tft lcd display kmr-1.8 quotation

Recently, I had the idea to make a digital picture frame—one of these kinds which load images from SD cards and show each image for some time. I was remembering myself that I already own a small TFT display, the KMR-1.8 SPI, that works out of the box with an Arduino Uno. When I digged up my KMR-1.8 SPI, I realized that it has also an in-built SD card reader. Moreover, I looked up the Internet and found ready-to-use libraries for the in-built SD card reader as well as showing images on the TFT display. For these reasons, I thought making such an digital picture frame will turn out very easy.

When I started to implement my first lines of codes and started to connect my Arduino Uno to the KMR-1.8 SPI, I ran into two major problems. First, the colors of my image file did not match to the colors displayed by the KMR-1.8 (red and blue were interchanged). Second, my first prototypes stopped to work after about 5 minutes. The application started to freeze and showed the same image forever instead of displaying the next image after a chosen time.

There exists various versions of so-called “1.8 TFT displays” from different manufacturers. Not all of them are 100% compatible to each other. Therefore, if you own a TFT display and want to use my tutorial to make it work, please check if your TFT display really matches the version I used in this tutorial:

The source code relies on three header files (and libraries): SPI.h (Link), SD.h (Link) and TFT.h (Link). Please make sure that all of them are correctly installed before trying out my source code (In Arduino IDE: Tools -> Manage Libraries…).

I overcame the first problem by not using the default initialization method (“TFTscreen.begin();”) of the TFT library. Instead, I looked up whats inside the “begin”-method. I found a method called “initR” which has a parameter that allows to perform the initialization for a specific chip. Here, the parameter value “INITR_BLACKTAB” worked for me as the colors were then shown correctly. In addition, I call the method “setRotation” with parameter value “1” in order to be conform to the default initialization method. In the end, the code for the setting up the TFT library object looks like this:// ...

The code looks for image files (*.BMP) on the SD card and shows each image for 60 seconds. You can change the display time by setting “DELAY_IMAGE_SWAP” to a new value.

tft lcd display kmr-1.8 quotation

The DT018ATFT does not support 4-Wire SPI (also known as "4-line Serial Interface Protocol", 8-bit data, which includes a separate D/C signal line). DT018ATFT does not support this since the signal in ILI9163C datasheet called "SPI4" is hard coded to 0. However, a custom version of the FPC can be tooled to expose the proper 4-Wire SPI signals - please contact us for more details.

The provided display driver example code is designed to work with Microchip, however it is generic enough to work with other micro-controllers. The code includes display reset sequence, initialization and example PutPixel() function.

tft lcd display kmr-1.8 quotation

@david_prentice: I meant Himax, well spotted! I remember seeing a 1.8" display with a HX---- driver advertised, but I am not sure where I saw it. Yes you are right, ILI9163/S6D02A1/ST7735 are all options often advertised for 1.8" displays.

Interestingly it reports my display as having an ILI9163 but I am using initialisation code from this library for a S6D02A1 and it works OK but that may just be by luck and a degree of initialisation address compatibility.

tft lcd display kmr-1.8 quotation

Of course I’ve not just been working on the pretty colours – I’ve revamped the control codes for the ESP8266-driven controller twice, discovered and fixed an OTA flaw in the code, re-hashed the Node-Red driving code, found and fixed countless other bits and pieces… you know – in other words – pretty much revamped everything just to improve a simple display.

PLEASE NOTE: If you wish to use the display module depicted above – make sure it is based on the s6d02a1 chip (board says 1.8″ TFT) – try this link:  Cheap LCDs https://tech.scargill.net/yourls/cheaplcd. Boards have the marking “1.8 TFT MODULE” on the bottom. The ones with a single connector (as against one on each side) generally do NOT use this chip and hence are not compatible). Also, AliExpress do this board cheaply.

So the box is just an Ebay job, I think it was £3 – sadly I can’t find them right now, lovely job with rounded corners and top/bottom vents. We did find a sluightly larger one however. The display is one I call the QD-tech display, based on the 6sd02a1 controller and very cheap, see above. 120×160 pixel LCD and supported in ESP-NOW.

Glued to the back of this display is a Wemos D1 Mini from AliExpress, dirt cheap ESP-12 based board and they communicate via SPI – simplified to the minimum. I’ve connected resets together, CE to ground and so the only actual connections to the display are 5v and 3v3 (backlight) from the Wemos D1) and ground of course, for signals: clock, data, D/C. That’s it.

I use my well-developed ESP-NOW ESP8266 code for this and had to make some improvements on the way. As I was updating the board over and over and over, learning about the display chip, I noted memory issues occasionally when doing over the air updates – fixed that. I noted that I had no way to tell if the ESP8266 (and hence the display) had reset at any time (to know to do the init code) – fixed that (my ESP8266 code now sends a status message when rebooting). I got sick of the clumsy way I had to update the display, sending line, box, text commands so I amalgamated them all into string commands – and that was such a good idea I went back and made the code for other displays follow the same format.  You can see how all of this might’ve taken up a lot of time.

Above you see the Node-Red code, running on a Raspberry Pi using my usual setup – there are in fact 2 displays – one on my desk and one in the hallway. I check for the ESP12s coming out of reset and send start-up code via MQTT to the displays separately. Overkill, could have just done the one.  That includes setting up the display itself, clearing the screen and putting in that nice white framework of lines and rectangles.  Meanwhile I have timed functions updating the time (once a second) and everything else once a minute.  The weather forecast (see icons in a previous post) comes from Dark Sky and I was having difficulty getting what I wanted out of the Node for that service, when it occurred to me that was just as easy to do an HTTP request – as the HTTP node is able to capture information and convert it to a JSON object. How handy is that.

You may notice a reference to England – this display is running in Spain but I have a Node-Red setup with sensors back in the UK so the two Node-Red installations will soon exchange temperature/humidity and other info – so I figured I may as well show temperature and humidity from back in the UK.

I’ll not go into the entire code sent off to the display, as mentioned above I’ve very much simplified that now and it is all detailed in the manual I put together for home control.

tft lcd display kmr-1.8 quotation

I needed to install this library from Bodmer; then edit the User_Setup.h file ( in sketchbook/libraries/TFT_ESPI ) to match my display and the connections used.

This User_Setup.h works fine for the ESP32; except that in the UTFT_DEMO_FAST Example the final screen (orange rectangle on blue background) no text was displayed.

tft lcd display kmr-1.8 quotation

TFT displays are full color LCDs providing bright, vivid colors with the ability to show quick animations, complex graphics, and custom fonts with different touchscreen options. Available in industry standard sizes and resolutions. These displays come as standard, premium MVA, sunlight readable, or IPS display types with a variety of interface options including HDMI, SPI and LVDS. Our line of TFT modules include a custom PCB that support HDMI interface, audio support or HMI solutions with on-board FTDI Embedded Video Engine (EVE2).