tft display vs amoled in hindi factory

There is a constant debate on Amoled vs LCD, which is a better display? Where Amoled display offers some remarkable colors with deep black eye-soothing contrast ratio, LCD displays offer much more subtle colors with better off-axis angles for viewing & offers a much brighter picture quality.

While purchasing a new smartphone we consider various specifications like software, camera, processor, battery, display type etc. Among all the specifications display is something that most people are concerned about. 2 of the major competitors of smartphone display are AMOLED and LCD. Often in the LCD vs Amoled comparison, people get confused about which one to choose. In this article, we have explained a clear comparison of the Amoled vs LCD screen to find out which is actually better.

Amoled display is nothing but a part of OLED display which comes with some extra features. The first component is Light Emitting Diode (LED) and the second component is "O", here "O" stands for organic & together they make OLED. The real meaning derived from it is organic material placed with 2 conductors in every LED. And this is how light is produced.

The OLED display can generate light out of individual pixels. AMOLED displays contain Thin Film Translator (TLT) which makes the overall procedure of sourcing current to the correct pixel much quicker and smoother. The TXT further helps grab control for operating different pixels at a time. For example, some pixels could be absolutely switched off though others remain on in Amoled displays. This produces a deep black color.

Speaking about LCDs, it is relatively pretty much commonly found in today"s smartphones. LCD (Liquid Crystal Display) offers a devoted black light that is white or rather slightly blueish in color. Mostly here we get a blue light that is passed through some yellowish phosphor filter which brings out the white light. The white light is subsequently passed through multiple filters and thereafter the crystal elements are again passed through blue, red & green filters. Note that LCD displays have both passive and active matrix which depends on the cost and requirement involved.

Since the process involved in LCDs is much more complex than Amoled & requires extra steps, when compared to AMOLED displays, LCDs are less battery friendly. In the technological era where energy efficiency is the first priority, Amoled displays are certainly going to be the future of display technology. But both of them come with a separate set of pros and cons and it is only by knowing the pros and cons you will be able to choose the right one.

Amoled display technology is mostly used in smartphones, media players & digital cameras. Amoled is mostly used in low power, cost-effective & large application sizes.

Cost is one of the major factors that act as a differentiator between the two display types. Amoled displays are comparatively more expensive than LCD displays because LCD displays are much cheaper to manufacture. So while buying a low-budget smartphone, the probability to get a Amoled display is pretty less.

The quality of a display is mainly measured according to the colors and sharpness it offers. Also while comparing two displays, only technology comparison won"t work because often displays behave inversely even if a manufacturer is using the very same technology. If you consider colors especially contrasting colors such as blue, red or green, Amoled will serve better throughout the day. This happens mainly because in the case of AMOLED displays, as mentioned above, every pixel present in it emit its own light whereas in LCD light comes out of the backlight. Therefore Amoled displays offer high-end saturation and vibrant colors compared to LCD displays.

As Amoled displays put out vibrant colors, you will find Amoled displays to be warmer in nature compared to LCD displays which has a more neutral whitish tint. In short, the pictures seen on Amoled displays are more eye-soothing compared to LCD displays where the pictures appear more natural.

In the Amoled vs LCD screen display comparison, another thing to consider is the brightness offered by both of them. Compared to LCD displays, Amoled displays have lesser brightness levels. This is mainly because of the backlight in LCD displays which emits a higher brightness level. Therefore if you are a person who spends most of the time outdoors and mostly uses your smartphone under the sun, then LCD is the right choice for you. Although certain leading brands are working on the brightness level in Amoled displays.

The display is one such thing that sucks your phone"s battery to a great extent. In Amoled displays, the pixels can get absolutely switched off thereby saving a lot of battery. Whereas LCD displays remain dependent on the back light, as a result even if your screen is completely black, the backlight remain switched on throughout. This is why even though Amoled displays are more expensive than LCD displays as they consume much less battery than LCD displays.

In the battle between LCD display vs Amoled display both come with separate pros and cons. Well if battery consumption and color contrast or saturation is a concern then the Amoled display is going to win over LCD display anyway. While purchasing a smartphone, customers today mainly focus on two features- lesser battery consumption and a high-quality display. Amoled display offers both the benefits- high-end vibrant display and less battery consumption. The only criteria where LCD displays win over Amoled is the brightness level. But with brands coming with the latest technologies, Amoled is certainly going to catch up with the brightness level with LCD displays. Also, the brightness difference in current Amoled display smartphones that are available in the market is hardly noticeable.

tft display vs amoled in hindi factory

Steven Van Slyke and Ching Wan Tang pioneered the organic OLED at Eastman Kodak in 1979. The first OLED product was a display for a car stereo, commercialized by Pioneer in 1997. Kodak’s EasyShare LS633 digital camera, introduced in 2003, was the first consumer electronic product incorporating a full-color OLED display. The first television featuring an OLED display, produced by Sony, entered the market in 2008. Today, Samsung uses OLEDs in all of its smartphones, and LG manufactures large OLED screens for premium TVs. Other companies currently incorporating OLED technology include Apple, Google, Facebook, Motorola, Sony, HP, Panasonic, Konica, Lenovo, Huawei, BOE, Philips and Osram. The OLED display market is expected to grow to $57 billion in 2026.

AMOLED (Active Matrix Organic Light Emitting Diode) is a type of OLED display device technology. OLED is a type of display technology in which organic material compounds form the electroluminescent material, and active matrix is the technology behind the addressing of individual pixels.

An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.

Typically, this continuous current flow is controlled by at least two TFTs at each pixel (to trigger the luminescence), with one TFT to start and stop the charging of a storage capacitor and the second to provide a voltage source at the level needed to create a constant current to the pixel, thereby eliminating the need for the very high currents required for PMOLED.

TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays. Brightness of AMOLED is determined by the strength of the electron current. The colors are controlled by the red, green and blue light emitting diodes.  It is easier to understand by thinking of each pixel is independently colored, mini-LED.

IPS technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but with more enhanced features and more widespread usability compared with the older generation of TN type TFT screen (normally used for low-cost computer monitors). Actually, it is called super TFT.  IPS LCD display consists of the following high-end features. It has much wider viewing angles, more consistent, better color in all viewing directions, it has higher contrast, faster response time. But IPS screens are not perfect as their higher manufacturing cost compared with TN TFT LCD.

Utilizing an electrical charge that causes the liquid crystal material to change their molecular structure allowing various wavelengths of backlight to “pass-through”. The active matrix of the TFT display is in constant flux and changes or refreshes rapidly depending upon the incoming signal from the control device.

tft display vs amoled in hindi factory

A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is thin relative to the plane of the device.substrate. A common substrate is glass, because the traditional application of TFTs is in liquid-crystal displays (LCDs). This differs from the conventional bulk metal oxide field effect transistor (MOSFET), where the semiconductor material typically is the substrate, such as a silicon wafer.

TFTs can be fabricated with a wide variety of semiconductor materials. Because it is naturally abundant and well understood, amorphous or polycrystalline silicon was historically used as the semiconductor layer. However, because of the low mobility of amorphous siliconcadmium selenide,metal oxides such as indium gallium zinc oxide (IGZO) or zinc oxide,organic semiconductors,carbon nanotubes,metal halide perovskites.

Because TFTs are grown on inert substrates, rather than on wafers, the semiconductor must be deposited in a dedicated process. A variety of techniques are used to deposit semiconductors in TFTs. These include chemical vapor deposition (CVD), atomic layer deposition (ALD), and sputtering. The semiconductor can also be deposited from solution,printing

Some wide band gap semiconductors, most notable metal oxides, are optically transparent.electrodes, such as indium tin oxide (ITO), some TFT devices can be designed to be completely optically transparent.head-up displays (such as on a car windshield).The first solution-processed TTFTs, based on zinc oxide, were reported in 2003 by researchers at Oregon State University.Universidade Nova de Lisboa has produced the world"s first completely transparent TFT at room temperature.

The best known application of thin-film transistors is in TFT LCDs, an implementation of liquid-crystal display technology. Transistors are embedded within the panel itself, reducing crosstalk between pixels and improving image stability.

As of 2008LCD TVs and monitors use this technology. TFT panels are frequently used in digital radiography applications in general radiography. A TFT is used in both direct and indirect capturemedical radiography.

The most beneficial aspect of TFT technology is its use of a separate transistor for each pixel on the display. Because each transistor is small, the amount of charge needed to control it is also small. This allows for very fast re-drawing of the display.

In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET in which germanium monoxide was used as a gate dielectric. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. In 1966, T.P. Brody and H.E. Kunig at Westinghouse Electric fabricated indium arsenide (InAs) MOS TFTs in both depletion and enhancement modes.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard J. Lechner of RCA Laboratories in 1968.dynamic scattering LCD that used standard discrete MOSFETs, as TFT performance was not adequate at the time.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).electroluminescence (EL) in 1973, using CdSe.active-matrix liquid-crystal display (AM LCD) using CdSe in 1974, and then Brody coined the term "active matrix" in 1975.

A breakthrough in TFT research came with the development of the amorphous silicon (a-Si) TFT by P.G. le Comber, W.E. Spear and A. Ghaith at the University of Dundee in 1979. They reported the first functional TFT made from hydrogenated a-Si with a silicon nitride gate dielectric layer.research and development (R&D) of AM LCD panels based on a-Si TFTs in Japan.

By 1982, Pocket TVs based on AM LCD technology were developed in Japan.Fujitsu"s S. Kawai fabricated an a-Si dot-matrix display, and Canon"s Y. Okubo fabricated a-Si twisted nematic (TN) and guest-host LCD panels. In 1983, Toshiba"s K. Suzuki produced a-Si TFT arrays compatible with CMOS integrated circuits (ICs), Canon"s M. Sugata fabricated an a-Si color LCD panel, and a joint Sanyo and Sanritsu team including Mitsuhiro Yamasaki, S. Suhibuchi and Y. Sasaki fabricated a 3-inch a-SI color LCD TV.

The first commercial TFT-based AM LCD product was the 2.1-inch Epson ET-10Hitachi research team led by Akio Mimura demonstrated a low-temperature polycrystalline silicon (LTPS) process for fabricating n-channel TFTs on a silicon-on-insulator (SOI), at a relatively low temperature of 200°C.Hosiden research team led by T. Sunata in 1986 used a-Si TFTs to develop a 7-inch color AM LCD panel,Apple Computers.Sharp research team led by engineer T. Nagayasu used hydrogenated a-Si TFTs to demonstrate a 14-inch full-color LCD display,electronics industry that LCD would eventually replace cathode-ray tube (CRT) as the standard television display technology.notebook PCs.IBM Japan introduced a 12.1-inch color SVGA panel for the first commercial color laptop by IBM.

TFTs can also be made out of indium gallium zinc oxide (IGZO). TFT-LCDs with IGZO transistors first showed up in 2012, and were first manufactured by Sharp Corporation. IGZO allows for higher refresh rates and lower power consumption.polyimide substrate.

Brody, T. Peter (November 1984). "The Thin Film Transistor - A Late Flowering Bloom". IEEE Transactions on Electron Devices. 31 (11): 1614–1628. Bibcode:1984ITED...31.1614B. doi:10.1109/T-ED.1984.21762. S2CID 35904114.

Petti, Luisa; Münzenrieder, Niko; Vogt, Christian; Faber, Hendrik; Büthe, Lars; Cantarella, Giuseppe; Bottacchi, Francesca; Anthopoulos, Thomas D.; Tröster, Gerhard (2016-06-01). "Metal oxide semiconductor thin-film transistors for flexible electronics". Applied Physics Reviews. 3 (2): 021303. Bibcode:2016ApPRv...3b1303P. doi:10.1063/1.4953034.

Bonnassieux, Yvan; Brabec, Christoph J.; Cao, Yong; Carmichael, Tricia Breen; Chabinyc, Michael L.; Cheng, Kwang-Ting; Cho, Gyoujin; Chung, Anjung; Cobb, Corie L.; Distler, Andreas; Egelhaaf, Hans-Joachim (2021). "The 2021 flexible and printed electronics roadmap". Flexible and Printed Electronics. 6 (2): 023001. doi:10.1088/2058-8585/abf986. hdl:10754/669780. ISSN 2058-8585. S2CID 235288433.

Wager, John. OSU Engineers Create World"s First Transparent Transistor Archived 2007-09-15 at the Wayback Machine. College of Engineering, Oregon State University, Corvallis, OR: OSU News & Communication, 2003. 29 July 2007.

Fortunato, E. M. C.; Barquinha, P. M. C.; Pimentel, A. C. M. B. G.; Gonçalves, A. M. F.; Marques, A. J. S.; Pereira, L. M. N.; Martins, R. F. P. (March 2005). "Fully Transparent ZnO Thin-Film Transistor Produced at Room Temperature". Advanced Materials. 17 (5): 590–594. Bibcode:2005AdM....17..590F. doi:10.1002/adma.200400368. S2CID 137441513.

Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH‐GAIN InAs THIN‐FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi:10.1063/1.1754740. ISSN 0003-6951.

Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". IEEE Annals of the History of Computing. 12 (1): 60–73.

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Brody, T. Peter; Asars, J. A.; Dixon, G. D. (November 1973). "A 6 × 6 inch 20 lines-per-inch liquid-crystal display panel". 20 (11): 995–1001. Bibcode:1973ITED...20..995B. doi:10.1109/T-ED.1973.17780. ISSN 0018-9383.

Morozumi, Shinji; Oguchi, Kouichi (12 October 1982). "Current Status of LCD-TV Development in Japan". Molecular Crystals and Liquid Crystals. 94 (1–2): 43–59. doi:10.1080/00268948308084246. ISSN 0026-8941.

Mimura, Akio; Oohayashi, M.; Ohue, M.; Ohwada, J.; Hosokawa, Y. (1986). "SOI TFT"s with directly contacted ITO". IEEE Electron Device Letters. 7 (2): 134–6. Bibcode:1986IEDL....7..134M. doi:10.1109/EDL.1986.26319. ISSN 0741-3106. S2CID 36089445.

Sunata, T.; Yukawa, T.; Miyake, K.; Matsushita, Y.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A large-area high-resolution active-matrix color LCD addressed by a-Si TFT"s". 33 (8): 1212–1217. Bibcode:1986ITED...33.1212S. doi:10.1109/T-ED.1986.22644. ISSN 0018-9383. S2CID 44190988.

Sunata, T.; Miyake, K.; Yasui, M.; Murakami, Y.; Ugai, Y.; Tamamura, J.; Aoki, S. (1986). "A 640 × 400 pixel active-matrix LCD using a-Si TFT"s". IEEE Transactions on Electron Devices. 33 (8): 1218–21. Bibcode:1986ITED...33.1218S. doi:10.1109/T-ED.1986.22645. ISSN 0018-9383. S2CID 6356531.

Nagayasu, T.; Oketani, T.; Hirobe, T.; Kato, H.; Mizushima, S.; Take, H.; Yano, K.; Hijikigawa, M.; Washizuka, I. (October 1988). "A 14-in.-diagonal full-color a-Si TFT LCD". Conference Record of the 1988 International Display Research Conference: 56–58. doi:10.1109/DISPL.1988.11274. S2CID 20817375.

tft display vs amoled in hindi factory

OLED displays have become increasingly common and accessible over the past few years. While they were once reserved for premium smartphones, you’ll now find OLED displays at every smartphone price point. Not every OLED display is equal, though – differences in materials and manufacturing processes can result in varying display qualities. In that vein, let’s explore the differences between POLED vs AMOLED, and what these acronyms mean in the real world.

Before differentiating between POLED and AMOLED, it’s worth understanding the fundamentals of OLED display technology. To that end, let’s ignore the P and AM prefixes for now.

If you look at an OLED display under a microscope, you’ll see these diodes arranged in various red, green, and blue configurations in order to produce a full range of colors. OLED has a key advantage over conventional LCDs – individual light emitters can be switched completely off. This gives OLED deep blacks and an excellent contrast ratio.

Naturally, light emitters in an OLED display need a power source in order to function. Manufacturers can use either a passive wiring matrix or an active wiring matrix. Passive matrix displays provide current to an entire row of LEDs, which isn’t ideal but it is cheap. An active matrix, on the other hand, introduces a capacitor and thin-film transistor (TFT) network that allows each pixel to be driven individually. This driving matrix is part of the panel that sits on top of a base substrate.

Today, virtually all high-resolution OLED displays use active-matrix technology. This is because a passive matrix requires higher voltages the more pixels you introduce. High voltage reduces LED lifetimes, making a passive matrix OLED impractical.

AMOLED simply refers to an Active Matrix OLED panel. The AMOLED branding has become synonymous with Samsung Display’s OLED panels over the years. However, all smartphone OLED panels, including those from Samsung’s rivals like LG Display use active-matrix technology too – they just aren’t marketed as such.

In case you’re wondering what Super AMOLED means, it’s another bit of branding to indicate the presence of an embedded touch-sensitive layer. Similarly, Dynamic AMOLED refers to a display with HDR capabilities, specifically support for Samsung’s favored HDR10+ standard.

Now that we know the layered structure of an OLED display, we can move on to the plastic part. While the first wave of OLED panels was built using glass substrates, the desire for more interesting form factors has seen manufacturers use more flexible plastic components. This is where the P in POLED comes from.

Glass is fixed and rigid, while plastic substrates can be more easily formed into new shapes. This property is absolutely essential for curved screens as well as foldable devices like Samsung’s Galaxy Fold series. Working with plastics is also much more cost-effective than glass.

Manufacturers have experimented with a range of plastics for flexible displays, including polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). OLED manufacturers have settled on using polyimide plastics (PI) that can better withstand high TFT manufacturing temperatures. The type of substrate and heating process used also defines the flexibility of the display.

The somewhat confusing part is that Samsung’s AMOLED displays use plastic substrates. And as the name suggests, LG Display’s POLED technology clearly uses plastic as well. In summary, it’s absolutely possible to build a plastic substrate, active-matrix OLED panel. That’s exactly what both of the big two panel manufacturers are doing when it comes to mobile displays.

Even though LG and Samsung-made OLED panels qualify as both POLED and AMOLED simultaneously, the companies aren’t exactly producing identical panels. The quality of the TFT layer and plastic compound can make a difference to display performance, as can the type of emitters and sub-pixel layout.

Different color LEDs offer different brightnesses and shelf life. Blue emitters, for example, degrade the quickest. Panel manufacturers can therefore opt to use different LED materials – such as small-molecule, polymer, or phosphorescent – to optimize their designs. This may also necessitate different subpixel layouts in order to balance the panel white color, gamut, and resolution.

Over the years, we’ve seen OLED display manufacturers converge on a set of standard parameters. For example, both LG and Samsung use a diamond PenTile sub-pixel layout for smartphone displays. This just means that both should offer similar long-term reliability.

Even when it comes to other attributes like power consumption, brightness, low brightness performance, and panel uniformity, it’s unclear if one has an upper hand. That said, most smartphone makers — from Apple to OnePlus — turn to Samsung’s AMOLED panels for their flagship devices.

In the past, LG used POLED displays in its own flagship smartphones like the Velvet and Wing. However, these panels fell slightly short of the competition in certain aspects like peak brightness and color gamut coverage. These shortfalls led to speculations that Samsung has a leg up over the competition, but the accuracy of these claims is anyone’s guess.

So does that mean you should avoid POLED? Not quite — it’s still fundamentally OLED technology, which offers numerous advantages over IPS LCD. Moreover, you’ll mostly find POLED displays in mid-range and budget smartphones these days, where they should have no problem matching Samsung’s own lower-end AMOLED panels. As a relatively smaller player, LG may also offer more competitive pricing as compared to Samsung.

For most consumers, the choice of POLED vs AMOLED will be of little consequence. The underlying principle – an active-matrix OLED on a flexible plastic substrate – applies equally to both, after all. Despite the different names, LG Display and Samsung aren’t worlds apart in their approach to producing OLED panels for smartphones.

tft display vs amoled in hindi factory

Hi all, I"ve done some research on tft vs IPS screens and it seems tft screens are the worst type around. With that said, all the videos and articles I found were from 5ish years ago. Are tft screens still garbage? If so, why in the world would Motorola put it in their flagship?

Hi all, I"ve done some research on tft vs IPS screens and it seems tft screens are the worst type around. With that said, all the videos and articles I found were from 5ish years ago. Are tft screens still garbage? If so, why in the world would Motorola put it in their flagship?

I have noticed that distributors for small and medium TFT, they consider TFT still a top quality product, it"s enough to see product list of any online distributor like

tft display vs amoled in hindi factory

आपके स्मार्टफोन की डिस्प्ले के बारे में आप कितना जानते हैं? डिस्प्ले के नाम जैसे कि AMOLED, OLED, LCD, TFT के बारे में आप कितना विस्तार से जानते हैं? इनके नाम बहुत छोटे हैं, लेकिन इनमें से कौन-सा बेहतर है, किस रिफ्रेश रेट के साथ आता है, रेज़ॉल्यूशन कितना है इन सब सवालों को जानकर यदि आप अपने लिए स्मार्टफोन चुनना चाहते हैं तो आपके इन सभी प्रश्नों के उत्तर मिलेंगे यहाँ।

पिछले कुछ सालों में स्मार्टफोन की डिस्प्ले काफी बेहतर हुई हैं। लेकिन प्रत्येक स्मार्टफोन डिस्प्ले के साथ जो शार्ट-फॉर्म एक संक्षिप्त नाम जुड़ता है, जैसे कि AMOLED, LCD, इत्यादि वो केवल नाम नहीं बल्कि अपने आप में एक तकनीक है। स्मार्टफोन पर लगे पैनल AMOLED, OLED, LED, LCD, IPS, TFT, LTPS, इत्यादि होते हैं। ये सभी पूर्णत: अलग होते हैं।

पहले ही इतने टाइप के पैनल मौजूद हैं, ऐसे में स्मार्टफोन निर्माता द्वारा फैंसी नामों का इस्तेमाल जैसे कि Apple द्वारा Super Retina XDR और Samsung द्वारा Dynamic AMOLED ग्राहकों के बीच भ्रम या असमंजस को और बढ़ा देता है।

डिस्प्ले के टाइप तो बहुत सारे हैं जैसे कि TFT, LTPS, AMOLED, OLED, IPS, LCD इत्यादि। लेकिन इन दिनों TFT, LTPS जैसी डिस्प्ले काफी कम हो गयीं हैं। किफ़ायती दामों पर और मिड-रेंज में आने वाले फोनों में आपको IPS LCD डिस्प्ले मिलेगी। लेकिन इन सबका विस्तार से समझें, तो मतलब क्या है ?

अगर संक्षिप्त रूप से और आसान भाषा में समझें तो दो तरह की टेक्नोलॉजी- एलसीडी (LCD) और ओलेड (OLED) बाज़ार में आ रहीं हैं। प्रत्येक में कुछ विभिन्न प्रकार और जनरेशन हैं जो बाकी के स्क्रीन टाइप शार्ट फॉर्म को बनाती हैं। इसी तरह टेलीविज़न की दुनिया में भी अलग स्क्रीन टाइप उपलब्ध हैं जैसे कि LED, QLED, miniLED – ये सब दरसअल एलसीडी (LCD) तकनीक के ही अलग अलग रूप हैं जिनमें थोड़ी विविधताएं हैं।

LCD का मतलब या फुल फॉर्म है लिक्विड क्रिस्टल डिस्प्ले (Liquid Crystal Display)। इसमें लिक्विड क्रिस्टल्स की एक श्रंखला दी जाती है जिसके पीछे एक बैकलाइट होती है। इस डिस्प्ले टाइप का हर जगह आसानी से उपलब्ध होना और कम दामों में इसका निर्माण इसे स्मार्टफोनों के लिए एक प्रचलित विकल्प या पसंद बनाता है।

स्मार्टफोनों में आपको दोनों डिस्प्ले TFT और IPS मिलती हैं। TFT का फुल फॉर्म है – Thin Film Transistor, जो LCD का ही एक बेहतर या एडवांस्ड वर्ज़न है, जो एक एक्टिव मैट्रिक्स (active matrix) का इस्तेमाल करता है। active matrix का अर्थ है कि प्रत्येक पिक्सेल एक अलग ट्रांजिस्टर और कपैसिटर से जुड़ा होता है।

TFT डिस्प्ले का सबसे बड़ा फायदा यही है कि इसके प्रोडक्शन में तुलनात्मक कम खर्च होता है और इसमें असल LCD के मुकाबले ज्यादा कॉन्ट्रास्ट मिलता है। वहीं TFT LCD में नुकसान ये है कि इन्हें रेगुलर LCD प्रकारों के मुकबाले ज्यादा एनर्जी यानि बैटरी चाहिए, इनके व्यूिंग एंगल और रंग भी इतने अच्छे नहीं होते। इन्हीं सब कारणों से बाकी डिस्प्ले विकल्पों की गिरती कीमतों के कारण अब TFT डिस्प्ले का इस्तेमाल स्मार्टफोनों में नहीं किया जाता।

TFT(Thin Film Transistor) – ये भी LCD डिस्प्ले का ही एक प्रकार है जिसमें नीचे एक पतली सेमीकंडक्टर की परत होती है जो हर एक पिक्सल पर रंगों को नियंत्रित करने का काम करता है। इसका और AMOLED में आने वाले AM यानि कि active matrix का काम लगभग एक ही है।

LTPS(Low Temperature PolySilicon) – ये भी Si (amorphous silicon) तकनीक पर आधारित TFT का ही वैरिएंट है जिसमें आपको हाई रेज़ॉल्यूशन मिलता है और ऊर्जा यानि कि पॉवर साधारणत: TFT से कम लेता है।

IGZO(Indium Gallium Zinc Oxide) – ये भी एक सेमिकंडक्टर मैटेरियल है जो डिस्प्ले के नीचे लगी फिल्म में इस्तेमाल होता है और आजकल a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays

LTPO( Low Temperature Polycrystaline Oxide) – इस टेक्नोलॉजी को Apple ने डेवेलप किया है और इसे वर्तमान समय में OLED और LCD दोनों तरह की स्क्रीन में इस्तेमाल किया जाता है। इसमें LTPS और IGZO दोनों तकनीकों का इस्तेमाल मिलाकर किया जाता है और नतीजा होता है – डिस्प्ले द्वारा पॉवर का कम इस्तेमाल। ये Apple Watch 4 और Galaxy S21 Ultra में आयी है।

IPS तकनीक को In-Plane Switching तकनीक कहते हैं। IPS टेक्नोलॉजी ने सबसे पहले आयी LCD डिस्प्ले में आने वाली समस्या को दूर किया जिसमें TN तकनीक का इस्तेमाल होता था और इसमें साइड से देखने पर रंग बहुत ख़राब नज़र आते थे। ये कमी ज़्यादातर सस्ते स्मार्टफोन और टैबलेटों में नज़र आया करती थी।

PLS (Plane to Line Switching) – PLS और IPS के नाम या उनके फुल फॉर्म लगभग एक ही जैसे लगते हैं। लेकिन इसमें आश्चर्य की कोई बात नहीं है क्योंकि इनका मुख्य कार्य भी एक समान ही है। PLS टेक्नोलॉजी को Samsung Display द्वारा बनाया गया है और IPS डिस्प्ले की ही तरह इसकी विशेषता भी डिस्प्ले पर अच्छे रंग दर्शाना और बेहतर व्यूइंग एंगल दिखाना ही हैं। लेकिन इसमें OLED और LCD/VA डिस्प्ले के मुकाबले कॉन्ट्रास्ट थोड़ा कम है।

Samsung Display का कहना है कि PLS पैनलों के उत्पादन में लागत कम लगती है, ब्राइटनेस लेवल अच्छा मिलता है और प्रतियोगी कंपनी LG Display के IPS पैनलों के मुकाबले व्यूइंग एंगल भी काफी अच्छे मिलते हैं। अंतत: PLS पैनल का उपयोग किया जाए या IPS पैनल का इस्तेमाल करें, ये पूरी तरह से स्मार्टफोन निर्माताओं पर निर्भर करता है।

AMOLED की फुल फॉर्म – एक्टिव मैट्रिक्स ऑर्गेनिक लाइट एमिटिंग डायोड (Active Matrix Organic Light-Emitting Diode) है। हालांकि ये सुनने में बहुत मुश्किल नाम लग रहा होगा, लेकिन ये है नहीं। हम पहले ही TFT LCD टेक्नोलॉजी में एक्टिव मैट्रिक्स के बारे में पढ़ चुके हैं और अब रहा OLED, तो ये केवल एक पतली फिल्म वाली डिस्प्ले तकनीक है और कुछ नहीं।

और क्योंकि OLED डिस्प्ले में काले पिक्सल बंद हो जाते हैं, उनमें करंट नहीं आता, इसीलिए कॉन्ट्रास्ट लेवल भी LCD डिस्प्ले के मुकाबले ज्यादा मिलता है। AMOLED डिस्प्ले में रिफ्रेश रेट तो ज़्यादा मिल जाता है, लेकिन वहीँ LCD डिस्प्ले को, AMOLED की तुलना में ज्यादा ब्राइट बनाया जा सकता है। क्योंकि ये एक ऑर्गेनिक मैटीरियल से बने होते हैं, एक लम्बे समय के इस्तेमाल के बाद इनकी ब्राइटनेस घटने लगती है जिससे कई बार स्क्रीन बर्न-इन जैसी समस्याएं भी आ सकती हैं। हालाँकि ये समस्या पुराने स्मार्टफोनों में ज्यादा आती थी, अब ऐसा ना के बराबर होता है।

वहीँ इसकी अच्छी बात ये है कि AMOLED डिस्प्ले LCD के मुकाबले पतली होती हैं क्योंकि इनमें अंदर बैकलिट की परत लगाने की ज़रुरत नहीं पड़ती और इन्हें फ्लेक्सिबल यानि कि लचीला भी बनाया जा सकता है।

OLED को- Organic Light Emitting Diode कहते हैं। एक OLED डिस्प्ले electroluminescent मैटीरियल की पतली शीट से बनी होती है, जिसका सबसे बड़ा फायदा यही है कि ये अपनी रौशनी खुद पैदा करते हैं और इन्हें बैकलाइट की ज़रुरत नहीं पड़ती, जिससे ऊर्जा या बिजली की ज़रुरत कम पड़ती है। यही OLED स्क्रीन जब स्मार्टफोन या टीवी के लिए उपयोग होती है तो इसे ज़्यादातर AMOLED डिस्प्ले के नाम से जाना जाता है।

जैसे कि हमने पहले भी बताया AMOLED में AM एक्टिव मैट्रिक्स (Active Matrix) के लिए इस्तेमाल होता है। हालाँकि ये पैसिव मैट्रिक्स (Passive Matrix) OLED से अलग होता है जिसे p-OLED कहा जाता है। ये स्मार्टफोनों में थोड़ा कम प्रचलित है।

वहीं Super AMOLED, दक्षिणी कोरियाई कंपनी Samsung द्वारा दिया गया है एक नाम है जो अब कंपनी के मिड-रेंज से प्रीमियम रेंज के स्मार्टफोनों में देखने को मिलता है। IPS LCD की ही तरह, Super AMOLED डिस्प्ले में साधारण AMOLED डिस्प्ले पर टच रिस्पांस लेयर को जोड़कर एक किया जाता है, इसमें अलग से एक परत नहीं लगाई जाती। और इसका नतीजा ये होता है कि Super AMOLED स्क्रीन सूरज की रौशनी या आउटडोर में AMOLED के मुकाबले बेहतर नज़र आती हैं और साथ ही ये पावर भी कम लेती हैं।

जैसे कि Samsung ने इस स्मार्टफोन डिस्प्ले टाइप का नाम -Super AMOLED रखा है। साधारण भाषा में ये AMOLED स्क्रीन का सुधार किया गया या कहें कि बेहतर वर्ज़न है। और ये केवल मार्केटिंग के लिए मारने वाली डींगें नहीं हैं, बल्कि कई उत्पादों की समीक्षा (review) करने बाद, तथ्य यही है कि Samsung की डिस्प्ले बाज़ार में सबसे उत्तम श्रेणी में आती हैं।

वहीँ इसकी तकनीक में किये गए सबसे नए विकास या सुधार को कंपनी ने Dynamic AMOLED का नाम दे दिया। . हालांकि Samsung ने इसके बारे में कभी विस्तार से नहीं बताया है लेकिन इतना साफ़ कर दिया है कि इस तरह की डिस्प्ले में HDR10+ सर्टिफिकेशन शामिल होता है जिसके साथ आपको स्क्रीन पर रंगों और कॉन्ट्रास्ट की एक वाइड रेंज मिलती है। साथ ही इसमें ब्लू लाइट कम होती जिससे ये डिस्प्ले आँखों के लिए ज्यादा आरामदायक हो।

ठीक इसी तरह OnePlus ने भी हाई-एंड स्मार्टफोनों के लिए नाम रखा है – Fluid AMOLED, जिसमें हाई रिफ्रेश रेट ही इसकी ख़ास बात है, इसमें कोई और अंतर नहीं होता। उदाहरण के लिए – डिस्प्ले अगर 120Hz रिफ्रेश रेट के साथ आएगी तो उसमें आपको और ज्यादा स्मूथ एनीमेशन मिलेगा।

पिक्सल डेंसिटी की बात करें तो, 2010 में iPhone 4 के लॉन्च के समय Apple का मुख्य आकर्षण यही था। इस स्मार्टफोन डिस्प्ले में कंपनी ने LCD डिस्प्ले का इस्तेमाल किया। इस LCD पैनल ((LED, TFT, और IPS) को हाई रेज़ॉल्यूशन (उस समय पर 960 X 640 पिक्सल्स) के साथ Retina Display का नाम दिया। इस फ़ोन में 3.5 इंच की डिस्प्ले थी।

उस समय पर Apple के मार्केटिंग डिपार्टमेंट ने Retina Display नाम इसलिए चुना क्योंकि कंपनी के अनुसार एक निश्चित दूरी से हमारी या किसी भी इंसान की आंखें अलग-अलग पिक्सल में फर्क नहीं कर पाती। iPhones के केस में, ये नाम तब इस्तेमाल होता था जब फ़ोन की डिस्प्ले पर 300 ppi (pixel per inch) से ज्यादा होती थी।

तब से, अन्य स्मार्टफोन बनाने वाली कंपनियों ने भी यही तरीका अपनाया और हाई रेज़ॉल्यूशन वाले पैनलों को अपनाना शुरू कर दिया। जबकि iPhone 12 Mini में 476 dpi और Sony Xperia 1 में 643 dpi मिलती है।

जब सबने हाई रेज़ॉल्यूशन के साथ डिस्प्ले लेना आरम्भ कर दिया, फिर Apple ने खुद को भीड़ में अलग करने के लिए अपने प्रीमियम स्मार्टफोनों में इस्तेमाल होने वाली OLED डिस्प्ले को “Super Retina” का नाम दे दिया। ये डिस्प्ले iPhone X और उसके बाद आने वाले फोनों में आयी है। ये डिस्प्ले हाई कॉन्ट्रास्ट रेट और डिस्प्ले पर रंगों की सटीकता के लिए जानी जाती है, और ऐसी ही स्क्रीन Samsung के S-सीरीज़ के स्मार्टफोनों में भी आप देख सकते हैं।

इसके बाद कंपनी ने iPhone 11 Pro के साथ डिस्प्ले का नया नाम भी लॉन्च किया – “Super Retina XDR”। इसमें भी वही OLED पैनल का उपयोग किया गया है, लेकिन इसे पैनल का निर्माण Samsung Display या LG Display द्वारा हुआ है। इसमें आपको 2,000,000:1 रेश्यो के साथ और भी बेहतर कॉन्ट्रास्ट लेवल और 1200 nits की ब्राइटनेस मिलते हैं और ये ख़ासकर HDR कंटेंट के लिए अनुकूल हैं।

वहीं iPhone XR और iPhone 11 के ग्राहकों को भी खुश रखने के लिए कंपनी ने इनमें आने वाले LCD पैनल को “Liquid Retina” का नाम दे दिया। बाद में यही डिस्प्ले कंपनी स्टैण्डर्ड के अनुसार बेहतर रेज़ॉल्यूशन और सही रंगों के साथ iPad Pro और iPad Air मॉडल में भी आया।

अंतरराष्ट्रीय प्रणाली या सिस्टम में Nit या कैंडेला प्रति वर्ग मीटर (candela per square meter), जलने या निकलने वाली रौशनी की तीव्रता या गहनता (intensity) को मापने की यूनिट है। अधिकतर स्मार्टफोन, टैबलेट, मॉनिटर के बारे में जब हम बात करते हैं तो ये यूनिट बताती है कि डिस्प्ले कितना ब्राइट है। इसकी वैल्यू जितनी ज्यादा होगा, डिस्प्ले पर पिछले से पड़ने वाली रौशनी की तीव्रता भी उतनी ही ज्यादा होगी।

टेलीविज़न की दुनिया में, miniLED के बारे में हम जान चुके हैं और ये फ़ीचर या तकनीक टीवी में हम देखते ही आ रहे हैं। इसमें बैकलाइट में लाइटिंग ज़ोन का नंबर बढ़ा दिया जाता है। लेकिन अब अफवाहों और कई ख़बरों के अनुसार स्मार्टफोनों और स्मार्टवॉच में भी कंपनियां microLED टेक्नोलॉजी जल्दी ही लेकर आ सकती हैं। ये टेक्नोलॉजी या पैनल LCD/LED से काफी अलग है क्योंकि ये OLED डिस्प्ले की तरह ही बारीकियों के साथ अच्छी पिक्चर क्वॉलिटी देती है।

microLED डिस्प्ले में हर एक सब-पिक्सल में एक अलग रौशनी देने वाला डायोड होता है – अधिकतर ये एक लाल, हरे और नीले डायोड का एक सेट होता है जो एक डॉट के लिए होता है । माना जा रहा है कि microLED में इस बार किसी तरह की अजैविक (inorganic) मैटेरियल का इस्तेमाल होगा जैसे कि gallium nitride (GaN)।

खुद अपनी रौशनी छोड़ने वाला पिक्सल यानि कि self-emitting light जैसी तकनीक अपनाने के साथ, microLED डिस्प्ले में भी बैकलाइट की ज़रूरत नहीं होती। इसमें भी आपको OLED जैसे ही हाई कॉन्ट्रास्ट के साथ पिक्चर देखने को मिलेंगी और साथ ही इसमें ऑर्गेनिक डायोड की तरह स्क्रीन बर्न-इन जैसी समस्याओं का डर भी नहीं है।

साथ ही दूसरी चुनौती ये है कि इनकी कीमत भी काफी ज्यादा होती है। उदाहरण के लिए – Samsung की microLED TVs (146 इंच से 292 इंच) की कीमत 3.5 करोड़ से 12 करोड़ है, जो कि बहुत ही ज़्यादा है।

जैसे कि हमने पहले भी कहा, OLED या AMOLED डिस्प्ले में सबसे बड़ा फ़ायदा है कि हर पिक्सल खुद को रौशनी देने का कार्य संभालता है और इससे कंट्रास्ट लेवल बढ़ता है। साथ ही दूसरा फ़ायदा है ज़्यादा और सटीक काला रंग, जो कि डिस्प्ले पर देखते समय अच्छी पिक्चर क्वालिटी के लिए बेहद महत्वपूर्ण है। साथ ही जिस समय स्क्रीन कोई गहरे (डार्क) रंग की तस्वीर दिखाती है तो ये ये ऊर्जा भी कम लेते हैं।

वहीँ इनकी ख़ामियों की बात करें तो, इनको बनाने में काफी ज़्यादा लागत लगती है और कॉम्पोनेन्ट की पूर्ती करने वाली कंपनियां भी सीमित ही हैं। इनमें Samsung Display, LG Display और तीसरे नंबर पर चीन की इलेक्ट्रॉनिक्स कंपनी BOE और कुछ एक जो OLED की मांग को पूरा करते हैं। जबकि LCD पैनल बनाने वाली काफी कम्पनियां हैं।

इसके अलावा एक और बात जो हम यहां जोड़ना चाहते हैं, समय के साथ OLED स्क्रीन के ऑर्गेनिक डायोड अपनी चमक या कहें कि योग्यता खो देते हैं और ये तब होता है जब एक ही तस्वीर ज्यादा समय तक डिस्प्ले होती है। इसे कपनियां “burn-in” का नाम देती हैं।

tft display vs amoled in hindi factory

What is often confused with this are TN LCD displays. They are one of 3 kinds of LCD (TN, VA, IPS) with worse image quality but faster pixel response time (less ghosting, which is not to be confused with blooming and not to be confused with haloing).

tft display vs amoled in hindi factory

Tried and trusted TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen. The pixels themselves do not produce light; instead, the screen uses a backlight for illumination.

By contrast the Active Matrix OLED (AMOLED) display requires no backlight and can light up or turn off each of their pixels independently. As the name suggests, they are made of organic material.

An AMOLED display has many other benefits which make it a superior looking display including exceptional vieiwng angles and a display that looks practically black when it is switched off.

So, why use a TFT display? Well, it is a mature technology meaning the manufacturing processes are efficient, yields high and cost much lower than AMOLED.

TFT displays also have a much longer lifespan than AMOLED displays and are available in a far greater range of standard sizes, which can be cut down to fit a space restricted enclosure for a relatively low cost adder.

Which type of display you choose really depends on your application, environment and users, so why not get in touch with us today to discuss your requirements.

tft display vs amoled in hindi factory

What are the key differences between leading electronic visual displays available in the market? Such are the times that we live in that today most of us cannot possibly imagine a life without an electronic device. In fact, we have managed to surround ourselves and depend on a growing number of electronic appliances. Several of these devices - as it happens - also have an electronic visual display; be it a mobile phone, a tablet, a desktop monitor or the television set. Without a doubt, these electronic screen devices have revolutionised the way we lead our lives now as all of the four devices have become increasingly commonplace to the point of becoming basic necessities. Which brings to our blog topic: what exactly is an electronic screen and which are the leading screen technologies available today? Read on to know more…

An electronic screen or an electronic visual display, informally called a screen, is basically a device used to display / present images, text, or video transmitted electronically, without creating a permanent record. As mentioned earlier, electronic visual displays include television sets, computer monitors, and digital signage in information appliances. As per the definition, an overhead projector (along with screen onto which the text, images, or video is projected) can also be called an electronic visual display.

1. Cathode Ray Tube (CRT) display:A vacuum tube containing one or more electron guns and a phosphorescent screen, the cathode-ray tube (CRT) is used to display images. It modulates, accelerates, and deflects electron beams onto the screen to make the images. The images could be electrical waveforms (oscilloscope), pictures (television, computer monitor) or radar targets. CRTs have also been used as memory devices, wherein the visible light from the fluorescent material (if any) does not really have any significant meaning to a visual observer, but the visible pattern on the tube face could cryptically represent the stored data. In television sets and computer monitors, the front area of the tube is scanned systematically and repetitively in a pattern called a raster. Thanks to the intensity of each of the three electron beams - one for each additive primary color (red, green, and blue) - being controlled with a video signal as a reference, an image is produced. In modern CRT monitors and TVs, magnetic deflection bends the beams; magnetic deflection is essentially a varying magnetic field generated by coils and driven by electronic circuits around the neck of the tube, although electrostatic deflection is often used in oscilloscopes, a type of electronic test instrument. CRT is one of the older screen/ display technologies.

2. Flat-Panel display: Flat-panel displays are electronic viewing technologies that are used to allow people to see content (still images, moving images, text, or other visual material) in a range of entertainment, consumer electronics, personal computer, and mobile devices, and several kinds of medical, transportation and industrial equipment. They are much lighter and thinner than traditional cathode ray tube (CRT) television sets and video displays and are typically less than 10 centimetres (3.9 in) thick. Flat-panel displays can be classified under two display device categories: volatile and static. Volatile displays need pixels to be periodically electronically refreshed to retain their state (say, liquid-crystal displays). A volatile display only shows an image when it has battery or AC mains power. Static flat-panel displays rely on materials whose color states are bistable (say, e-book reader tablets from Sony), and they retain the text or images on the screen even when the power is off. In recent times, flat-panel displays have almost completely replaced old CRT displays. Most flat-panel displays from the 2010s use LCD and/or LED technologies. Majority of the LCD screens are back-lit as color filters are used to display colors. Being thin and lightweight, flat-panel displays offer better linearity and have higher resolution than the average consumer-grade TV from the earlier decades. The highest resolution for consumer-grade CRT TVs was 1080i, whereas many flat-panels can display 1080p or even 4K resolution.

3. Plasma (P) display: A plasma display panel (PDP) is a type of flat panel display that uses small cells containing plasma; ionized gas that responds to electric fields. Earlier, plasma displays were commonly used in larger televisions (30 inches and larger). But since more than a decade now, they have lost almost all market share due to competition from low-cost LCDs and more expensive but high-contrast OLED flat-panel displays. Companies stopped manufacturing plasma displays for the United States retail market in 2014, and for the Chinese market in 2016.

4. Electroluminescent display (ELD):Electroluminescent Displays (ELDs) are screens that make use of electroluminescence. Electroluminescence (EL) is an optical and electrical phenomenon where a material emits light in response to an electric current passed through it, or to a strong electric field.

So ELD then is a kind of flat panel display produced by sandwiching a layer of electroluminescent material between two layers of conductors. When the current flows, the layer of material emits radiation in the form of visible light. Basically, electroluminescence works by exciting atoms by passing an electric current through them, leading them to emit photons. By varying the material being excited, the color of the light being emitted is changed. The actual ELD is built using flat, opaque electrode strips running parallel to each other, covered by a layer of electroluminescent material, followed by another layer of electrodes, running perpendicular to the bottom layer. This top layer has to be transparent so as to allow light to escape. At each intersection, the material lights, creating a pixel.

5. Liquid Crystal Display (LCD): A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that makes use of the light-modulating properties of liquid crystals. Liquid crystals do not give out light directly; they use a backlight or reflector to create images in color or monochrome. LCDs display arbitrary images like in a general-purpose computer display or fixed images with low information content, that can be displayed or hidden, such as preset words, digits, and seven-segment displays, like in a digital clock. They use the same core technology, apart from the fact that arbitrary images are made up of a large number of small pixels, while other displays have larger elements. LCDs could be on (positive) or off (negative), as per the polarizer arrangement. For instance, a character positive LCD with a backlight has black lettering on a background the same color as the backlight, and a character negative LCD has a black background with the letters matching the backlight color. Blue LCDs typically get their characteristic appearance from optical filters being added to white.

LCD screens are being used in several applications such as LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are seen in portable consumer devices such as digital cameras, watches, calculators and mobile telephones, including smartphones. LCDs are also found in consumer electronics products such as DVD players, video game devices and clocks. It is interesting to note that these displays are available in a wide range of screen sizes as compared to CRT and plasma displays. Also, while LCD screens have replaced heavy, bulky cathode ray tube (CRT) displays in almost all applications, they are slowly being replaced by OLEDs, which can be easily made into different shapes, and boast other advantages such as having a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile and potentially lower power consumption. OLEDs, however, are more expensive for a given display size and they can suffer from screen burn-in when a static image is displayed on a screen for a long time (for instance, the table frame for an airline flight schedule on an indoor sign), not to mention that there is curr