tft lcd or lcd quotation
Leadtek has paid great efforts on research and development of TFT-LCM, especially on its application of consumable and industrial products. The sizes of LCM includes 1.4”, 2.4”, 3.5", 3.51", 4.3", 4", 5", 7", 8", 10.1” and 11.6". And among them the 3.5”, 4.3", 5", 7” and 10.1" LCM has achieved the leading level of the industry, and mainly applied to vehicle-applications, tablet PCs, smartphones, medical equipment, measurement equipment, E-books, EPC and industrial products, and provides powerful and reliable supports on supplies and qualities. We are cooperating with famous foreign companies on research and developments, and will bring out the series products of industrial control. Also, we explore the overseas market, and build up a long-term relationship with our overseas partners and agents, Leadtek products will be worldwide in the near future.
IPS (In-Plane Switching) lcd is still a type of TFT LCD, IPS TFT is also called SFT LCD (supper fine tft ),different to regular tft in TN (Twisted Nematic) mode, theIPS LCD liquid crystal elements inside the tft lcd cell, they are arrayed in plane inside the lcd cell when power off, so the light can not transmit it via theIPS lcdwhen power off, When power on, the liquid crystal elements inside the IPS tft would switch in a small angle, then the light would go through the IPS lcd display, then the display on since light go through the IPS display, the switching angle is related to the input power, the switch angle is related to the input power value of IPS LCD, the more switch angle, the more light would transmit the IPS LCD, we call it negative display mode.
The regular tft lcd, it is a-si TN (Twisted Nematic) tft lcd, its liquid crystal elements are arrayed in vertical type, the light could transmit the regularTFT LCDwhen power off. When power on, the liquid crystal twist in some angle, then it block the light transmit the tft lcd, then make the display elements display on by this way, the liquid crystal twist angle is also related to the input power, the more twist angle, the more light would be blocked by the tft lcd, it is tft lcd working mode.
A TFT lcd display is vivid and colorful than a common monochrome lcd display. TFT refreshes more quickly response than a monochrome LCD display and shows motion more smoothly. TFT displays use more electricity in driving than monochrome LCD screens, so they not only cost more in the first place, but they are also more expensive to drive tft lcd screen.The two most common types of TFT LCDs are IPS and TN displays.
Some of my customers have sent me inquiries about LCD panels and asked for quote. They only gave me the information about the screen size, for example, segment LCD screen 36 x 22 mm & 57 x 22 mm & 77 x 25 mm or 128 * 32 pixel. I had to explain to them why we cannot give a quote. Here is a summary of the necessary information that we need before we can offer quotes:
Do you only need a LCD screen or LCD module (including LCD screen, LED backlight, IC, PCB, Plastic shell)? If you only need a LCD screen, is it a segment LCD or a dot matrix LCD? We have a lot of experience in the LED and LCD industries and give the best quote.
Please give me the quantity you want before you ask me for a quote. There is definitely a difference between purchasing 100,000 and 1,000 pieces. The more you order each buy, the cheaper the unit price and shipping cost will be.
Does 36 x 22 mm & 57 x 22 mm & 77 x 25 mm mean outer dimension or view area? As for 128*32 pixel, we don’t know the size of LCD screen, so we are unable to give a quote.
I have been asked this question by my customers many times: what is your MOQ (minimum order quantity)? There are different MOQ for different sizes of LCD screens. For example: The MOQ of 36 x 22 mm segment LCD is 5000 pieces, and the MOQ of 113.5 x 62mm segment LCD is 1,000 pieces. So please tell me the size of your LCD first before you ask me for the MOQ.
Dot matrix LCD can display any graphic, so it doesn’t need it. But segment LCD does and we are going to need it for the official blueprint we are about to make.
We can make custom operating voltage according to our clients’ requirements. Typical voltage rangesfrom 2.5v to 4.5v. The most commonly used operating voltages are 3.0v, 4.5v and 5.0v.
If we make a 17 segment LCD display that adopts static drive mode, there will be 18 feet (each segment has one foot and one common foot). If it adopts a dynamic drive mode whose duty is one-third, there will be 9 feet (17/3=6 feet and 3 common feet).
Static drive mode needs more feet, so it costs a little more than dynamic drive, but the display effect of static drive is a little better. If it is a dot matrix LCD, it must adopt dynamic drive, otherwise, the feet will be too many. For example, 128 * 32 pixel LCD screen adopts static drive, it will be (128 * 32+1) 4097 feet. If the duty of 128 * 32 pixel LCD screen is 32, there will be (128 * 32/32+32) 160 feet.
As you can see from the 11 points, there is no fixed price list because of the various factors listed above. Please review the 11 points before asking for a quote. This will make everything easier for all parties concerned.
A thin-film-transistor liquid-crystal display (TFT LCD) is a variant of a liquid-crystal display that uses thin-film-transistor technologyactive matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven (i.e. with segments directly connected to electronics outside the LCD) LCDs with a few segments.
In February 1957, John Wallmark of RCA filed a patent for a thin film MOSFET. Paul K. Weimer, also of RCA implemented Wallmark"s ideas and developed the thin-film transistor (TFT) in 1962, a type of MOSFET distinct from the standard bulk MOSFET. It was made with thin films of cadmium selenide and cadmium sulfide. The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968. In 1971, Lechner, F. J. Marlowe, E. O. Nester and J. Tults demonstrated a 2-by-18 matrix display driven by a hybrid circuit using the dynamic scattering mode of LCDs.T. Peter Brody, J. A. Asars and G. D. Dixon at Westinghouse Research Laboratories developed a CdSe (cadmium selenide) TFT, which they used to demonstrate the first CdSe thin-film-transistor liquid-crystal display (TFT LCD).active-matrix liquid-crystal display (AM LCD) using CdSe TFTs in 1974, and then Brody coined the term "active matrix" in 1975.high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.
The liquid crystal displays used in calculators and other devices with similarly simple displays have direct-driven image elements, and therefore a voltage can be easily applied across just one segment of these types of displays without interfering with the other segments. This would be impractical for a large display, because it would have a large number of (color) picture elements (pixels), and thus it would require millions of connections, both top and bottom for each one of the three colors (red, green and blue) of every pixel. To avoid this issue, the pixels are addressed in rows and columns, reducing the connection count from millions down to thousands. The column and row wires attach to transistor switches, one for each pixel. The one-way current passing characteristic of the transistor prevents the charge that is being applied to each pixel from being drained between refreshes to a display"s image. Each pixel is a small capacitor with a layer of insulating liquid crystal sandwiched between transparent conductive ITO layers.
The circuit layout process of a TFT-LCD is very similar to that of semiconductor products. However, rather than fabricating the transistors from silicon, that is formed into a crystalline silicon wafer, they are made from a thin film of amorphous silicon that is deposited on a glass panel. The silicon layer for TFT-LCDs is typically deposited using the PECVD process.
Polycrystalline silicon is sometimes used in displays requiring higher TFT performance. Examples include small high-resolution displays such as those found in projectors or viewfinders. Amorphous silicon-based TFTs are by far the most common, due to their lower production cost, whereas polycrystalline silicon TFTs are more costly and much more difficult to produce.
The twisted nematic display is one of the oldest and frequently cheapest kind of LCD display technologies available. TN displays benefit from fast pixel response times and less smearing than other LCD display technology, but suffer from poor color reproduction and limited viewing angles, especially in the vertical direction. Colors will shift, potentially to the point of completely inverting, when viewed at an angle that is not perpendicular to the display. Modern, high end consumer products have developed methods to overcome the technology"s shortcomings, such as RTC (Response Time Compensation / Overdrive) technologies. Modern TN displays can look significantly better than older TN displays from decades earlier, but overall TN has inferior viewing angles and poor color in comparison to other technology.
Most TN panels can represent colors using only six bits per RGB channel, or 18 bit in total, and are unable to display the 16.7 million color shades (24-bit truecolor) that are available using 24-bit color. Instead, these panels display interpolated 24-bit color using a dithering method that combines adjacent pixels to simulate the desired shade. They can also use a form of temporal dithering called Frame Rate Control (FRC), which cycles between different shades with each new frame to simulate an intermediate shade. Such 18 bit panels with dithering are sometimes advertised as having "16.2 million colors". These color simulation methods are noticeable to many people and highly bothersome to some.gamut (often referred to as a percentage of the NTSC 1953 color gamut) are also due to backlighting technology. It is not uncommon for older displays to range from 10% to 26% of the NTSC color gamut, whereas other kind of displays, utilizing more complicated CCFL or LED phosphor formulations or RGB LED backlights, may extend past 100% of the NTSC color gamut, a difference quite perceivable by the human eye.
The transmittance of a pixel of an LCD panel typically does not change linearly with the applied voltage,sRGB standard for computer monitors requires a specific nonlinear dependence of the amount of emitted light as a function of the RGB value.
In-plane switching was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels at that time.
Initial iterations of IPS technology were characterised by slow response time and a low contrast ratio but later revisions have made marked improvements to these shortcomings. Because of its wide viewing angle and accurate color reproduction (with almost no off-angle color shift), IPS is widely employed in high-end monitors aimed at professional graphic artists, although with the recent fall in price it has been seen in the mainstream market as well. IPS technology was sold to Panasonic by Hitachi.
Most panels also support true 8-bit per channel color. These improvements came at the cost of a higher response time, initially about 50 ms. IPS panels were also extremely expensive.
In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan"s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation.
It achieved pixel response which was fast for its time, wide viewing angles, and high contrast at the cost of brightness and color reproduction.Response Time Compensation) technologies.
Less expensive PVA panels often use dithering and FRC, whereas super-PVA (S-PVA) panels all use at least 8 bits per color component and do not use color simulation methods.BRAVIA LCD TVs offer 10-bit and xvYCC color support, for example, the Bravia X4500 series. S-PVA also offers fast response times using modern RTC technologies.
When the field is on, the liquid crystal molecules start to tilt towards the center of the sub-pixels because of the electric field; as a result, a continuous pinwheel alignment (CPA) is formed; the azimuthal angle rotates 360 degrees continuously resulting in an excellent viewing angle. The ASV mode is also called CPA mode.
A technology developed by Samsung is Super PLS, which bears similarities to IPS panels, has wider viewing angles, better image quality, increased brightness, and lower production costs. PLS technology debuted in the PC display market with the release of the Samsung S27A850 and S24A850 monitors in September 2011.
TFT dual-transistor pixel or cell technology is a reflective-display technology for use in very-low-power-consumption applications such as electronic shelf labels (ESL), digital watches, or metering. DTP involves adding a secondary transistor gate in the single TFT cell to maintain the display of a pixel during a period of 1s without loss of image or without degrading the TFT transistors over time. By slowing the refresh rate of the standard frequency from 60 Hz to 1 Hz, DTP claims to increase the power efficiency by multiple orders of magnitude.
Due to the very high cost of building TFT factories, there are few major OEM panel vendors for large display panels. The glass panel suppliers are as follows:
External consumer display devices like a TFT LCD feature one or more analog VGA, DVI, HDMI, or DisplayPort interface, with many featuring a selection of these interfaces. Inside external display devices there is a controller board that will convert the video signal using color mapping and image scaling usually employing the discrete cosine transform (DCT) in order to convert any video source like CVBS, VGA, DVI, HDMI, etc. into digital RGB at the native resolution of the display panel. In a laptop the graphics chip will directly produce a signal suitable for connection to the built-in TFT display. A control mechanism for the backlight is usually included on the same controller board.
The low level interface of STN, DSTN, or TFT display panels use either single ended TTL 5 V signal for older displays or TTL 3.3 V for slightly newer displays that transmits the pixel clock, horizontal sync, vertical sync, digital red, digital green, digital blue in parallel. Some models (for example the AT070TN92) also feature input/display enable, horizontal scan direction and vertical scan direction signals.
New and large (>15") TFT displays often use LVDS signaling that transmits the same contents as the parallel interface (Hsync, Vsync, RGB) but will put control and RGB bits into a number of serial transmission lines synchronized to a clock whose rate is equal to the pixel rate. LVDS transmits seven bits per clock per data line, with six bits being data and one bit used to signal if the other six bits need to be inverted in order to maintain DC balance. Low-cost TFT displays often have three data lines and therefore only directly support 18 bits per pixel. Upscale displays have four or five data lines to support 24 bits per pixel (truecolor) or 30 bits per pixel respectively. Panel manufacturers are slowly replacing LVDS with Internal DisplayPort and Embedded DisplayPort, which allow sixfold reduction of the number of differential pairs.
Backlight intensity is usually controlled by varying a few volts DC, or generating a PWM signal, or adjusting a potentiometer or simply fixed. This in turn controls a high-voltage (1.3 kV) DC-AC inverter or a matrix of LEDs. The method to control the intensity of LED is to pulse them with PWM which can be source of harmonic flicker.
The bare display panel will only accept a digital video signal at the resolution determined by the panel pixel matrix designed at manufacture. Some screen panels will ignore the LSB bits of the color information to present a consistent interface (8 bit -> 6 bit/color x3).
With analogue signals like VGA, the display controller also needs to perform a high speed analog to digital conversion. With digital input signals like DVI or HDMI some simple reordering of the bits is needed before feeding it to the rescaler if the input resolution doesn"t match the display panel resolution.
The statements are applicable to Merck KGaA as well as its competitors JNC Corporation (formerly Chisso Corporation) and DIC (formerly Dainippon Ink & Chemicals). All three manufacturers have agreed not to introduce any acutely toxic or mutagenic liquid crystals to the market. They cover more than 90 percent of the global liquid crystal market. The remaining market share of liquid crystals, produced primarily in China, consists of older, patent-free substances from the three leading world producers and have already been tested for toxicity by them. As a result, they can also be considered non-toxic.
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Richard Ahrons (2012). "Industrial Research in Microcircuitry at RCA: The Early Years, 1953–1963". 12 (1). IEEE Annals of the History of Computing: 60–73. Cite journal requires |journal= (help)
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. AIP. 37 (1): 1079–82. doi:10.1889/1.2433159. S2CID 129569963.
Kim, Sae-Bom; Kim, Woong-Ki; Chounlamany, Vanseng; Seo, Jaehwan; Yoo, Jisu; Jo, Hun-Je; Jung, Jinho (15 August 2012). "Identification of multi-level toxicity of liquid crystal display wastewater toward Daphnia magna and Moina macrocopa". Journal of Hazardous Materials. Seoul, Korea; Laos, Lao. 227–228: 327–333. doi:10.1016/j.jhazmat.2012.05.059. PMID 22677053.
TFT displays are full color LCDs providing bright, vivid colors with the ability to show quick animations, complex graphics, and custom fonts with different touchscreen options. Available in industry standard sizes and resolutions. These displays come as standard, premium MVA, sunlight readable, or IPS display types with a variety of interface options including HDMI, SPI and LVDS. Our line of TFT modules include a custom PCB that support HDMI interface, audio support or HMI solutions with on-board FTDI Embedded Video Engine (EVE2).
Get rich colors, detailed images, and bright graphics from an LCD with a TFT screen. Our standard Displaytech TFT screens start at 1” through 7” in diagonal size and have a variety of display resolutions to select from. Displaytech TFT displays meet the needs for products within industrial, medical, and consumer applications.
TFT displays are LCD modules with thin-film transistor technology. The TFT display technology offers full color RGB showcasing a range of colors and hues. These liquid crystal display panels are available with touchscreen capabilities, wide viewing angles, and bright luminance for high contrast.
Our TFT displays have LVDS, RGB, SPI, and MCU interfaces. All Displaytech TFT LCD modules include an LED backlight, FPC, driver ICs, and the LCD panel.
We offer resistive and capacitive touch screens for our 2.8” and larger TFT modules. Our TFT panels have a wide operating temperature range to suit a variety of environments. All Displaytech LCDs are RoHS compliant.
We also offer semi-customization to our standard TFT screens. This is a cost-optimized solution to make a standard product better suit your application’s needs compared to selecting a fully custom TFT LCD. Customizations can focus on cover glass, mounting / enclosures, and more - contact us to discuss your semi-custom TFT solution.
Compared with ordinary LCDs, TFT LCDs provide very clear images/text with shorter response times. TFT LCDs are increasingly being used to bring better visual effects to products.
TFT stands for “thin film transistor”. The transistor of a color TFT LCD is composed of a thin film of amorphous silicon deposited on glass. It acts as a control valve to provide the appropriate voltage to the liquid crystal for each sub-pixel. This is why TFT LCDs are also known as active matrix displays.
TFT LCDs have a liquid crystal layer between a glass substrate formed by the TFT and transparent pixel electrodes and another glass substrate with a color filter (RGB) and a transparent counter electrode. Each pixel in the active matrix is paired with a transistor that includes a capacitor, which gives each sub-pixel the ability to retain its charge without sending a charge every time it needs to be replaced. This means that TFT LCDs are more responsive.
To understand how a TFT LCD works, we must first grasp the concept of a field effect transistor (FET), which is a transistor that uses an electric field to control the flow of current. It is a component with three terminals: source, gate and drain. fet controls the flow of current by applying a voltage to the gate, thereby changing the conductivity between the drain and source.
Using the FET, we can build a circuit as follows. The data bus sends a signal to the source of the FET, and when SEL SIGNAL applies a voltage to the gate, a drive voltage is generated on the TFT LCD panel. A sub-pixel is lit. A TFT LCD display contains thousands or millions of such driver circuits.
Color TFT LCD from 1.8 inch ~ 15 inch, there are different resolutions and interfaces. How to choose the right TFT LCD, you can refer to the previous article “LCD | How to choose a liquid crystal display module
Some subscribers prefer to save their log-in information so they do not have to enter their User ID and Password each time they visit the site. To activate this function, check the "Save my User ID and Password" box in the log-in section. This will save the password on the computer you"re using to access the site.
Note: If you choose to use the log-out feature, you will lose your saved information. This means you will be required to log-in the next time you visit our site.
Goregaon West, Mumbai Shop No. 4, A Wing, Neptune CHS, Vasant Galaxy Bangur Nagar, Goregaon West, Goregaon West, Mumbai - 400104, Dist. Mumbai, Maharashtra
Dr. D B Marg, Mumbai Ground Floor, GR- 8, Gandhi Bhuvan, Chunam Lane Grant Road East Grant Road East, Dr. D B Marg, Mumbai - 400007, Dist. Mumbai, Maharashtra
Vasai Virar, Dist. Thane C-2, G-18, Floor- Dewan Apt No. 3, Navghar East, Palghar, Maharashtra, 401202, Vasai Virar - 401202, Dist. Thane, Maharashtra
Sahakar nagar, Bengaluru Building Number 216/2, 2nd Floor, 10th Cross, F Block, 14th Main Cantt Sahakar Nagar, Sahakar nagar, Bengaluru - 560092, Dist. Bengaluru, Karnataka
Adyar, Chennai No. 13, F- 3, 2nd Floor, 2nd Main Road, Nehru Nagar, Adyar, H.D.F.C. Bank A.T.M., Ground Floor Near Nalli Silks, Opposite To SBI Indra Nagar Branch, Adyar, Chennai - 600020, Dist. Chennai, Tamil Nadu
2711P PanelView™ Plus 7 Graphic Terminals are available in standard and performance versions. Our performance versions are available in conformal coat, stainless steel and on-machine (ArmorView™ Plus 7) options, offering flexibility to meet your specific needs.
WASHINGTON – A Thin-Film Transistor-Liquid Crystal Display (TFT-LCD) producer and seller has agreed to plead guilty and pay $220 million in criminal fines for its role in a conspiracy to fix prices in the sale of liquid crystal display panels, the Department of Justice announced today.
According to a one-count felony charge filed today in U.S. District Court in San Francisco, Chi Mei Optoelectronics participated in a conspiracy to fix the prices of TFT-LCD panels sold worldwide from Sept. 14, 2001, to Dec. 1, 2006. According to the plea agreement, which is subject to court approval, Chi Mei has agreed to cooperate with the department’s ongoing antitrust investigation.
TFT-LCD panels are used in computer monitors and notebooks, televisions, mobile phones and other electronic devices. By the end of the conspiracy period, the worldwide market for TFT-LCD panels was valued at $70 billion. Companies directly affected by the LCD price-fixing conspiracy are some of the largest computer and television manufacturers in the world, including Apple, Dell and HP.
According to the charge, Chi Mei carried out the conspiracy by agreeing during meetings, conversations and communications to charge prices of TFT-LCD panels at certain pre-determined levels and issuing price quotations in accordance with the agreements reached. As a part of the conspiracy, Chi Mei exchanged information on sales of TFT-LCD panels for the purpose of monitoring and enforcing adherence to the agreed-upon prices.
Chi Mei, which is based in Tainan, Taiwan, is charged with price fixing in violation of the Sherman Act. Each violation carries a maximum fine of $100 million for corporations. The maximum fine may be increased to twice the gain derived from the crime or twice the loss suffered by the victims of the crime, if either of those amounts is greater than the statutory maximum fine.
Including today’s charges, as a result of this investigation, six companies have pleaded guilty or have agreed to plead guilty and have been sentenced to pay or have agreed to pay criminal fines totaling more than $860 million. Additionally, nine executives have been charged to date in the department’s ongoing investigation.
Anyone with information concerning illegal conduct in the TFT-LCD industry is urged to call the Antitrust Division’s San Francisco Field Office at 415-436-6660.
THANK YOU FOR VISITING ENERGYTREND (HEREINAFTER REFERRED TO AS "THE WEBSITE"). THE WEBSITE, OWNED AND OPERATED BY TRENDFORCE CORP. (HEREINAFTER REFERRED TO AS "TRENDFORCE"), WILL COLLECT, HANDLE, AND USE PRIVATE USER DATA IN ACCORDANCE WITH THE PERSONAL INFORMATION PROTECTION LAW (HEREINAFTER "PERSONAL INFORMATION LAW") AND THE WEBSITE"S PRIVACY POLICY. THE WEBSITE AIMS TO RESPECT AND PROTECT ALL USERS" ONLINE PRIVACY RIGHTS. IN ORDER TO UNDERSTAND AS WELL AS PROTECT YOUR RIGHTS, PLEASE READ THE FOLLOWING TERMS CAREFULLY:
1.1. THE POLICY COVERS THE HANDLING OF THE PRIVATE INFORMATION EACH USER SHARES WITH TRENDFORCE WHILE VISITING OUR WEBSITES. IF A DIFFERENT PRIVATE POLICY HAS BEEN REFERED TO FOR SPECIFIC TRENDFORCE WEBSITES AND SERVICES, THAT POLICY WILL REPLACE OR SUPPLEMENT THE PRIVACY POLICY MENTIONED IN THIS DOCUMENT. THIS POLICY ALSO COVERS INDIVIDUALS LEGALLY RESIDING IN OR ORGANIZATIONS LEGALLY BASED IN MEMBER COUNTRIES OF THE EUROPEAN UNION (EU) AND ARE SUBJECTED TO EU GENERAL DATA PROTECTION REGULATION (GDPR) WITH REGARD TO PROVISION OF SERVICES AND PERSONAL DATA PROTECTION.
1.2. THIS POLICY IS NOT APPLICABLE TO EITHER COMPANIES OTHER THAN TRENDFORCE AND ITS SUBSIDIARIES OR PERSONNEL NOT EMPLOYED OR AUTHORIZED BY TRENDFORCE AND ITS SUBSIDIARIES.
1.3. BEFORE DECIDING TO USE ANY OF THE SERVICES PROVIDED BY THE WEBSITE (HEREINAFTER "SERVICES"), PLEASE MAKE SURE TO READ AND UNDERSTAND THE ENTIRE AGREEMENT.
1.4. THE WEBSITE MAY CHANGE THE TERMS AND CONDITIONS OF THIS AGREEMENT AT ANY TIME. YOU WILL BE RESPONSIBLE FOR REGULARLY CHECKING THIS AREA AND FOR REVIEWING ANY SUCH CHANGES. BY USING THE WEBSITE AFTER ANY SUCH CHANGES TAKE PLACE, YOU SIGNIFY YOUR ACCEPTANCE OF THE CHANGE(S) AND YOUR AGREEMENT TO BE BOUND BY THEM.
2.1 THE WEBSITE WILL COLLECT AND USE USER INFORMATION FOR PURPOSES SUCH AS MARKETING, CONSUMER PROTECTION, CONSUMER/CLIENT MANAGEMENT, E-COMMERCE SERVICES, FINANCIAL ACCOUNTING, CONTRACTUAL MATTERS, RESEARCH ANALYSIS, AND DATA PROCESSING. WHEN REQUIRED BY LAW, THE WEBSITE MAY ALSO PROVIDE PERSONAL INFORMATION TO NON-GOVERNMENT AGENCIES.
2.2. THE WEBSITE MAY COLLECT USERS" INFORMATION WHEN THE USER REGISTERS WITH, BROWSES, ACCESSES SERVICES PROVIDED BY, OR PARTICIPATES IN AD OR PROMOTIONAL CAMPAIGN INITIATED BY THE WEBSITE. THE WEBSITE MAY ALSO OBTAIN THE SAME PERSONAL INFORMATION FROM ITS BUSINESS PARTNERS.
2.3. AT THE POINT OF REGISTRATION, THE WEBSITE REQUESTS FOR PERSONAL INFORMATION, SUCH AS NAME, E-MAIL ADDRESS, AND OTHER RELATED MATERIALS FOR USER IDENTIFICATION PURPOSES. THE WEBSITE ONLY PROVIDES THE ACCESSES AND SERVICES TO USERS UPON SUCCESSFUL REGISTRATIONS.
2.4. THE WEBSITE COLLECTS TRANSACTION DATA BETWEEN YOU AND TRENDFORCE AND FROM RELEVANT BUSINESS PARTNERS. THESE INCLUDE SPECIFIC PRODUCTS AND SERVICES THAT ARE DIRECTLY OBTAINED FROM THE WEBSITE.
2.5. THE WEBSITE AUTOMATICALLY COLLECTS CERTAIN INFORMATION FROM YOUR WEB BROWSER REGARDING YOUR USE OF THE WEBSITE. EXAMPLES OF INFORMATION COLLECTED FROM USERS INCLUDE THE INTERNET PROTOCOL ("IP") ADDRESS, INFORMATION IN THE WEBSITE"S COOKIE, AND THE CONTENTS YOU VIEWED OR SEARCHED FOR ON THE WEBSITE.
2.6. THE WEBSITE WILL USE THE COLLECTED INFORMATION FOR THE FOLLOWING PURPOSES, INCLUDING: IMPROVEMENTS TO ADVERTISING AND WEB CONTENTS; RESPONSES TO USERS" REQUESTS AND NOTIFICATIONS TO USERS ON NEW SERVICES, ACTIVITIES AND PRODUCTS.
2.7. THE WEBSITE WILL RESPECT ALL USERS" PERSONAL INFORMATION RIGHTS, FOLLOW THE PRIVACY POLICY GUIDELINES WHEN COLLECTING, PROCESSING, AND UTILIZING PERSONAL DATA, AND ADOPT PROPER SECURITY MEASURES TO ENSURE THAT ALL USERS" INFORMATION ARE KEPT SAFELY. THE WEBSITE WILL NOT SELL COLLECTED USER DATA TO ANY THIRD PARTY, AND STRICTLY FORBIDS ALL EMPLOYEES FROM MAKING PERSONAL USE OF SUCH INFORMAITON. TO PROTECT ALL DATA COLLECTED FROM CLIENTS, THE WEBSITE WILL ONLY PROVIDE AND USE INFORMATION WHEN AUTHORIZED TO DO SO, AND WILL KEEP PROPER RECORDS OF ALL SUCH ACTIVITIES.
THE WEBSITE WILL NOT DISCLOSE OR SHARE ANY PERSONAL INFORMATION EXCPET PER SPECIAL REQUEST OR WHEN PERMISSION IS RECEIVED FROM THE USER. OTHER EXCEPTIONS INCLUDE:
a. WHEN WE ARE REQUESTED TO COMPLY WITH GOVERNMENT LAWS, REGULATIONS, LEGAL PROCEDURES, AND ORDERS WHICH ARE AIMED AT PROTECTING PUBLIC INTERESTS, ASSETS, AND SAFETY;
b. WHEN WE RESPOND TO SUBPOENAS, COURT ORDERS, AND LEGAL PROCESSES, OR ACQUIRE AND EXCERCISE OUR LEGAL RIGHTS. SHOULD ANY DISPUTE ARISE BETWEEN THE USER AND THE WEBSITE, THE USERS AGREE THAT THE TAIPEI DISTRICT COURT OF TAIWAN WILL BE THE JURSIDICTIONAL COURT OF THE FIRST INSTANCE;
d. WHEN PARTS OR ALL OF THE WEBSITE"S BUSINESS HAS MERGED WITH OR IS ACQUIRED BY A DIFFERENT COMPANY, AT WHICH POINT THE WEBSITE WILL NOTIFY USERS OF WHEN THEIR INFORMATION IS BEING TRANSFERRED AND WHETHER A NEW PRIVACY POLICY WILL TAKE EFFECT.
IN ACCORDANCE WITH ARTICLE 3 OF THE PERSONAL INFORMATION PROTECTION LAW, YOU WILL HAVE THE OPTION TO EXERCISE THE FOLLOWING RIGHTS WITH REGARD TO THE PERSONAL INFORMATION SHARED WITH THE WEBSITE:
a. MAKE INQUIRIES AND REQUEST FOR A REVIEW OR DUPLICATION OF THE PERSONAL DATA. THE WEBSITE MAY CHARGE NECESSARY FEES FOR ANY COSTS INCURRED FROM SUCH PROCEDURES;
b. REQUEST THE WEBSITE TO SUPPLMENT OR MODIFY YOUR PERSONAL INFORMATION. FOR SUCH A REQUEST, YOU MAY BE ASKED TO PROVIDE A PROPER EXPLANATION, AS REQUIRED BY LAW;
5.2. COMPANIES THAT HAVE ADVERTISEMENTS DISPLAYED ON THE WEBSITE WILL STORE AND USE COOKIES IN ACCORDANCE WITH THEIR OWN PRIVACY POLICIES. ADVERTISERS AND THIRD PARTY COMPANIES WILL NOT BE PERMITTED TO ACCESS OR USE COOKIES OWNED BY THE WEBSITE.
a. TO PREVENT UNAUTHORIZED PARTIES FROM ACCESSING, MODIFYING, OR LEAKING PERSONAL USER DATA, THE WEBSITE WILL TAKE STEPS TO IMPLEMENT PROPER SAFETY MEASURES. THE DATA SEARCHED AND RECORDED ON THE WEBSITE AND THE APPROPRIATE SAFETY MEASURES CHOSEN WILL ALL BE REVIEWED CAREFULLY. CONSIDERING HOW THE SAFETY OF TRANSMITTING DATA ON THE INTERNET CAN NEVER BE GUARANTEED COMPLETELY, USERS SHOULD KEEP IN MIND ALL POSSIBLE RISKS ASSOCIATED WITH ONLINE DATA TRANSFERS AND TAKE RESPONSIBILITY FOR ANY INFORMATION SHARED WITH OR OBTAINED FROM THE WEBSITE.
b. THIS WEBSITE WILL NOTIFY YOU ON MATTERS RELATED TO YOUR PERSONAL DATA BY EMAIL, OR TRENDFORCE CORP. WILL NOTIFY YOU BY OTHER MEANS (SUCH AS VIA TELEPHONE). CLIENTS ARE FULLY RESPONSIBLE FOR PROVIDING AN UPDATED, VALID, AND DELIVERABLE EMAIL ADDRESS THAT CAN RECEIVE NOTIFICATION EMAILS FROM TRENDFORCE CORP.
EXCEPT AS OTHERWISE EXPRESSEDLY PROVIDED BY GDPR OR ORDERED BY THE LAWS OF A COMPETENT JURISDICTION, CLIENTS CAN USE CUSTOMER EMAILServiceGDPR@energytrend.comTO CONTACT THIS WEBSITE TO EXERCISE THEIR RIGHTS PERTAINING TO THEIR ACCOUNT USER NAMES, ACCOUNT USER DATA, SESSION COOKIES, AND OTHER FORMS OF ACCOUNT DATA RECORDS. THESE RIGHTS INCLUDE RIGHT TO ACCESS, RIGHT TO RECTIFICATION, RIGHT TO BE FORGOTTEN/DATA ERASURE, RIGHT TO RESTRICTION OF PROCESSING, RIGHT OF DATA PORTABILITY, RIGHT TO OBJECT, AND ETC. TO EXERCISE THESE RIGHTS, A CLIENT MUST INCLUDE LEGALLY VALID AND VERIFICABLE PROOFS OF PERSONAL IDENITIFICATION ALONG WITH HIS/HER REQUEST. FURTHEMORE, THE CLIENT ISSUING THE REQUEST TO EXERCISE THESE RIGHTS MUST HAVE FUFILLED VARIOUS LEGAL OBLIGATIONS ON HIS/HER PART BEFOREHAND. AFTERWARDS, TRENDFORCE WILL FULFILL THE CLIENTS’ REQUEST/PROVIDE RESOLUTIONS WITHIN REASONABLE TIME AND EFFORT.
BE SURE TO PROTECT ALL PASSWORDS AND PERSONAL INFORMATION, REFRAIN FROM DISCLOSING PRIVATE USER INFORMATION TO ANY THIRD PARTY, AND REGISTER WITH THE WEBSITE UPON COMPLETING ALL NECESSARY MEMBERSHIP PROCEDURES. WHEN USING A SHARED OR PUBLIC COMPUTER, PLEASE MAKE SURE TO PROPERLY CLOSE ALL RELEVANT BROWSERS TO PREVENT OTHERS FROM READING YOUR PERSONAL E-MAILS OR INFORMATION.