difference between tft lcd and crt price

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

difference between tft lcd and crt price

CRT stands for Cathode Ray Tube and LCD stands for Liquid Crystal Display area unit the kinds of display devices wherever CRT is employed as standard display devices whereas LCD is more modern technology. These area unit primarily differentiated supported the fabric they’re made from and dealing mechanism, however, each area unit alleged to perform identical perform of providing a visible variety of electronic media. Here, the crucial operational distinction is that the CRT integrates the 2 processes lightweight generation and lightweight modulation and it’s additionally managed by one set of elements. Conversely, the LCD isolates the 2 processes kind one another that’s lightweight generation and modulation.

difference between tft lcd and crt price

TFT(Thin Film Transistor) is the abbreviation of thin film transistor. TFT type display is the mainstream display device on all kinds of laptops and desktops, each liquid crystal pixel on this type of display is driven by the thin film transistor integrated behind the pixel, so TFT type display is also a class of active matrix liquid crystal display device. It is one of the best LCD color displays, and its effect is close to that of CRT displays. TFT type displays have the advantages of high responsiveness, high brightness and high contrast ratio, and its display effect is close to that of CRT type displays.

LCD is the abbreviation of Liquid Crystal Display, the structure of LCD is placed in two parallel glass substrate liquid crystal box, the lower substrate glass set TFT (thin film transistor), the upper substrate glass set color filter, through the TFT signal and voltage change to control the direction of rotation of liquid crystal molecules, so as to control each The TFT signal and voltage change to control the direction of rotation of the liquid crystal molecules, so as to control the polarization of each pixel point to achieve the purpose of display. Now LCD has replaced CRT to become the mainstream, the price has also dropped a lot, and has been fully popular.

Organic Light-Emitting Diode (Organic Light-Emitting Diode, OLED) is also known as electromechanical laser display, organic light-emitting semiconductor. OLED display technology has the advantages of self-luminous, wide viewing angle, almost infinitely high contrast ratio, low power consumption, very high response speed, etc.. However, as a high-end display, the price will also be more expensive than LCD TV.

CRT display scientific name for "cathode ray tube", is a use of cathode ray tube (Cathode Ray Tube) of the display. There are five main components: electron gun (Electron Gun), deflection coils (Deflection coils), shade mask (Shadow mask), high pressure graphite electrodes and phosphor coating (Phosphor) and glass housing. It is one of the most widely used displays. CRT flat panel displays have the advantages of large viewing angles, no bad dots, high color reproduction, uniform chromaticity, adjustable multi-resolution mode, very short response time and other advantages that LCD displays can hardly surpass, and they are cheaper.

difference between tft lcd and crt price

No native resolution. Currently, the only display technology capable of multi-syncing (displaying different resolutions and refresh rates without the need for scaling).Display lag is extremely low due to its nature, which does not have the ability to store image data before output, unlike LCDs, plasma displays and OLED displays.

difference between tft lcd and crt price

CRT and LCD are both display devices. CRT is an old technology whereas LCD is modern one. One major difference between CRT and LCD is in the technology used for image formation. The CRT display produces an image by using an electron beam, while LCD display produces an image on the screen using liquid crystal display.

CRT stands for Cathode Ray Tube. CRT displays produce an image on the screen by using a sharp beam of electrons that is highly focused to hit a phosphor screen present in front of the tube. The important components of a CRT are electron gun, focusing mechanism, and phosphor screen.

CRT was used in earlier TVs and computer monitors. CRT produces poor quality images on the screen and also consumes large electricity. The lifespan of CRT displays is very short. Because of all reasons, CRTs are being replaced by other display technologies these days.

LCD stands for Liquid Crystal Display. In LCD, liquid crystals are used to produce images on the screen. LCD displays are thin and more energy efficient, thus they are used in several small sized devices like mobiles, laptops, TVs, desktop computer monitors, calculators, etc.

In LCDs, light is obtained from external sources, and then it is converted into a definite graphics pattern using optical effects. LCDs have several advantages over CRT such as less power consumption, faster response, smaller size, low cost, etc.

Both CRT and LCD have their own advantages and disadvantages. However, these days, CRTs have almost become extinct. No one seems to be using them anymore. LCDs and other display technologies have replaced them because the new devices are highly efficient in terms of cost, power, and performance.

difference between tft lcd and crt price

TFT monitors don"t have refresh rates "as such", a CRT with it"s rate set low would certainly give you a headache because it illuminates and draws line by line at say 65Hz.

difference between tft lcd and crt price

Text and images (scans of census records) are crisper and sharper and the LCD monitor is easier on your eyes. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy.

However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor. Viewing Direction: A CRT screen can be viewed from all directions. And from different distance. But LCD monitors cannot be viewed from all directions. LCD monitors can only be viewed straight. Therefore its viewing direction is limited. If viewed from other directions the colors will change and sometimes the vision will be unclear if not viewed straight. But in recent years the new LCD monitors have improved on this defect. Radiation Emission: The radiation emission in CRT monitors are higher. This will not be visible normally but it will affect eyesight and may cause head ache. Long term use of these monitors may even affect the eyes adversely. LCD monitors do not have this type of Radiation emission. Therefore LCD monitors are good for the eyes. Price: CRT monitors are priced very cheap. However they consume more power. LCD monitors are priced higher, but they consume less electricity. Though the electricity consumption is not very significant for personal use, it is very cost efficient in big organizations with many computers.

Text and images (scans of census records) are crisper and sharper and the LCD monitor is easier on your eyes. Dot pitch: This is the space between dots and is measured in fractions of a millimeter, e.g., .25mm. The smaller the number the better because the dots are tighter. Many manufacturers don%u2019t even list the dot pitch anymore and you probably won%u2019t be able to tell the difference between a .22 and .27 pitch anyway. So, if you like the monitor then don%u2019t worry about the dot pitch. Passive-matrix vs. active-matrix: Do not buy a passive-matrix monitor. I seriously doubt you%u2019ll even see one for sale, but%u2026just in case. Having said that, there are some new passive-matrix technologies that are worth buying. If the monitor isn"t TFT (a type of active-matrix), look for CSTN or DSTN (the latest passive technologies). Brightness: How bright is the picture, expressed as cd/m (I have no idea what the units mean). Look for a brightness level of 200 cd/m or greater. Again, if the monitor specs don%u2019t list this value (not all do) be sure you can get your money back. If the lighting in your office (kitchen table) is subdued the brightness factor won%u2019t be as important as if you have a lot of sunlight streaming in. Don%u2019t pay extra for extra brightness unless you%u2019re worried about bright sunlight. Overall, the contrast ratio will have a bigger impact on picture quality. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy. However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor.

Speaking of easy on your eyes, there isn"t any glare, and the flat screen means no distortion. By the way, even those expensive old-fashioned flat screen CRT monitors have some distortion. Monitor"s size: Traditional monitors are similar to a TV because both of them have the CRT (Cathode Ray Tube). That is the reason for its bigger size. It therefore occupies more space at the desk. It is also heavy. However, LCD monitors have thin flat screen. Therefore occupies very less space and is lighter than the CRT monitor. LCD monitors can be fixed even on wall. Display Size: Even though the display size of a CRT monitor is calculated diagonally, the actual display size is smaller. For instance a 17" CRT monitor will actually have a display size of only 16" However, the display size of 17" LCD monitor will have 17" display size. Resolution: CRT monitors can show different resolutions. The resolution can be changed as required. LCD Monitors will have Native Resolution and therefore has a fixed resolution. The best resolution will be the native resolution for that LCD monitor. Viewing Direction: A CRT screen can be viewed from all directions. And from different distance. But LCD monitors cannot be viewed from all directions. LCD monitors can only be viewed straight. Therefore its viewing direction is limited. If viewed from other directions the colors will change and sometimes the vision will be

difference between tft lcd and crt price

The short name of TFT:Thin Film Transistor in Chinese. What is the difference between TFT and LCD? Our laptops and desktops now use relatively advanced TFT displays, which consist of LCD pixels and are powered by thin-film transistors integrated behind the pixels. Therefore, the TFT type display screen also belongs to a class of display devices with a source matrix.

TFT type display screen is currently a better LCD color display, TFT type display has many advantages: high responsiveness, high brightness, high contrast, and so on.TFT displays are closest to CRT displays. The TFT screen also often appears on the screen of each big mobile phone, there are 65536 colors, 160,000 colors, 16 million colors three, its display effect is also very good.

TFT means that every LCD pixel on an LCD is driven by a thin-film transistor integrated behind it. Thus can achieve high speed, high brightness, high contrast display screen information, TFT-LCD(thin-film transistor liquid crystal display) is one of the majority of LIQUID crystal displays.

Liquid Crystal Display (LCD). The structure of the LCD is placed in the middle of the two pieces of parallel glass liquid crystal box, the substrate glass set on TFT (thin-film transistor), set the color filter substrate glass on, on the TFT signal, and the voltage change to control the rotation direction of the liquid crystal molecules, so as to achieve control of each pixel display emergent polarized light or not and to achieve. Now THAT LCD has replaced CRT as the mainstream, the price has dropped a lot and become widely available.

The TFT(Thin Film Field-effect Transistor) is a video in which every single pixel in the liquid crystal display is actuated by a Thin Film Transistor embedded in the rear. Thus can achieve high speed, high brightness, high contrast display screen information.

Color screens of mobile phones vary depending on LCD quality and research and development technology. The types of color screens include STN (CSTN), TFT(LTPS), TFD, UFB, and OLED.

Liquid Crystal Display (LCD). Generally divided into monochrome and color LCD two kinds, the current monochrome LCD has almost out of the notebook computer market, and color LCD still continues to develop. The color LCD can be divided into two types: STN and TFT. The TFT(Thin Film Transistorized)LCD, also known as the active transistorized Transistor LIQUID crystal display (LCD), is the true-color LIQUID crystal display that many people describe as the Thin Film Transistor.DSTN (Dual Scan Twisted Nematic)LCD, namely double scan LIQUID crystal display. It is a display mode of STN LCD, which is no longer on the market.

What is the difference between TFT and LCD? Read here I believe you have a general understanding and cognition of TFT and LCD, LCD refers to liquid crystal display, TFT is a kind of LCD. The former is for laptops and the latter is for desktop computers. There are several different technologies for LCD, FED, PDP, OLED, TFT-LCD, they are all LCD. Only the desktop with several fronts more, lower cost, TFT technology cost is higher, generally used for notebook, or MOTO, etc., now most of the display is TFT type display, I believe we will pay more attention to the choice and purchase of digital goods.

difference between tft lcd and crt price

In market, LCD means passive matrix LCDs which increase TN (Twisted Nematic), STN (Super Twisted Nematic), or FSTN (Film Compensated STN) LCD Displays. It is a kind of earliest and lowest cost display technology.

LCD screens are still found in the market of low cost watches, calculators, clocks, utility meters etc. because of its advantages of low cost, fast response time (speed), wide temperature range,  low power consumption, sunlight readable with transflective or reflective polarizers etc.  Most of them are monochrome LCD display and belong to passive-matrix LCDs.

TFT LCDs have capacitors and transistors. These are the two elements that play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy without running out of operation.

Normally, we say TFT LCD panels or TFT screens, we mean they are TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology. TFT is active-matrix LCDs, it is a kind of LCD technologies.

TFT has wider viewing angles, better contrast ratio than TN displays. TFT display technologies have been widely used for computer monitors, laptops, medical monitors, industrial monitors, ATM, point of sales etc.

Actually, IPS technology is a kind of TFT display with thin film transistors for individual pixels. But IPS displays have superior high contrast, wide viewing angle, color reproduction, image quality etc. IPS screens have been found in high-end applications, like Apple iPhones, iPads, Samsung mobile phones, more expensive LCD monitors etc.

Both TFT LCD displays and IPS LCD displays are active matrix displays, neither of them can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to make LCD showing colors. If you use a magnifier to see your monitor, you will see RGB color. With switch on/off and different level of brightness RGB, we can get many colors.

Neither of them can’t release color themselves, they have relied on extra light source in order to display. LED backlights are usually be together with them in the display modules as the light sources. Besides, both TFT screens and IPS screens are transmissive, it will need more power or more expensive than passive matrix LCD screens to be seen under sunlight.  IPS screens transmittance is lower than TFT screens, more power is needed for IPS LCD display.

difference between tft lcd and crt price

Since the production of cathode ray tubes has essentially halted due to the cost and environmental concerns, CRT-based monitors are considered an outdated technology. All laptops and most desktop computer systems sold today come with LCD monitors. However, there are a few reasons why you might still prefer CRT over LCD displays.

While CRT monitors provide better color clarity and depth, the fact that manufacturers rarely make them anymore makes CRTs an unwise choice. LCD monitors are the current standard with several options. LCD monitors are smaller in size and easier to handle. Plus, you can buy LCD monitors in a variety of sizes, so customizing your desktop without all the clutter is easy.

The primary advantage that CRT monitors hold over LCDs is color rendering. The contrast ratios and depths of colors displayed on CRT monitors are better than what an LCD can render. For this reason, some graphic designers use expensive and large CRT monitors for their work. On the downside, the color quality degrades over time as the phosphors in the tube break down.

Another advantage that CRT monitors hold over LCD screens is the ability to easily scale to various resolutions. By adjusting the electron beam in the tube, the screen can be adjusted downward to lower resolutions while keeping the picture clarity intact. This capability is known as multisync.

The biggest disadvantage of CRT monitors is the size and weight of the tubes. An equivalently sized LCD monitor can be 80% smaller in total mass. The larger the screen, the bigger the size difference. CRT monitors also consume more energy and generate more heat than LCD monitors.

For the most vibrant and rich colors, CRTs are hard to beat if you have the desk space and don"t mind the excessive weight. However, with CRTs becoming a thing of the past, you may have to revisit the LCD monitor.

The biggest advantage of LCD monitors is the size and weight. LCD screens also tend to produce less eye fatigue. The constant light barrage and scan lines of a CRT tube can cause strain on heavy computer users. The lower intensity of the LCD monitors coupled with the constant screen display of pixels being on or off is easier on the eyes. That said, some people have issues with the fluorescent backlights used in some LCD displays.

The most notable disadvantage to LCD screens is the fixed resolution. An LCD screen can only display the number of pixels in its matrix. Therefore, it can display a lower resolution in one of two ways: using only a fraction of the total pixels on the display, or through extrapolation. Extrapolation blends multiple pixels together to simulate a single smaller pixel, which often leads to a blurry or fuzzy picture.

For those who are on a computer for hours, an LCD can be an enemy. With the tendency to cause eye fatigue, computer users must be aware of how long they stare at an LCD monitor. While LCD technology is continually improving, using techniques to limit the amount of time you look at a screen alleviates some of that fatigue.

Significant improvements have been made to LCD monitors over the years. Still, CRT monitors provide greater color clarity, faster response times, and wider flexibility for video playback in various resolutions. Nonetheless, LCDs will remain the standard since these monitors are easier to manufacture and transport. Most users find LCD displays to be perfectly suitable, so CRT monitors are only necessary for those interested in digital art and graphic design.

difference between tft lcd and crt price

Have you ever wonder where TFT derive from?  Why is TFT referred to as LCD?  The phenomenon started in early days, when bulky CRT displays were thing of the past and LCD was its replacement, but as time progresses, there were still room for improvement, which leads to the birth of TFT’s.

TFT is a variant of an LCD which uses thin film transistor technology to improve an image quality, while an LCD is class of displays that uses modulating properties of liquid crystals to form what we call an LCD (liquid crystals display) which in fact does not emits light directly.

Even though LCDs were very energy efficient, light weight and thin in nature, LCD were falling behind to the CRT display, which  then leads to a change in LCD manufacturing, where performance became a big problem.

For example, having a 2001 Mustang vs a 2014 Mustang, the dimensions and engine of the 2014 has been redesign for performance reasons, not mentioning user friendly, so does the LCD to TFT.

As the birth of TFT, the elements are deposited directly on the glass substrate which in fact the main reason for the switch was because TFTs are easier to produce, better performance in terms of adjusting the pixels within the display to get better quality.

LCDs became ineffective over a period of time, almost all aspect of watching a TV, playing video games or using a handheld device to surf the net became daunting, this phenomenon is known as high response time with low motion rate.

Another problem with LCD was crosstalking, in terms of pixelating, this happens when signals of adjacent pixels affects operations or gives an undesired effect to the other pixel.

As TFT’s become very popular throughout the century due to its elaborate low charge associate and outstanding response time, LCDs became a thing of the past, and TFT became the predominant technology with their wider viewing angles and better quality this technology will be around for a long time.

difference between tft lcd and crt price

Cathode Ray Tubes (CRT) were once the only way to convey pictures. They are large, bulky and consume a lot of power. Liquid Crystal Displays or more commonly known as LCDs are beginning to replace CRTs in most applications today. They are essentially the reverse of what CRTs are, light, thin, and energy efficient. Also, because of the high power consumption of CRT displays, it needs to dissipate a greater amount of energy which makes it run hotter compared to LCDs.

The only aspect where CRT wins over LCD in performance is in the response time. Older LCDs have been plagued with very slow response times that create ghosting effects on the screen whenever there is high speed motion. This made early LCD screens unsuitable for most gaming needs and even in viewing movies, but newer LCDs have improved on it and this is no longer such a big issue.

Understandably, LCDs cost significantly more compared to CRTs in displays of the same size due to the more complex production process that is needed to produce LCDs. But consumers often rationalize that the extra cost is recovered after a while due to the significantly lower power consumption. The physical dimensions of the LCD also meant that it is usable in so many applications where CRTs would simply be impractical to use. Aside from the usual TV screen or computer monitor, LCDs are also used in mobile phones, digital cameras, music players, GPS navigators, and so much more.

A problem that is unique to LCD screens is the dead pixel, which is unheard of in CRT screens. Since LCDs are a matrix of pixels, one or more of these pixels may not function due to irregularities in the production process. This leaves a small dot on the screen that doesn’t change with the display, appearing like a small piece of dirt stuck in there. Most manufacturers would accept and replace screens that have dead pixels in them but it is always best to inquire about the warranty and their dead pixel policy.

difference between tft lcd and crt price

Although CRT Monitors are better for gaming, TFT/LCD monitors are on the rise. They"re more technologically advanced than CRT ones but they"re worse for gaming. Nevertheless, these are gaining popularity because they"re better for everything else. Smaller, lighter, better to the eyes, great quality and good size makes LCD monitors the number 1 choice.

These days monitor brands have at least one 120hz tft monitor. These are *highly* recommended, in alternative to a big and heavy crt. Some models available today:

If you own one 120hz tft monitor you can ignore the remaining information on this page, since these monitors usually deliver a very smooth experience out-of-the-box.

Under Windows with Nvidia graphic cards you can tweak this settings in Nvidia Control Panel, you got few options in Display -> Adjust desktop size and position. There are two modes recommended:

Do not scale - which will result in black bars around the image. So if you got 1920x1200 and you run 640x480 then you will get vast amout of black borders. It will look bizarre. Example here.

TFT monitors are currently limited to 75Hz. Thats 75 "screen updates" per second. See below for best settings for each monitor. Note that some screens accept diplay at 75Hz rate but in fact interpolate it back to 60Hz so you will get once per 15 frames dropped, wich may have nasty non-smooth side effects.

There is a limitation of bandwidth using DVI especially with higher-res TFTs but this is affected by the monitor"s capability of being single- or dual-linked and it really limits the possible fps. Huge monitors with huge resolutions are basically unable to have anything above 60Hz due to this DVI bandwidth limitation.

The difference between VGA and DVI input varies from monitor to monitor. Basically VGA input adds random noise (or snowing) to the picture, or moving "waves" in the worst case scenario, or reducing the sharpness of the image and/or accuracy of color prodution. Note that using DVI or VGA does NOT affect input lag or the screen processing time at all, so it"s recommended that DVI is being always used.

LCD dont refresh the entire screen, instead they "morph" the image pixel by pixel. CRT refresh the entire screen, so you always get a brand new image, created in one go, rather than 1000s of pixels. The bluriness in LCD and CRT comes from how fast the images or pixels are refreshed. Most people can set their CRT to 60hz and see quite a blurry image. CRT uses an electron gun in a technique which basically "morphs" all the pixels, 60 times a second (during 60hz operation, 120 times a second during 120hz, etc.) This means that LCD will actually be faster than CRT, if they update at the same hertz, because LCD selectively refreshes parts of the screen, while CRT mechanics force it to refresh the entire screen. (This is partly how lossless video compression streams achieve smaller file sizes, by excluding redundant data except for key-frames every couple of seconds.)

One legitimate criticizm of LCD is "ghosting" which is the effect of the physical properties of low quality liquid crystal, which the visible phosphorus layer on CRT does not exhibit.

CRT and LCD can both have true blacks, and true colour, depending on the quality of the manufacturer. Most LCD have "grid resolution", although there are alternatives to CRT such as Plasmas, etc.

difference between tft lcd and crt price

We all are familiar with the computer monitors. We spend time sitting in front of them for hours working, gaming or watching movies. A monitor is used to display the output of any computer system. A good display makes all the difference and no doubt enhances the user experience. The innovation in the display technologies has improved the quality of the display devices including monitors. Now the desktop computers are available with a variety of displays ranging from technologically obsolete CRT monitors to latest slim LCD, LED or OLED monitors.

A computer monitor, technically termed as visual display unit is an output device that presents the information from the CPU on the screen working as an interface between CPU and the user. A cable connects the monitor to a video adaptor or video card which is set up on the motherboard of the computer. The CPU (Central Processing Unit) sends instruction to the video adaptor telling what needs to be displayed on the screen. The video adaptor converts the instructions into a set of corresponding signals and sends to the monitor. Monitor contains a circuitry that generates the picture on the screen from the set of signals.

The major parameters that measure the performance of a monitor are luminance, contrast ratio, resolution, dot pitch, response time, refresh rate and power consumption. The common problem that arises in monitors is dead pixels, blurred screen, phosphor-burn, etc.

which were the boxy Video Display Terminals (VDTs). VDTs were monochrome monitors which used CRT (Cathode Ray Tube) technology. They were capable of working with any type of computer by connecting through a serial interface.

IBM’s CRT– IBM launched its first computer also known as a ‘three piece computer’ in 1981. It had three different units – CPU, monitor and keyboard separately. By 1984, IBM introduced the new CRT monitor with enhanced Color Graphics Adaptor (CGA) with 16 colors and a resolution of 640 x 350 pixels. In 1987 IBM started offering the Video Graphics Array as part of its new PCs which allowed 256 different colors and a resolution of 640 x 480 pixels.

XGA and UXGA– A new technology named Enhanced Graphics Array or XGA was introduced in 1990 which allowed 16.8 million colors with a resolution of 800 x 600 pixels. The new monitors were now offering true colors that matched the human eye (human eye can detect 10 million different colors). Later the technology extended as UXGA, Ultra Extended Graphics Array which allowed 1600 x 1200 pixels.

In the 90s the LCD monitors came in the scene and gradually started competing with the CRT monitors. By the end of the 20th century, the CRT era was declining with the increasing popularity of Liquid Crystal Technology (LCD). This technology produces sharper images than the CRT monitors and the LCD monitors are significantly thinner having lower radiation emissions.

Few years’ back, LED displays came in the scene and they are gradually making its space in the market. LED technology has various advantages over LCD technology like better image quality, low power consumption, etc.

Since the beginning of computer era, there have been a number of technologies used for the display of output. The major technologies are CRT, LCD, Plasma, LED and OLED displays.

signals through a cable and the signal is decoded by the display controller which finally appears on a phosphor screen. The detailed working is as following:

As shown in the image CRTs have a conical shape and there is an electron gun or cathode ray gun at the back end of the monitor and a phosphor screen in the front. The electron gun fires a stream of electrons towards the display screen through a vacuum tube. This stream of electrons is also known as cathode rays. At the middle of the monitor, there are magnetic anodes which are magnetized in accordance with the instruction from the display controller. When electrons (cathode rays) pass through the magnetic anodes, they are pushed or pulled in one direction or other depending on the magnetic field on the anodes. This directs the electrons towards the correct part of phosphor coating inside the display glass. When electrons strikes the phosphor coated screen passing through a mesh (shadow mask or aperture grill), the phosphor lights up making a displayable dot on the computer screen. There are three different colored phosphors (Red, Green and Blue) for each pixel and the color of the pixel depends on the phosphor on which the electrons strike.

has three different phosphors for each pixel. A cathode ray strikes to one or more of these phosphors and the corresponding colored pixel appear on the screen. However high quality monitors use individual electron gun for each color which improves the image quality. Distance for two same colored phosphors (for single electron gun monitors) is known as dot pitch. Lesser the dot pitch higher is the quality of monitors.

brightness on the screen. Shadow mask is an obsolete technology in which there is a metal sheet with millions of holes to pass electrons in order to hit the phosphor coating. The shadow mask covers the entire screen thereby protecting the phosphors from stray ions (due to vacuum) and also limits the strength of the rays reducing the brightness on the monitor.

What is the resolution of the screen?–Resolution of a monitor tells how densely pixels are arranged on the screen. A combination of dot pitch and the viewable image area defines the maximum resolution of the screen. For example if a 21 inch monitor screen with a viewable area of 401mm x 298mm has a dot pitch of 0.26 mm, then its resolution is 1843 x 1370 pixels derived from a formula.

currently. LCD monitors are lightweight, compact, occupy less space, consume low power and are available in a reasonable price. Currently there are two types of LCD technology in use – Active matrix LCD technology or TFT and Passive matrix technology. The TFT technology is more reliable with better image quality while the passive matrix technology has a slower response and gradually becoming outdated.

As the name indicates, liquid crystals are the key elements of the display screen. By manipulating the crystal we can change the way they interacts with the light. There is a display controller in the monitor which receives the display signals from the video adaptor in the motherboard. The display controller controls two things – the electric signals to the liquid crystals and the back light. Structure of an LCD is shown in the below images (Also see how LCD works).

The liquid crystals used in the LCD are Twisted Nemantic (TN), a type of liquid crystals that are twisted at 90owith the surface. In this state, crystals allow the light to pass through the polarizer but on applying a voltage, they get untwisted and block the light to passing through the polarizer. The display controller starts the backlight that passes through the first piece of the glass. At the same time the display controller also send the electrical currents to the liquid crystal molecules to align and allowing the varying level of light to pass through the second piece of glass, forming the desired picture on the screen. In color monitors, each pixel is made of three liquid crystal cells fronted with red, green and blue filters. The light passing through the filtered screen forms the color what you see on the monitor. A wide range of colors are formed by varying the intensity of colored pixels.

The backlight is made of cathodes, and depending on the quality of the monitor, there may be a single cathode at the top or one at the top and one at the bottom, or two at the top and two at the bottom to improve the brightness and clarity of the monitor. These cathodes are diffused through a layer of plastic and diffusing materials.

Resolution– Unlike the CRT monitors there is no complex equation for the dot pitch and the resolution. The resolution of a monitor is simply the number of pixels contained in the matrix. Typically a 17 inch monitor has a resolution of 1280 x 1024 pixels.

In the below video Bill Hammack explains how a TFT monitor works, how it uses liquid crystals, thin film transistors and polarizers to display information.

In this field. LED monitors use light emitting diodes that acts as a performance booster in the monitors. Basically LED monitors are the LCD monitors with a LED backlight to power up the LCD panel. It means that LEDs are placed behind or around the LCD panel to enhance the luminosity and video definition of the monitor screen.

As we have seen in the above section of LCD monitors, they use a cold cathode light as backlight. In the LED monitors all the concepts are same except this backlight, which is replaced by LEDs.

There are three different types of LED monitors available based on the manner how the diodes are arranges in the monitor. These are – Direct LEDs, Edge LEDs and RGB LEDs. Both Edge and Direct LED display monitors use white diodes that are used to illuminate the LCD panel to produce the improved picture quality. The arrangement of LEDs in the monitor is shown in the below image:

In the Direct LEDs display, white diodes are placed all over the panel to produce higher quality image while the Edge LEDs display uses LEDs only on the borders of the LCD panel. Direct LEDs are generally used in the production of high definition TV whereas the Edge LEDs is mainly used in the production of computer screens. RGB LEDs display is better among the three types of LED monitors as it uses red, green and blue diodes to produce the lifelike images with amazing contrast ratio.

Both types of monitors work on the same technology. LED monitors are LCD monitors with replaced cold cathode backlight to LED backlight. Here are the differences that make the LED displays better than the LCDs

Contrast and Black level of the LED screen is better than the LCD screens because the liquid crystals cannot stop 100% of the backlight from cold cathode backlight and hence when the black screen is to be shown on the monitor, it is not completely black (as shown in the below image). But Edge LED screens perfectly show the black screen as there is no backlight at all.

illuminate tiny colored fluorescent lights to create image pixels. Each pixel is made of three such fluorescent lights – red, green and blue lights. To create a wide range of colors, intensity of these lights is varied accordingly.

There are millions of tiny cells filled with the gas like xenon and neon. They are positioned between two plates of glass known as front plate glass and rear plate glass. Two transparent electrodes covered by an insulating dielectric material and a magnesium oxide protective layer are also sandwiched between the glass plates on both sides of the cells on the entire screen.

When the CPU sends the signals to the Plasma monitor, the corresponding electrodes are charged which ionizes the gas in the intersecting cells by passing an electric current. Due to the collisions between the gas ions they release energy in the form of the photons of light which illuminate the respective cells. This process occurs thousands of times in a small fraction of second making the display faster. The released ultraviolet photons strike the phosphor material coated on the inner wall of the cell and hence phosphor electrons jump to the higher energy level. When the electron falls back to its normal state, it releases the energy as a visible light photon. Every pixel on the screen is made of three different colored phosphors – red, green and blue.

are some organic material (containing carbon, like wood, plastic or polymers.) that is used to convert the electric current into light. Since the LEDs are capable of producing different colored light, they are directly used to produce the correct color and there is no need of a backlight which saves power and space. With fast response time, wide viewing angles, outstanding contrast levels and perfect brightness, OLED displays are surely better than the existing other display technologies.

The heart of the OLED display is a stack of thin organic layers which is sandwiched between two conductors – a transparent anode and a metallic cathode, which in turn are sandwiched between two glass plates known as seal and substrate. The organic layer consists of a hole-injection layer, a hole-transport layer, an emissive layer and an electron-transport layer. When an appropriate voltage is applied, an electric current flows from cathode to anode through the organic layers. The cathode give electrons to the emissive layer of organic molecules while the anode takes equivalent electrons from the conducting layer of organic molecules. At the boundary of emissive and conductive layers, electrons and the holes are gathered. Here electrons are recombined with the holes by releasing energy in the form of photon of light. Hence the organic layer emits the light to produce the display. The color of the light depends on the type of organic molecules while the brightness depends on the amount of the current applied. By maximizing the recombination process in the emissive layer the output light can be improved in OLED devices. Thus the emissive layer is slightly doped with highly fluorescent molecules to enhance the electro-luminescent efficiency and control of color.

·Comparing it with the LCD devices, OLED displays can be viewed from different angles as they are “emissive” devices i.e. they emit light rather than modulating transmitted or reflected light.

difference between tft lcd and crt price

A CRT monitor is similar to older types of televisions. A large glass tube known as a "Cathode Ray Tube" is used as the display. The front of the tube is covered with a type of phosphor. At the back is an "electron gun." This gun shoots electrons at varying intensities, causing the phosphors cells to glow. Each phosphor cell contains three color phosphors, red, green, and blue. When different colors are needed to be displayed, the gun charges up two or more of the colors, as well as dithering with other cells to create even more colors. 13th July 2013 From India

difference between tft lcd and crt price

I have not found this site useful. I came here looking to find out what a TFT was. Instead there"s just too much jargon on here. this only helps those who have an idea of what computers are and not the everyday person who does not know the difference between a CLI and a GUI.

i have bought a new TFT monitor. My problem is that the screen suddenly disappears and for a moment the screen is blank. But then it comes again and is working properly. When i typed this post it happened twice in the span of just a minute. Please do explain it to me.

What would be the power consumption of a standard TFT monitor and a digital monitor? How much would I be able to save on electricity consumption unit wise?

I love your article. It provided me very good information on TFT Monitors. It is good to know that the TFT Monitors consist of separate transistors for Separate Dot Pixel. Even in my cousin"s home on his LCD he got 2 black dots. I think it is dead transistors. So this is not good if some transistor fail it will corrupt whole display. What is the solution for this?

What would be the power consumption of a standard TFT monitor and a digital monitor? How much would i be able to save on Electricity consumption unit wise?

i have +2.5 power so it becomes very difficult for me to sit in front of computer regularly for seven to nine hours. is there any tft monitor on which i can sit regularly for more than ten hours? due to this reason i resigned three previous jobs.

I have a 17" drop down TFT monitor that I installed in my boat. It starts up fine, but after about two or three minutes, the picture freezes and then the unit turns its self off. Any idea what might be wrong with it?

i have bought new TFT monitor. My problem is that the screen suddenly disappears and for a moment screen is blank. But then it comes again and is working properly. When i typed this post it happened twice in the span of just a minute. Please do explain it to me.