lcd touch screen microcontroller quotation

ER-DBTM028-4 is a microcontroller 8051(80C51) demonstration and development kit for ER-TFTM028-4 product that is 2.8 inch tft lcd display with ILI9341 controller and adaptor board.The kit includes MCU board controlled by STC12LE5A60S2,ISP(In System Programming) with USB port and cable to customize the demonstration that includes your own bitmap images,personalized fonts,symbols,icons and burn sketches,microSD card that is written graphic and text into it,the power adaptor,the adaptor board with various pitch dimension used to connect MCU board and display. Optional for 8080 8-bit,8080 16-bit parallel interface and 3-wire,4-wire serial interface.

lcd touch screen microcontroller quotation

ER-DBT024-3 is a microcontroller 8051(80C51) demonstration and development kit for ER-TFT024-3 product that is 2.4 inch tft lcd display with ILI9341 controller.The kit includes MCU board controlled by STC12LE5A60S2,ISP(In System Programming) with USB port and cable to customize the demonstration that includes your own bitmap images,personalized fonts,symbols,icons and burn sketches,microSD card that is written graphic and text into it,the power adaptor,the adaptor board with various pitch dimension used to connect MCU board and display.Optional for 8080 8-bit,8080 16-bit parallel interface and 3-wire,4-wire serial interface.

lcd touch screen microcontroller quotation

The Displaytech EMB035TFTDEMO is a demonstration and development board for the Displaytech 3.5 inch color TFT display. The display is controlled by a Microchip PIC24FJ256DA210 microcontroller with integrated graphics controller. Furthermore, the demonstration board includes on-board external SRAM for extra frame-buffer memory as well as SPI flash for storing fonts and images. Capacitive touch screen is available for the 3.5" TFT display.

lcd touch screen microcontroller quotation

This graphic display module is a 2.4" diagonal, full color TFT. Suitable for embedded applications, it is low-power, uses a white LED backlight, and has an integrated touch panel which has its connection brought out to the main TAB connector for the display.

It has an on-board controller and 3v single voltage for supply and logic (backlight not included), so you can easily use any modern microcontroller to interface with this display. It uses an 8 or 16 bit parallel interface, specified via connections to the display.

lcd touch screen microcontroller quotation

No. The touch-panel controllers that you"ll have access to are designed for building capacitive button panels like those that might be found above your laptop keyboard or on the side of your TV, not for building high-resolution touchscreens. Quoting the datasheet:

You can build a rudimentary X-Y touch panel with 16 horizontal pixels and 16 vertical pixels (or 20 and 12, or whatever) by laying out your PCB like this:

Real touchscreens are constructed in a similar fashion, but have hundreds or thousands of these rows and as many channels. The rows and columns are laid in transparent metal layers of indium-tin oxide on glass layers. If you have to ask, it"s probably not in your budget. If you really want a capacitive touchscreen, you"ll be better off reverse-engineering the output of the OEM module with the capacitive sensing already built in. Note that your PIC16 doesn"t have the horsepower required to decode this information; you"ll need a big ARM processor or an FPGA for that.

lcd touch screen microcontroller quotation

Our new line of 10.1” TFT displays with IPS technology are now available! These 10.1” IPS displays offer three interface options to choose from including RGB, LVDS, and HDMI interface, each with two touchscreen options as capacitive or without a touchscreen.

The new line of 3.5” TFT displays with IPS technology is now available! Three touchscreen options are available: capacitive, resistive, or without a touchscreen.

lcd touch screen microcontroller quotation

The CL-711 7” display offers a 800x480 high-resolution screen and 1000 nit brightness. The real-time determistic IO and CAN interface are available immediately when power applied.

Ideal for displaying multiple gauges, graphs and other data on high resolution 1280x800 and high brightness 1000 nit LCD. The real-time determistic IO and CAN interface are available immediately when power applied.

Cummins Tier 4 Final Compatible. Designed to monitor off-highway diesel engines that meet strict EPA standards. Programming allows users to develop screens to clearly show critical system parameters.

lcd touch screen microcontroller quotation

But this is not only about the microcontroller, we have a touch screen-based shield that can be used to provide better user interface. The screen comes frommakerfabsopen-source environment. It is 3.5 Inch SPI TFT capacitive touch screen which is way faster than any I2C screen. You can find more details regarding firmwarefrom here.

Being a number of the Makerfabs ESP Display family, this ESP32 C3 SPI 3.5-inch Touch is 320*480, with ILI9488 driver. Same as the otherMakerfab"s ESP32 displays, there 2 USB connectors, one for USB2UART convertor, and 1 USB native; on-board SD card, and Mabee connector(I2C) which is Seeedstudio Grove compatible, so it fits for applications that need sensor connected.

You can make your own version of display using ESP through the schematics given here. It allows you to design the schematics with other types of screen.

I tried a lot of different files, and we need the same resolution files otherwise the drivers are failed to detect the colors and we got nothing on screen. But after editing some files in paint and converting them into BMP do the fine job.

lcd touch screen microcontroller quotation

16/18/24-bit RGB Interface, Top View, Wide Temp (-20°- 70° operating/-30°- 80° storage), Transmissive, Capacitive touch panel, 430 nits, RoHS Compliant.

TheCapacitive touch panelis activated with anything containing an inductive load such as a finger or stylus. It allows for multi-touch options. When using the capacitive touch screen, the display needs a separate controller to interface with the touch panel. The display for capacitive touch is brighter since the touch panel is transparent.

The Transmissive polarizer is best used for displays that run with the backlight on all the time. This polarizer provides the brightest backlight possible. If you have a need for a bright backlight with lower power drain, transmissive is a good choice for this TFT LCD display.

Focus LCDs can provide many accessories to go with your display. If you would like to source a connector, cable, test jig or other accessory preassembled to your LCD (or just included in the package), our team will make sure you get the items you need.Get in touch with a team member today to accessorize your display!

Focus Display Solutions (aka: Focus LCDs) offers the original purchaser who has purchased a product from the FocusLCDs.com a limited warranty that the product (including accessories in the product"s package) will be free from defects in material or workmanship.

lcd touch screen microcontroller quotation

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.

The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

Now we need to make the buttons functional so that when we press them they would send us to the appropriate example. In the setup section we set the character ‘0’ to the currentPage variable, which will indicate that we are at the home screen. So if that’s true, and if we press on the screen this if statement would become true and using these lines here we will get the X and Y coordinates where the screen has been pressed. If that’s the area that covers the first button we will call the drawDistanceSensor() custom function which will activate the distance sensor example. Also we will set the character ‘1’ to the variable currentPage which will indicate that we are at the first example. The drawFrame() custom function is used for highlighting the button when it’s pressed. The same procedure goes for the two other buttons.

So the drawDistanceSensor() custom function needs to be called only once when the button is pressed in order to draw all the graphics of this example in similar way as we described for the home screen. However, the getDistance() custom function needs to be called repeatedly in order to print the latest results of the distance measured by the sensor.

Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.