1.8 serial spi tft lcd module display arduino factory
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
In which “Hello, World!” is the text you want to display and the (x, y) coordinate is the location where you want to start display text on the screen.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
Note: some people find issues with this display when trying to read from the SD card. We don’t know why that happens. In fact, we tested a couple of times and it worked well, and then, when we were about to record to show you the final result, the display didn’t recognized the SD card anymore – we’re not sure if it’s a problem with the SD card holder that doesn’t establish a proper connection with the SD card. However, we are sure these instructions work, because we’ve tested them.
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.
I bought this LCD Display for a university course that I"m taking. The screen itself works amazingly with the breadboard that I had on hand and the tm4c123 microcontroller that we all used in the class. On both sides of the screen are indicators of what each pin should be assigned/connected to on the microcontroller. A big plus with this screen in comparison to others on the market is that it comes with connector pins connected to it already. Many people in my class had to learn how to solder and sloppily connected external pins to their other screens. That"s most certainly not a problem here! Additionally, this screen had an SD card, if i remember correctly, that allows for more functionality. The screen has a full range of colors and allows both text and manually imported sprites to be displayed onto it. I"m not too sure if that all deals with the drivers I mention later or the screen itself, but its most certainly a plus in its own aspect. The LCD is built well and at no moment in time was I scared about it breaking - I even remember throwing it in my backpack connected to a bunch of wires while rushing to class on multiple occasions.
The only complaint that I have with this screen is the lack of "drivers" that it has to display more complicated graphics. One specific example that I remember dealing with was that there is no horizontal orientation change feature. To display graphics horizontally, I had to rotate them in photoshop manually and import them into my program like that. This made things like positioning the sprites and graphics and, more importantly, edge detection more complicated as I had to account for the changed position basis (originally being the bottom left corner but being changed to the top left for the sprites when the screen itself is rotated).
This is a single-chip controller/driver for 262K-color, graphic type TFT-LCD. It consists of 396 source line and 162 gate line driving circuits. This chip is capable of connecting directly to an external microprocessor, and accepts Serial Peripheral Interface (SPI), 8-bit/9-bit/16-bit/18-bit parallel interface.
In electronics world today, Arduino is an open-source hardware and software company, project and user community that designs and manufactures single-board microcontrollers and microcontroller kits for building digital devices. Arduino board designs use a variety of microprocessors and controllers. The boards are equipped with sets of digital and analog input/output (I/O) pins that may be interfaced to various expansion boards (‘shields’) or breadboards (for prototyping) and other circuits.
The boards feature serial communications interfaces, including Universal Serial Bus (USB) on some models, which are also used for loading programs. The microcontrollers can be programmed using the C and C++ programming languages, using a standard API which is also known as the “Arduino language”. In addition to using traditional compiler toolchains, the Arduino project provides an integrated development environment (IDE) and a command line tool developed in Go. It aims to provide a low-cost and easy way for hobbyist and professionals to create devices that interact with their environment using sensors and actuators. Common examples of such devices intended for beginner hobbyists include simple robots, thermostats and motion detectors.
In order to follow the market tread, Orient Display engineers have developed several Arduino TFT LCD displays and Arduino OLED displays which are favored by hobbyists and professionals.
The sizes are 0.96” (160×80), 1.13” (240×135), 1.3” ((240×240), 1.33” (128×128), 1.54” (240×240), 1.77” (128×160), 2.0” (240×320), 2.3” (320×240), 2.4” (240×320), 2.8” (240×320), 3.2” (240×320).
Although Orient Display provides many standard small size OLED, TN and IPS Arduino TFT displays, custom made solutions are provided with larger size displays or even with capacitive touch panel.
602 tft lcd module arduino products are offered for sale by suppliers on Alibaba.comAbout 65% % of these are lcd modules, 13%% are lcd touch screen, and 9%% are integrated circuits (old).
I have installed the Adrafruit Arduino ST7735 and GFX libraries. As the board also has an SD card reader, I would like to use this as well as the TFT display. As the board has pins for both the TFT and SD, I need guidance in how to wire it up to my Uno. Any help would be appreciated,
I newer in arduino and buy this item from ebay. The pin configuration of the display does not match with any which i found in the web, can you help me with the identification?
I would like the help of some one of you to identify the pin configuration and the advice for some reading material relevant to understand how to manage this display.
Got three of them all working(1 with Arduino Leonardo and 2 with NodeMCU ESP8266).arduino will need a solution to the 5v out 3.3v in(10s solder job) NodeMCU is directly compatible.i used adafruits code.Very happy. getting more. also hiletgo products have all been functional so far. becoming a fan.Update: switched to TFT_eSPI.h library. Wow. Orders of magnitude faster display now. A bit trickier to setup but well worth it.
We covered the basics of accelerometer previously inUsing Arduino with Parts and Sensors – Accelerometer Part 1andUsing Arduino with Parts and Sensors – Accelerometer Part 2. Today we’ll be testing KX022-1020 accelerometer using TFT liquid crystal panel. We’ll discuss how to control the TFT LCD in more detail in the next article. In addition, we’ll further exploreArduino Create. For more information about Arduino Create, please refer back tothisarticle.
We’ll continue using Arduino Create Web Editor as we did in our lasttutorial. To add the library, you can upload the zip file by selecting it from “Libraries” on the left menu and clicking on “ADD ZIP LIBRARY.”
After adding the library, attach the accelerometer to the Sensor Shield (I2C I/F) and try running the sample program. The accelerometer should be set to 1.8V or 3.0V.
Now the sample program is working fine, let’s try to display the values on a 1.8 inch TFT LCD monitor. Although this TFT liquid crystal monitor has a resolution slightly smaller than 126 x 160 px, it’ll be quite useful when displaying numbers or letters with Arduino etc.
In the past, we used 7-segment LED to display numerical values only. But this time, I tried to display the graph along with the values obtained from the accelerometer.
When using the TFT monitor, the connection method and the library used in the program may be different depending on the specification of each TFT monitor. The TFT monitor used in this tutorial is a monitorSainSmart ST7735R. In addition to Arduino, the monitor is also compatible with Raspberry.
In order to use the monitor to run the program in Arduino, we’ll have to modify the downloaded library a little bit.We’ll go over how to control the TFT LCD in more detail in the next article. Once everything is set, you will be able to output numerical values in the monitor as shown in the video below:
In the next part, we’ll create a simple device using the same accelerometer and TFT monitor. We’ll show how to create graphs and display the values obtained from the accelerometer on the TFT monitor.