kuman 3.5 tft lcd shield arduino quotation

Note: There is a film on the LCD, if there is scratch on the film when you receive the item, pls try to remove the film with your finger nail from the corner of the LCD, thanks.

kuman 3.5 tft lcd shield arduino quotation

I know that the TFT is not faulty, because I used it on an Arduino Uno using a different library, and it worked just fine. The problem with this library is that it only works on AVR processors, and as you know, the due uses an ARM processor. Does anyone know how to get something to show on screen? I would be ok with losing the sd card reader and maybe touch, but those would be a plus to keep! Thanks for reading!

kuman 3.5 tft lcd shield arduino quotation

As you can see in the attached photo, I removed resistor R1 which was a “2R0” SMD resistor, which Google says is 2 ohms. The right side of the resistor is a 3.3v supply. The left side goes to the 6 LEDs in the backlight, which then have 6 separate wires going to ground. I didn"t see any other resistors. It"s possible there are some inside the LCD display itself.

I want to control the LEDs via the left pin near “J3” which goes to Arduino pin A5. This pin is not used. When I digitalWrite(A5, HIGH) it is providing 5v, so I figured the resistor would need to be different.

I tried to calculate what resistor was needed but I don’t know the properties of the LEDs. I guessed and checked with an online calculator and decided that 91 ohm looked like it should work. I soldered the resistor between the left pad of R1 and the pin that connects to Arduino A5. It worked, but the LEDs were dim. I dropped down to a 43 ohm resistor and they’re still a little dim but it’s better.

kuman 3.5 tft lcd shield arduino quotation

My question is: Is it the right code to test for my TFT LCD and what should I expect the output so that I know my LCD is working properly? Also, I do not really know how to measure the resistance of the LCD using DMM. If you had any tutorials for that, I would really appreciate. Thanks again.

kuman 3.5 tft lcd shield arduino quotation

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work  you can check my particular tutorial. Here you can download that file:

kuman 3.5 tft lcd shield arduino quotation

Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (3.5" diagonal) bright (6 white-LED backlight) and colorful (18-bit 262,000 different shades)! 320x480 pixels with individual pixel control. As a bonus, this display has a optional resistive touch panel with controller XPT2046 attached by default and a optional capacitive touch panel with controller FT6236 attached by default, so you can detect finger presses anywhere on the screen and doesn"t require pressing down on the screen with a stylus and has nice glossy glass cover.

The pin32 (SDO) of 3.5 display module is also used by touch panel or SD card SPI interface, so we must cut off this pin to avoid conflict with the touch panel or SD card.

The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (Due/Mega 2560).

This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!" - we"ve written a full open source graphics library at the bottom of this page that can draw pixels, lines, rectangles, circles and text. We also have a touch screen library that detects x,y and z (pressure) and example code to demonstrate all of it. The code is written for Arduino but can be easily ported to your favorite microcontroller!

If you"ve had a lot of Arduino DUEs go through your hands (or if you are just unlucky), chances are you’ve come across at least one that does not start-up properly.The symptom is simple: you power up the Arduino but it doesn’t appear to “boot”. Your code simply doesn"t start running.You might have noticed that resetting the board (by pressing the reset button) causes the board to start-up normally.The fix is simple,here is the solution.