tft display esp32 manufacturer

A beautiful 3.5” touchscreen display, based on ESP32-WROVER, with a built-in 2M pixel OV2640 camera, makes it an ever perfect platform for your ESP32 projects.

Makerfabs ESP32 3.5” Touch with camera is absolutely open for makers, and besides, Makerfabs provide plenty of Demos to help the users on the usage. Have a try at this fantastic display in your next ESP32 project!~

tft display esp32 manufacturer

The Makerfabs 3.5 inch TFT Touch is great but the refresh rate is always a problem, some customers feedback they want a higher speed display. The ESP32-S2 Parallel TFT has a much higher refresh rate, but the disadvantage is the lack of Bluetooth...

That is why this latest ESP32-S3 Parallel TFT, compares to the S2 version, not only more SRAM and ROM, the Bluetooth 5.0 make it fit for applications such as local monitoring/controlling.

This 3.5" 320x480 TFT LCD driver is ILI9488, it uses 16bits parallel line for communication with ESP32-S3, the main clock could be up to 20MHz, making the display smooth enough for video displays. With this display, you can freely to create more IoT display projects, check the demo project in the video:

Same as the S2 version, there 2 onboard Mabee pins(A I2c and an IOs) with the breakout connectors, to connect the ESP32-S2 display with sensors/ actuators, suitable for IoT applications.

tft display esp32 manufacturer

ESP-LCD is a multimedia smart-control solution built around ESP32-S2-HMI-DevKit-1 and an LCD capacitive touch screen. With ESP-LCD, users can easily realize a hardware network, and achieve remote or smart-touch control, data visualization, music playback, recording, etc. ESP-LCD is suitable for several smart-control scenarios involving smart clocks, air-quality detectors, smart audio control, and various other applications based on touch screens.

ESP32-S2-HMI-DevKit-1 is a development board based on the ESP32-S2-WROVER module. It has a 4.3-inch TFT-LCD, and a capacitive touch panel with a resolution of up to 480×800 and an initial start-up time that is less than 200 ms. ESP32-S2-HMI-DevKit-1 has various components, including a light sensor, a temperature and humidity sensor, a MEMS sensor, a micro-SD card connector, a TWAI® interface (compatible with CAN 2.0) etc. On top of that, it also supports functions, such as LVGL GUI development, music playback, and recording.

tft display esp32 manufacturer

Makerfabs has launched a 3.5-inch TFT touchscreen display with built-in WiFi and Bluetooth connectivity through an ESP32-S3 dual-core Tensilica LX7 microcontroller clocked at 240 MHz with vector instructions for AI acceleration.

This display offers a 320×480 resolution through the ILI9488 LCD driver, uses a 16-bit parallel interface for communication with ESP32-S3 clocked at up to 20 Mhz making it suitable for smooth graphics user interface, and the company also claims it is smooth enough for video displays, but more on that later.

Espressif Systems ESP32-S3 dual-core Tensilica LX7 @ up to 240 MHz with vector instructions for AI acceleration, 512KB RAM, 2.4 GHz WiFi 4 and Bluetooth 5.0 LE with support for long-range, up to 2Mbps data rate, mesh networking

Display – 3.5-inch color TFT LCD with 480×320 resolution, 16-bit parallel interface (ILI94988 driver), and capacitive touch panel (FT6263); backlight controller

The display can be programmed with the Arduino IDE. Sample code using the LovyanGFX library and EAGLE schematics and PCB layout can be found on Github. Makerfabs also designed an ESP32-S2 model that lacks Bluetooth connectivity, and the ESP32-S3 touchscreen display comes with more RAM and eMMC flash.

I was tipped about this display by Jon, a regular reader and commenter on CNX Software, who bought it, and said it works as advertised. The ESP32-S3 can really drive a high-speed display with a parallel LCD interface. However, it can’t stream video because there is no H.264 decoder, but it is great if you want a responsive GUI.

Makerfabs ESP32-S3 16-bit parallel capacitive touchscreen display is sold for $39.80 plus shipping, and the ESP32-S2 model is the same price with a resistive display, and there’s a capacitive display option for $4 more. As a side note, we previously wrote about another, smaller ESP32-S3 display, namely the LilyGO T-Display-S3, with a 1.9-inch display connected over a slower 8-bit parallel interface, and no touchscreen function that sells for around $17.

tft display esp32 manufacturer

1187 esp32 with display products are offered for sale by suppliers on Alibaba.comAbout 31% % of these are integrated circuits (old), 11%% are lcd modules, and 6%% are other electronic components.

A wide variety of esp32 with display options are available to you, such as original manufacturer, odm and retailer.You can also choose from datasheet, esp32 with display,as well as from tft, ips, and standard esp32 with display,

tft display esp32 manufacturer

Welcome to buy TFT display online for your development. STONE offers a series of TFT (thin-film transistor) LCD modules, including 3.5 “, 4.3 “, 5 “, 7 “, 8 “, 10.1 “, 12 “and 15” TFT displays.Stone displays include a variety of technology upgrades, such as resistive touch screens, capacitive touch screens, high-resolution displays, and IPS displays. These LCD screens can display rich colors, clear pictures, and bright images. STONE TFT LCD can play music, it can play videos. STONE HMI displays are suitable for a variety of products in industrial, medical, and consumer applications. You can use any MCU for control, such a

tft display esp32 manufacturer

LILYGO has launched an integrated circular touchscreen display, built around Espressif"s ESP32-S3 microcontroller and packing 2.4GHz Wi-Fi 802.11b/g/n and Bluetooth 5.0 connectivity: the LILYGO T-RGB.

"T-RGB is LILYGO"s first circular touch display screen," the company writes of its latest board design, brought to our attention byCNX Software. "The main control chip adopts ESP32-S3R8 Tensilica Xtensa Dual Core LX7 Microprocessor, this chip supports Wi-Fi 802.11 b/g/n and Bluetooth 5."

The all-in-one display, which can be used as a standalone device, uses a Leadtek ST7701S-driven 2.1" TFT full-color LCD panel with circular layout — accepting, as all such displays do, a square image and cropping for display. In this case, the panel has a 480×480 pixel resolution with three-wire SPI and 18-bit RGB interfaces.

On the microcontroller side, the Espressif ESP32-S3 — one of the last chips to be launched by the company before its move to RISC-V-based processor cores — includes two Xtensa LX7 cores running at up to 240MHz, vector instruction support for edge-AI work, 512kB of static RAM (SRAM), 16MB of additional pseudo-static RAM (PSRAM), and 8MB of flash storage — expandable via a microSD card slot.

Elsewhere on the board is a Grove connector for external hardware, a USB Type-C connector for power and data, pads for a supplied but unsoldered battery cable — compatible lithium-polymer battery not included — and physical boot and reset buttons. The display itself, meanwhile, is touch-sensitive — making up for the board"s lack of user-addressable physical buttons.

LILYGO"s latest isn"t the first self-contained microcontroller-equipped round display we"ve seen. Earlier this year Om Singh and SB Componentsunveiled the RoundyPi and RoundyFi, circular color displays built around a Raspberry Pi RP2040 and an Espressif ESP-12E respectively; in June, the company showed off variant, which mounted a round displayon a Raspberry Pi Hardware Attached on Top (HAT) boardwhile adding touch sensitivity.

tft display esp32 manufacturer

The content is intended to be updated from time to time, I will add more details if I found new display or library update. You can also help me enrich the content by leaving comments below.

You can run various IoT projects prefectly without any display. But not all IoT project only feed data in single direction (IoT to server), some IoT also gather real time information from the server for displaying.

My previous instructables, ESP32 Photo Clock is am example, it download a current minute photo from the Internet, decode the JPEG photo and display it.

Many Arduino projects use monochrome display, one of the reason is the limited resources of a MCU. 320 pixels width, 240 pixels height and 8 bits color for each RGB color channel means 230 KB for each full screen picture. But normal Arduino (ATmega328) only have 32 KB flash and it is time consuming (over a second) to read data from SD card and draw it to the color display.

ESP32 have changed the game! It have much faster processing power (16 MHz vs 240 MHz dual core), much more RAM (2 KB vs over 200 KB) and much more flash (32 KB vs 4 MB), so it is capable to utilize more color and higher resolution image for displaying. At the same time it is capable to do some RAM hungry process such as Animated GIF, JPEG or PNG file decoding, it is a very important feature for displaying information gathered from the internet.

Color display have many type of interfaces: Serial Peripheral Interface (SPI), 6-bit, 8-bit, 16-bit, 18-bit and 24-bit parallel interfaces and also NeoPixel!

SPI dominate the hobby electronics market, most likely because of fewer wire required to connect. Most display in my drawer only have SPI pins breaking out, so this instructables focus on SPI display and a few 8-bit display.

NeoPixel matrix is a very special type of color display. If you are interested in NeoPixel matrix display, here are some of my instructables using it:

There are various color display for hobby electronics: LCD, IPS LCD, OLED with different resolutions and different driver chips. LCD can have higher image density but OLED have better viewable angle, IPS LCD can have both. OLED have more power efficient for each light up pixel but may have burn-in problems. Color OLED operate in 14 V, it means you need a dedicate step-up circuit, but it is not a problem if you simply use with a break-out board. LCD in most case can direct operate in 3.3 V, the same operating voltage as ESP32, so you can consider not use break out board to make a slimmer product.

Software support on the other side also influence your selection. You can develop ESP32 program with Arduino IDE or direct use ESP-IDF. But since ESP-IDF did not have too much display library and not much display hardware supported, so I will concentrate on Arduino display libraries only.

For the beginner, I think buying adafruit, or similar supportive vendor, hardware and using its Arduino library can have good seamless experience (though I have no budget to try it all). TFT_eSPI library have better performance but configuration require make changes in the library folder. Ucglib and UTFT-ESP run a little bit slow but it support many hardware and it is a popular library, you can find many Arduino projects using it. LovyanGFX library start appear at 2019, it support many dev device such as M5Stack, M5StickC, TTGO T-Watch, ODROID-GO, ESP-WROVER-KIT, WioTerminal and more. I am also writing a new library called Arduino_GFX since 2019.

OLED have a big advantage, the pixel only draw power if it lights up. On the other hand, LCD back light always draw full power even you are displaying a black screen. So OLED can help save some power for the project powered by a battery.

Thanks for the popularity of wearable gadget, I can find more small size IPS LCD in the market this year(2018). The above picture is an 0.96" 80x160 IPS color LCD using ST7735 driver chip. As you can see in the 3rd picture, you can treat it as a 128x160 color display in code but only the middle part is actually displaying. The 4th picture is the display without breakout board, it is thin, tiny and very fit for a wearable project!

SSD1283A is 1.6" 130x130 display, it claim only consume 0.1 in sleep mode and backlight turned off. In sleep mode the last drawn screen still readable under sufficient lighting.

ST7789 also a common driver chip in ESP32 community. One of the reason is ESP32 official development kit using it. As same as ILI9341, ST7789 also can drive 240x320 resolution.

This also the highest pixel density color display in my drawer. As same as normal LCD, it can direct operate in 3.3 V, so it is very good for making slim wearable device.

There are many display libraries that can support various hardware. I have picked 4 of most popular Arduino library for comparison:Adafruit GFX Family

The display speed is one of the most important thing we consider to select which library. I have chosen TFT_eSPI PDQ test for this comparison. I have made some effort to rewrite the PDQ test that can run in 4 libraries. All test will run with the same 2.8" ILI9341 LCD.

As I found TFT_eSPI is the most potential display library for ESP32 in this instructables, I have paid some effort to add support for all my display in hand. The newly added display support marked letter M in red at the above picture, here is my enhanced version:

Adafruit sell various display module in hobby electronics market and they also have very good support in software level. Their display libraries all built on a parent class called Adafruit_GFX, so I call it Adafruit GFX Family. This library generally support most Arduino hardware (also ESP32).

In Arduino Library Manager simply search "adafruit display", you can see all the family members. If you want to install it, say ILI9341, simply select "Adafruit ILI9341" and then click install. Remember also install its dependent library "Adafruit GFX Library".

This library method signature is very similar to Adafruit GFX, but it is tailor-made for ESP8266 or ESP32. I think the source code is optimised for ESP32, so the PDQ result is much faster than other libraries.

Note: The most difficult part using this library is you are required to configure this library before you can use it. The configuration file is located at the library folder, it should be "Arduino/libraries/TFT_eSPI/User_setup.h" under you own documents folder. It have many comments help you to do that, please follow the comments step by step to finish the configuration. Here is my User_setup.h for ILI9341:

ESP32 + ILI9341 can run at SPI speed 40 MHz, it require some code change at library folder. The above pictures are the fine tuned result. Here are the code change summary:

ST7735 and ILI9341 are the most popular display, this 2 are better option for the beginner. You may notice LCD have a big weakness, the viewable angle, some color lost outside the viewable angle and the screen become unreadable. If you have enough budget, OLED or IPS LCD have much better viewable angle.

In most case, we study how to use a code library by searching sample on the web. I have tried search four libraries keyword in Github, Adafruit is most popular and UTFT the second.

ILI9341 should be most valuable display for the beginner. Adafruit GFX Library should be most easy to use for the beginner, and since TFT_eSPI have very similar method signature, it is very easy to switch to a faster library later on.

OLED require 14 V to light up the pixel so it is not easy to decouple the breakout board. On the other hand, LCD (also IPS LCD) usually operate in 3.3 V, as same as the ESP32. In most case, there are only the LED control circuit required between LCD and ESP32, i.e. a transistor and few resistors. So it relatively easy to make it.

If you read through the data sheet of the color display, you may find most of color display can support 18 bit color depth (6 bit for each RGB channel). 18 bit color depth can have a better image quality that 16 bit color depth (5 bit in red and blue channel, 6 bit for green channel). However, only Ucglib actually run at 18 bit color depth (262,144 colors), other 3 libraries all run at 16 bit color depth (65,536 colors). It is because 18 bit color depth actually require transfer 3 bytes (24 bit) of data for each pixel, it means 50% more data require to transfer and store in memory. It is one of the reason why Ucglib run slower, but it can have a better image quality.

Thank you very much for posting this detailed review of the color display option available for "Duino users. You have saved me hours, maybe days of time wandering the web looking for information.0

Great article! Very interested in round displays. There are available round displays based on st7687s (128 * 128) and st7789 (240 * 240), but I have not found any information on practical use.

Hello! Yes, I purchased this display from keyestudio, connected it to esp32 using this library from dfrobot. It is only necessary to consider that the pinout of the display connectors differs from dfrobot and keyestudio.

I"m wanting to connect a VGA camera, the sort you find as a little module on eBay with OVPxxxx chip, to a screen such as ILxxxx family, which appears to have direct VGA input. I think it will work if I connect the camera directly with no MCU, but I"d also like to add a cross-hair to the display (for a drill targetting system). I wonder is it possible to intercept the serial video data and change individual pixels in a streaming fashion, instead of loading a whole screen into memory, changing it and passing it on? I ask because it seems to me it would need a much less powerful MCU.0

Thank you so much for such a great article. I have been trying to choose the best library to use for a project that will use either a SSD1351 or a ST7735 both being 128x128. The key to my project is to be able to dump a frame buffer in to the display and then recalculate the next frame buffer. :)

Those 2 pins must be dedicated to the display, otherwise the display will get confused without the CS pin. One DAT/CLK to LCD and another DAT/CLK to I2C.

Hello! Thank"s for your instruction. I want to use your 8pin ili9486 320x480 spi display with one of your presented libraries and esp32. 1.) Could you please tell me the connections between the display and the esp32 and 2.) which numbers do I have to write into the line utft myglcd (ili9486,?,?,?,?)?

tft display esp32 manufacturer

The TFT display is a kind of LCD that is connected to each pixel using a transistor and it features low current consumption, high-quality, high-resolution and backlight. This 2.8-inch full color LCD has a narrow PCB display. The resolution is 320×280 pixels and it has a four-wire SPI interface and white backlight.

tft display esp32 manufacturer

ESP32 is a series of low-cost, low-power system on a chip microcontrollers with integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series employs either a Tensilica Xtensa LX6 microprocessor in both dual-core and single-core variations, Xtensa LX7 dual-core microprocessor or a single-core RISC-V microprocessor and includes built-in antenna switches, RF balun, power amplifier, low-noise receive amplifier, filters, and power-management modules. ESP32 is created and developed by Espressif Systems, a Shanghai-based Chinese company, and is manufactured by TSMC using their 40 nm process.ESP8266 microcontroller.

Since the release of the original ESP32, a number of variants have been introduced and announced. They form the ESP32 family of microcontrollers. These chips have different CPUs and capabilities, but all share the same SDK and are largely code-compatible. Additionally, the original ESP32 was revised (see ESP32 ECO V3, for example).

ESP32 is housed in quad-flat no-leads (QFN) packages of varying sizes with 49 pads. Specifically, 48 connection pads along the sides and one large thermal pad (connected to ground) on the bottom.

The ESP32-PICO-D4 system in package module combines an ESP32 silicon chip, crystal oscillator, flash memory chip, filter capacitors, and RF matching links into a single 7 mm × 7 mm sized QFN package.

ESP32 based surface-mount printed circuit board modules directly contain the ESP32 SoC and are designed to be easily integrated onto other circuit boards. Meandered inverted-F antenna designs are used for the PCB trace antennas on the modules listed below. In addition to flash memory, some modules include pseudostatic RAM (pSRAM).

Discontinued. Limited distribution, pre-production module created by Espressif for beta testing purposes; this module used the ESP31B, the beta testing chip for the ESP32 series.

ESP32 module board with 4 MiB pSRAM created by Espressif. FCC part 15.247 tested (FCC ID 2AC7Z-ESP32WROVER). Uses 40 MHz crystal oscillator. Does not include U.FL connector. Based on ESP32-D0WDQ6 chip. Since June 2018, new modules have been upgraded to 8 MiB pSRAM.

Revision of ESP32-WROVER module with 8 MiB pSRAM (instead of 4 MiB pSRAM) operating at 3.3V (instead of 1.8V in previous versions) and ESP32-D0WD (instead of ESP32-D0WDQ6). FCC part 15.247 tested (FCC ID 2AC7Z-ESP32WROVERB). Does not include U.FL connector. (Custom order option for flash capacity of 8 MiB or 16 MiB also available.)

Contains an extra AC101 audio codec IC whose IO-pins (line, mic, etc.) are led to the board pins. Comes separately or soldered onto a corresponding audio development board ("ESP32-Audio-Kit").

Development & break-out boards extend wiring and may add functionality, often building upon ESP32 module boards and making them easier to use for development purposes (especially with breadboards).

Also referred to as the "ESP32 Feather Board", the HUZZAH32 is a compact development board/module that is compatible with the Adafruit Feather family of products.

Development board similar to Espressif"s ESP32-DevKitC with on board a CP2102 USB/serial bridge. 4 MiB variation uses ESP-32S-ALB; 16 MiB variation uses ALB-WROOM module.

TECHBASE"s Moduino X series X1 and X2 modules are ESP32-WROVER / ESP32-WROVER-B based computers for industrial automation and monitoring, supporting digital inputs/outputs, analog inputs, and various computer networking interfaces.

NORVI IIOT Industrial Devices with ESP32-WROVER / ESP32-WROVER-B SOC for industrial automation and monitoring with digital inputs, analog inputs, relay outputs and multiple communications interfaces. Supports LoRa and Nb-IoT as expansion modules.