-test (BIST) or integrated diagnostic (BID) test.
Dell monitors can be reset to factory default settings using the on-screen display (OSD) menu. This can be accessed using the buttons or joystick that is available on the Dell monitor. For step-by-step instructions to reset a Dell monitor to factory default settings, see the User Guide of your Dell monitor at the Dell Manuals website.
Windows Safe Mode allows us to identify if the issue is related to the operating system, video settings, device drivers, or a third-party software. To learn more about how to boot your Dell computer into Safe Mode, see the Dell knowledge base article that is listed below based on the operating system that is installed on your computer:
Display settings like brightness, refresh rate, resolution, and power management may affect the performance of your Dell monitor. Changing the display settings can help resolve several types of video issues.
To learn more about changing the brightness, refresh rate and resolution on a Dell computer, see the Dell knowledge base article How to Change the Video Settings or Improve Text in Windows 10.
If you find that the Dell touch-capable monitor is unresponsive to touch or touch works intermittently, you can try some common troubleshooting steps to help fix the issue.
NOTE: Connect the USB upstream cable from your Dell touch-capable monitor to a working USB port on the computer. This is essential for the touch feature to work.
If the diagnostic tests on the Dell monitor and video card (GPU) passed, it is most definitely an issue that is related to software that is installed on your computer. If the above troubleshooting steps did not resolve the issue, to restore your computer to factory defaults as a last resort.
Dell computers are built with a small amount of hard disk space that is reserved for reinstalling your operating system. This method is the easiest way to restore your computer to factory condition. The restoration process deletes all user data from the computer, back up all your files before starting this process.
One of the things that sets us apart from other touchscreen display manufacturers is the level of customization we offer. Our product portfolio includes a wide range of TFT & Monochrome LCDs, OLED, touch sensor and glass technologies, which we can provide stand-alone or integrated into complete assemblies.
Our custom display, touch and cover lens solutions are used in a variety of end-user applications. For example, our touchscreens are used in many vehicle infotainment systems and dashboard controls. We also provide custom touch displays for popular marine applications such as watercraft navigation screens and fish finders. For consumer electronics, we manufacture custom touchscreen display solutions and smartphone screen protectors. Whether your application will be used in the great outdoors, a construction site, or a hospital operating room, we can build a custom, all-in-one solution for your needs.
Our strength as a custom display company comes from the extensive technical expertise of our engineering team. The approach our engineers take is always based on experience and data-driven decisions that help you find the right solution for your application. In addition, our extensive manufacturing capabilities enable us to deliver quick design cycles, cost-effective solutions, and high-quality products that will meet your specifications even in the harshest conditions. To learn more about what makes us the display manufacturer for your needs, get in touch with us today.