lcd touch screen technology factory
Touch screens give the user control of a device through simple or multi-touch gestures. They enable the user to interact directly with what is displayed rather than using a mouse, trackpad, or other separate components.
Our industrial display touch screen monitors can help your factory personnel and workshops handle complex industrial tasks on intuitive factory grade touch screens. Our wide range of rugged LCD displays with multi-touch and various touch technologies such as resisitive, SAW, optical imaging, projected capacitive and infrared are tough and suitable for virtually any industrial applications. We can help you choose the best touch screen technology and solution that fits best with your needs, and close the gap between your vision and implementation of the digital factory.
Viewsonic"s Touch Screen Solutions helped us simplify the hassle of operating complex machinery in our factory. It really helped us improve our factory line operations and reduced labor input.”
Interactive touch screens have become such an integral part of everyday life that they’re almost as likely to be found in the playroom of a preschool-age child as on the factory floor or in the field. And as touch screens become increasingly integrated with consumer and industrial IoT, their demand continues to grow across every market sector.
At Pivot International, we are the global one-source partner helping companies worldwide successfully design, engineer, manufacture, distribute, and deploy the latest in consumer and industrial touch screen technologies and IoT innovations. With more than 50 years of experience, in-house DFM expertise that spans fourteen industries, and 320,000 square feet of tricontinental manufacturing capability (including domestic options), we deliver a smooth, seamless, highly collaborative approach to NPD and successful product launch.
There are five types of touch screen technologies: resistive, capacitative, near-field imaging, infrared, and ultrasound. Each is differentially suited for various consumer and industrial applications. Let’s take a look at each.
Resistive touch screens are the most common industrial touch screen technology. They are constructed of two interfacing glass sheets or specialized films that respond to direct pressure. Traditionally, the glass sheets or films used in this type of touch screen are coated with indium tin oxide (ITO), a transparent conductive material. But this material is increasingly being replaced with more advanced materials, including copper microwires, silver metal mesh, silver nanowires, and graphene.
The switch from ITO to these other materials results from the need to integrate touch functions into the LCD panel rather than manufacturing a transparent touch screen overlay. This makes for a thinner, lighter device with enhanced optical benefits. Because resistive touch screens respond to pressure, they are more reliably responsive to touch than the capacitative versions we’ll discuss below. However, resistive touch screens offer lower resolution image quality than their capacitative counterparts. They are also slower to respond to touch and can register only one pressure point at a time, therefore precluding multi-touch functionality.
Capacitive touch screens were first invented in the 1960s but didn’t appear in the consumer market until the advent of the iPhone. The strength of capacitative technology lies in its instant responsiveness and superior image quality. Capacitive touch screens function on electrical conductivity that alters the screen’s electrical field. Multi-touch functions (think “pinch-to-zoom”) are made possible by triangulating electrical alterations to calculate paired coordinates that “read” the touch location. Unlike resistive touch screens, capacitive touch screens are unresponsive to touch that does not emit an electrical charge. (Which is why it’s almost impossible to use an iPhone while wearing a glove.)
Some capacitive touch screens include a protective layer that protects the display from moisture, extreme temperature, impacts, and solvents, making it suitable for industrial and outdoor applications. For example, our teams at Pivot created a control system for dairy farms with IoT data reporting and touch screen technology that controls milk tank temperatures and wash cycles.
Like capacitative touch screens, near-field imaging touch screens read touch commands by measuring an electrostatic field. The difference is that NFI touch screens feature a corner-configured electrostatic charge, making them more responsive to touch from almost any source. (Even if you’re wearing a glove, NFI devices will instantly register and respond.) A primary advantage of NFI touch screens is that they can withstand extreme field conditions. This makes them a perfect fit for the industrial and security and defense applications that Pivot brings specialized experience in.
Infrared touch screens rely on a grid of LEDs and light-detector photocells placed at opposing positions. The LEDs beam an infrared matrix across the screen that, when “broken” by touch, provides the basis for the device to detect the input location. Infrared touch screens require dozens of components and precision manufacturing. Despite being more expensive to produce, they are often the ideal product solution for applications that include ticketing kiosks, ATMs, office automation, medtech, and even beverage dispensers like the one Pivot created with an integrated processor and customizable I/O system.
Ultrasound technology has enjoyed cross-industry applications for more than a century. But today’s surface acoustic wave touch screens are light years beyond their earlier incarnations and make it possible to make almost any surface responsive to touch. SAW touch screens work by projecting ultrasound waves across the surface of a screen. As the soundwaves are absorbed by whatever comes in contact with the surface, the screen’s controller chip can instantly identify, read, and accurately respond to commands.
Touch displays enable the user to interact with a computer, control system or device without the use of a keyboard or mouse. We have a variety of HMI touch displays and touch screens compatible with HMI from Automation Direct for Human Machine Interface.A touch screen display can be found nearly everywhere. You interact with a touchscreen monitor constantly; they have become very commonplace in our daily lives. Cell phones, ATM’s,kiosks, ticket vending machines,manufacturing plantsand more all use touchscreen monitors. Read further to discover the 5 types of touch screens.
TRU-Vu Monitors offers a wide range of industrial touch screen display monitors, including Sunlight Readable touch screens, panel mount touch monitors and Medical touch screens with P-Cap touch. We also offer Resistive touch, Capacitive touch, SAW touch, and IR industrial touch panels, with USB and RS-232 interfaces. New models are HID Compliant, eliminating the need to load drivers. We provide the best heavy duty LCD touch screen panels for industrial use; all are TAA-Compliant. Which one Is right for you?
The most important decision in choosing the best touch screen display for your application will be the type of touch technology screens to use. There are five major types of touch screens, each with its own advantages and disadvantages. Some have multi touch capability. All are TAA-Compliant touch screens.
Our convenient touch screen comparison chart will provide a quick overview of advantages and disadvantages of each type. We offer over a dozen models of HMI touch displays.
Touch screens will obviously require cleaning and disinfecting due to the high number of contact and touch points. Special care must be taken not to damage the touch screen display face, especially for 5-wire resistive touchscreen monitors. Their surface can easily be permanently damaged by corrosive cleaning agents (bleach, ammonia, etc.) or abrasive materials (dirty cloths, steel wool). Please see ourmonitor cleaning guidelines, andmonitor COVID-disinfecting guidelinesfor more specific details. These guidelines will help ensure you keep your touch screens clean, and safely disinfected from germs or viruses.
Touch screens offer ease of use, speed, accuracy, and negate the need to become proficient with a handheld device. General Digital offers the option of equipping your LCD monitor with a variety of touch technologies, such as:
In 1977, we created the world’s first touch responsive industrial terminal, the VuePoint™. It didn’t have a true touch screen; rather, the VuePoint was equipped with a circuit board onto which infrared LEDs were mounted. The LEDs were arranged to form a 12 x 40 grid and when the screen was touched, the infrared beams were broken, indicating the touch location to the terminal. Thus, an operator could control a system right at the terminal.
As touch screen technology evolved (along with monitor technology), we incorporated various touch panels into our LCD monitors, starting with our SlimLine™ series of flip-up LCD monitors. Over time and based on demand, our Saber RackMount, PanelMount and Standalone Series became the next logical candidates for touch integration. This was due to increased use of flat panel technology in human-machine interface applications.
Featuring pure glass construction, Surface Acoustic Wave (SAW) touch screens will almost never physically “wear out” due to a superior scratch-resistant coating. Excellent light transmission ensures that the image clarity of the display remains sharp and vibrant. The stable, “drift-free” operation means that the touch response is always accurate. They work well with a finger, gloved hand or a soft stylus. And SAW touch screens have a sensitive touch response—they recognize the touch location and the amount of pressure applied.
Being an all-glass design, light transmission of surface capacitive touch screens is improved, when compared to resistive touch screens. This improves display viewability and reduces eye fatigue. Featuring a scratch-resistant top coat, durability in heavy-use environments is easily maintained. This type of touch screen is ideally suited for rugged, industrial or military applications.
Infrared touch technology doesn’t rely on an overlay or a substrate to register a touch, so it cannot physically “wear out,” thus ensuring a long product life cycle. Possessing superior optical performance and excellent gasket-sealing properties, an infrared touch screen is ideal for harsh industrial environments and outdoor kiosks. They work with a finger, gloved hand, stylus, and most any object wider than 1/10". They adjust to changing light conditions, even direct sunlight. And they benefit from stable, no-drift calibration performance.
Working in tandem, two optical sensors track the movement of an object close to the surface by detecting the interruption of the touch screen’s infrared light source, which is emitted in a plane across the display surface and can be either active (infrared LED) or passive (special reflective surfaces).
Optical touch screens use a controller board that receives signals from the optical sensors, then compensates for optical distortions and triangulates the position of the touching object with extreme accuracy.
The infrared light source and optical sensors of the touch screen are synchronized using a sophisticated algorithm that also reduces the effect of ambient light, thus creating a very clear, accurate touch selection.
Developed specifically for interactive digital signage applications, Dispersive Signal Technology determines a touch point by measuring the mechanical energy (bending waves) within a substrate created by the pressure of a finger or stylus. As these bending waves radiate away from the touch location, the signal spreads out over time due to the phenomena of dispersion. The “smeared” signals are then interpreted by a complex set of algorithms to precisely pinpoint the exact touch location on the screen.
DST is a passive technology, waiting for a signal created by a touch impact. Therefore, contaminants such as dirt, grease, and other solids can accumulate on the surface and edges of the display screen without significantly affecting touch responsiveness. In addition, surface damage, such as scratches, has no significant impact on touch performance.
The sophisticated and optimized controller that continuously monitors for a touch impact is the fastest and most responsive technology available for large format displays, offering greater than 99% touch location accuracy.
General Digital is an authorized DST integrator. Our engineers possess the expertise to seamlessly integrate DST technology into your large format monitor, ensuring a reliable interaction with the end-user.
Usually, touch screens and LCD displays are produced separately and glued together with air bonding technology. So, there will be an air gap between touch screen and LCD display.
Air bonding is a simpler manufacturing technology with a high yield rate. Double-sided adhesive fixes touch screen and display panel around perimeter. However, there is an air gap between display panel and touch screen, which makes the whole display thicker. Reflected light and dust in air gap make screens less clear, too.
Optical bonding on the other hand, is to glue touch panel onto LCD screen with optical adhesive. Full-fit technology eliminates the air gap between layers. Less reflected light means better display. However, Optical bonding is an expensive technology. Now only a small number of customers with special needs choose this type of touch screen. As more and more end-users demand better LCD display, optical LCD touch screen will become mainstream.
In-Cell refers to embedding touch panel function into liquid crystal pixels, that is, embedding touch sensor function inside LCD screen. Traditional touch panel is no longer necessary. In-cell is an innovation of loading circuits onto liquid crystal. This kind of LCD is much thinner with better readability in sunlight.
On-Cell means embedding touch screen between color filter substrate and polarizer, in other words, equipping sensor on LCD panel. Although manufacture of on-cell screens is easier than In-Cell, there are still thickness and color uneven problems.
OGS technology is to fit touch screen and protective glass together. Inside of protective glass is ITO conductive layer. Coating and lithography are done directly on the glass. This makes touch screen thinner and cheaper. However, protective glass is usually tempered first, then coated, etched, and finally cut. Cutting tempered glass is difficult with low yield rate. Capillary cracks on the edge will weaken the cut glass.
If you have any questions about touch screens, please consult us. Topway with more than 25 years of experience of LCD display, will give you a satisfactory solution.
Superior optics for use in high ambient light conditions and high accuracy are important characteristics of touch screens used in the medical industry. It is also important that these units are properly sealed to protect against ingress of water, saline, gels, cleaning solutions and other liquids the unit may be exposed to in the healthcare environment. Learn more about the benefits of DawarTouch solutions for the medical industry.
Excessive vibration and high temperatures are just a few of the extreme environmental conditions touch screens used in the military and aerospace industry experience. A ruggedized and durable product is a must in these industries alongside sunlight readability, low reflections and a robust seal to protect against dust, dirt, debris and liquids. Learn more about the benefits of DawarTouch solutions for the military and aerospace industry.
Touch screens used in Instrumentation and industrial type applications need to be reliable, accurate and highly responsive to touch with a bare finger, stylus or a thick work type glove. Durability and impact resistance is also an important feature as often times these applications are in factory or laboratory type environments and experience heavy use. Learn more about the benefits of DawarTouch solutions for the instrumentation/industrial industry.
In-vehicle control touch screens are used in numerous industries from emergency response vehicles to agricultural, construction and warehouse equipment. Many times these environments require a durable, impact resistant, lightweight or portable solution that can be used with finger, thick work glove or stylus. Durability and protection against shock and vibration is also an important feature for this industry. Learn more about the benefits of DawarTouch solutions for the in-vehicle controls industry.
Touch screens used in the POS/Kiosk market need to offer long life expectancy and high endurance for excessive public use. Sunlight readability, quick response and accuracy are other important features often required with these types of applications. Learn more about solutions for the POS/Kiosk industry.
Touch screens used in the marine environment often require custom tuning to eliminate false touch occurrences from contact with salt water. A cover lens, film enhancement or optical bonding process may also be required for improved sunlight readability in these outdoor applications. Learn more about solutions for the marine industry
A touchscreen or touch screen is the assembly of both an input ("touch panel") and output ("display") device. The touch panel is normally layered on the top of an electronic visual display of an electronic device.
A user can give input or control the information processing system through simple or multi-touch gestures by touching the screen with a special stylus or one or more fingers.zooming to increase the text size.
The touchscreen enables the user to interact directly with what is displayed, rather than using a mouse, touchpad, or other such devices (other than a stylus, which is optional for most modern touchscreens).
Touchscreens are common in devices such as smartphones, handheld game consoles, personal computers, electronic voting machines, automated teller machines and point-of-sale (POS) systems. They can also be attached to computers or, as terminals, to networks. They play a prominent role in the design of digital appliances such as personal digital assistants (PDAs) and some e-readers. Touchscreens are also important in educational settings such as classrooms or on college campuses.
The popularity of smartphones, tablets, and many types of information appliances is driving the demand and acceptance of common touchscreens for portable and functional electronics. Touchscreens are found in the medical field, heavy industry, automated teller machines (ATMs), and kiosks such as museum displays or room automation, where keyboard and mouse systems do not allow a suitably intuitive, rapid, or accurate interaction by the user with the display"s content.
Historically, the touchscreen sensor and its accompanying controller-based firmware have been made available by a wide array of after-market system integrators, and not by display, chip, or motherboard manufacturers. Display manufacturers and chip manufacturers have acknowledged the trend toward acceptance of touchscreens as a user interface component and have begun to integrate touchscreens into the fundamental design of their products.
The prototypeCERNFrank Beck, a British electronics engineer, for the control room of CERN"s accelerator SPS (Super Proton Synchrotron). This was a further development of the self-capacitance screen (right), also developed by Stumpe at CERN
One predecessor of the modern touch screen includes stylus based systems. In 1946, a patent was filed by Philco Company for a stylus designed for sports telecasting which, when placed against an intermediate cathode ray tube display (CRT) would amplify and add to the original signal. Effectively, this was used for temporarily drawing arrows or circles onto a live television broadcast, as described in US 2487641A, Denk, William E, "Electronic pointer for television images", issued 1949-11-08. Later inventions built upon this system to free telewriting styli from their mechanical bindings. By transcribing what a user draws onto a computer, it could be saved for future use. See US 3089918A, Graham, Robert E, "Telewriting apparatus", issued 1963-05-14.
The first version of a touchscreen which operated independently of the light produced from the screen was patented by AT&T Corporation US 3016421A, Harmon, Leon D, "Electrographic transmitter", issued 1962-01-09. This touchscreen utilized a matrix of collimated lights shining orthogonally across the touch surface. When a beam is interrupted by a stylus, the photodetectors which no longer are receiving a signal can be used to determine where the interruption is. Later iterations of matrix based touchscreens built upon this by adding more emitters and detectors to improve resolution, pulsing emitters to improve optical signal to noise ratio, and a nonorthogonal matrix to remove shadow readings when using multi-touch.
The first finger driven touch screen was developed by Eric Johnson, of the Royal Radar Establishment located in Malvern, England, who described his work on capacitive touchscreens in a short article published in 1965Frank Beck and Bent Stumpe, engineers from CERN (European Organization for Nuclear Research), developed a transparent touchscreen in the early 1970s,In the mid-1960s, another precursor of touchscreens, an ultrasonic-curtain-based pointing device in front of a terminal display, had been developed by a team around Rainer Mallebrein[de] at Telefunken Konstanz for an air traffic control system.Einrichtung" ("touch input facility") for the SIG 50 terminal utilizing a conductively coated glass screen in front of the display.
In 1972, a group at the University of Illinois filed for a patent on an optical touchscreenMagnavox Plato IV Student Terminal and thousands were built for this purpose. These touchscreens had a crossed array of 16×16 infrared position sensors, each composed of an LED on one edge of the screen and a matched phototransistor on the other edge, all mounted in front of a monochrome plasma display panel. This arrangement could sense any fingertip-sized opaque object in close proximity to the screen. A similar touchscreen was used on the HP-150 starting in 1983. The HP 150 was one of the world"s earliest commercial touchscreen computers.infrared transmitters and receivers around the bezel of a 9-inch Sony cathode ray tube (CRT).
In 1977, an American company, Elographics – in partnership with Siemens – began work on developing a transparent implementation of an existing opaque touchpad technology, U.S. patent No. 3,911,215, October 7, 1975, which had been developed by Elographics" founder George Samuel Hurst.World"s Fair at Knoxville in 1982.
In 1984, Fujitsu released a touch pad for the Micro 16 to accommodate the complexity of kanji characters, which were stored as tiled graphics.Sega released the Terebi Oekaki, also known as the Sega Graphic Board, for the SG-1000 video game console and SC-3000 home computer. It consisted of a plastic pen and a plastic board with a transparent window where pen presses are detected. It was used primarily with a drawing software application.
Touch-sensitive control-display units (CDUs) were evaluated for commercial aircraft flight decks in the early 1980s. Initial research showed that a touch interface would reduce pilot workload as the crew could then select waypoints, functions and actions, rather than be "head down" typing latitudes, longitudes, and waypoint codes on a keyboard. An effective integration of this technology was aimed at helping flight crews maintain a high level of situational awareness of all major aspects of the vehicle operations including the flight path, the functioning of various aircraft systems, and moment-to-moment human interactions.
In the early 1980s, General Motors tasked its Delco Electronics division with a project aimed at replacing an automobile"s non-essential functions (i.e. other than throttle, transmission, braking, and steering) from mechanical or electro-mechanical systems with solid state alternatives wherever possible. The finished device was dubbed the ECC for "Electronic Control Center", a digital computer and software control system hardwired to various peripheral sensors, servos, solenoids, antenna and a monochrome CRT touchscreen that functioned both as display and sole method of input.stereo, fan, heater and air conditioner controls and displays, and was capable of providing very detailed and specific information about the vehicle"s cumulative and current operating status in real time. The ECC was standard equipment on the 1985–1989 Buick Riviera and later the 1988–1989 Buick Reatta, but was unpopular with consumers—partly due to the technophobia of some traditional Buick customers, but mostly because of costly technical problems suffered by the ECC"s touchscreen which would render climate control or stereo operation impossible.
Multi-touch technology began in 1982, when the University of Toronto"s Input Research Group developed the first human-input multi-touch system, using a frosted-glass panel with a camera placed behind the glass. In 1985, the University of Toronto group, including Bill Buxton, developed a multi-touch tablet that used capacitance rather than bulky camera-based optical sensing systems (see History of multi-touch).
The first commercially available graphical point-of-sale (POS) software was demonstrated on the 16-bit Atari 520ST color computer. It featured a color touchscreen widget-driven interface.COMDEX expo in 1986.
In 1987, Casio launched the Casio PB-1000 pocket computer with a touchscreen consisting of a 4×4 matrix, resulting in 16 touch areas in its small LCD graphic screen.
Touchscreens had a bad reputation of being imprecise until 1988. Most user-interface books would state that touchscreen selections were limited to targets larger than the average finger. At the time, selections were done in such a way that a target was selected as soon as the finger came over it, and the corresponding action was performed immediately. Errors were common, due to parallax or calibration problems, leading to user frustration. "Lift-off strategy"University of Maryland Human–Computer Interaction Lab (HCIL). As users touch the screen, feedback is provided as to what will be selected: users can adjust the position of the finger, and the action takes place only when the finger is lifted off the screen. This allowed the selection of small targets, down to a single pixel on a 640×480 Video Graphics Array (VGA) screen (a standard of that time).
Sears et al. (1990)human–computer interaction of the time, describing gestures such as rotating knobs, adjusting sliders, and swiping the screen to activate a switch (or a U-shaped gesture for a toggle switch). The HCIL team developed and studied small touchscreen keyboards (including a study that showed users could type at 25 wpm on a touchscreen keyboard), aiding their introduction on mobile devices. They also designed and implemented multi-touch gestures such as selecting a range of a line, connecting objects, and a "tap-click" gesture to select while maintaining location with another finger.
In 1990, HCIL demonstrated a touchscreen slider,lock screen patent litigation between Apple and other touchscreen mobile phone vendors (in relation to
An early attempt at a handheld game console with touchscreen controls was Sega"s intended successor to the Game Gear, though the device was ultimately shelved and never released due to the expensive cost of touchscreen technology in the early 1990s.
Touchscreens would not be popularly used for video games until the release of the Nintendo DS in 2004.Apple Watch being released with a force-sensitive display in April 2015.
In 2007, 93% of touchscreens shipped were resistive and only 4% were projected capacitance. In 2013, 3% of touchscreens shipped were resistive and 90% were projected capacitance.
A resistive touchscreen panel comprises several thin layers, the most important of which are two transparent electrically resistive layers facing each other with a thin gap between. The top layer (that which is touched) has a coating on the underside surface; just beneath it is a similar resistive layer on top of its substrate. One layer has conductive connections along its sides, the other along top and bottom. A voltage is applied to one layer and sensed by the other. When an object, such as a fingertip or stylus tip, presses down onto the outer surface, the two layers touch to become connected at that point.voltage dividers, one axis at a time. By rapidly switching between each layer, the position of pressure on the screen can be detected.
Resistive touch is used in restaurants, factories and hospitals due to its high tolerance for liquids and contaminants. A major benefit of resistive-touch technology is its low cost. Additionally, as only sufficient pressure is necessary for the touch to be sensed, they may be used with gloves on, or by using anything rigid as a finger substitute. Disadvantages include the need to press down, and a risk of damage by sharp objects. Resistive touchscreens also suffer from poorer contrast, due to having additional reflections (i.e. glare) from the layers of material placed over the screen.3DS family, and the Wii U GamePad.
Surface acoustic wave (SAW) technology uses ultrasonic waves that pass over the touchscreen panel. When the panel is touched, a portion of the wave is absorbed. The change in ultrasonic waves is processed by the controller to determine the position of the touch event. Surface acoustic wave touchscreen panels can be damaged by outside elements. Contaminants on the surface can also interfere with the functionality of the touchscreen.
The Casio TC500 Capacitive touch sensor watch from 1983, with angled light exposing the touch sensor pads and traces etched onto the top watch glass surface.
A capacitive touchscreen panel consists of an insulator, such as glass, coated with a transparent conductor, such as indium tin oxide (ITO).electrostatic field, measurable as a change in capacitance. Different technologies may be used to determine the location of the touch. The location is then sent to the controller for processing. Touchscreens that use silver instead of ITO exist, as ITO causes several environmental problems due to the use of indium.complementary metal–oxide–semiconductor (CMOS) application-specific integrated circuit (ASIC) chip, which in turn usually sends the signals to a CMOS digital signal processor (DSP) for processing.
Unlike a resistive touchscreen, some capacitive touchscreens cannot be used to detect a finger through electrically insulating material, such as gloves. This disadvantage especially affects usability in consumer electronics, such as touch tablet PCs and capacitive smartphones in cold weather when people may be wearing gloves. It can be overcome with a special capacitive stylus, or a special-application glove with an embroidered patch of conductive thread allowing electrical contact with the user"s fingertip.
A low-quality switching-mode power supply unit with an accordingly unstable, noisy voltage may temporarily interfere with the precision, accuracy and sensitivity of capacitive touch screens.
Some capacitive display manufacturers continue to develop thinner and more accurate touchscreens. Those for mobile devices are now being produced with "in-cell" technology, such as in Samsung"s Super AMOLED screens, that eliminates a layer by building the capacitors inside the display itself. This type of touchscreen reduces the visible distance between the user"s finger and what the user is touching on the screen, reducing the thickness and weight of the display, which is desirable in smartphones.
In this basic technology, only one side of the insulator is coated with a conductive layer. A small voltage is applied to the layer, resulting in a uniform electrostatic field. When a conductor, such as a human finger, touches the uncoated surface, a capacitor is dynamically formed. The sensor"s controller can determine the location of the touch indirectly from the change in the capacitance as measured from the four corners of the panel. As it has no moving parts, it is moderately durable but has limited resolution, is prone to false signals from parasitic capacitive coupling, and needs calibration during manufacture. It is therefore most often used in simple applications such as industrial controls and kiosks.
This diagram shows how eight inputs to a lattice touchscreen or keypad creates 28 unique intersections, as opposed to 16 intersections created using a standard x/y multiplexed touchscreen .
Projected capacitive touch (PCT; also PCAP) technology is a variant of capacitive touch technology but where sensitivity to touch, accuracy, resolution and speed of touch have been greatly improved by the use of a simple form of
Some modern PCT touch screens are composed of thousands of discrete keys,etching a single conductive layer to form a grid pattern of electrodes, by etching two separate, perpendicular layers of conductive material with parallel lines or tracks to form a grid, or by forming an x/y grid of fine, insulation coated wires in a single layer . The number of fingers that can be detected simultaneously is determined by the number of cross-over points (x * y) . However, the number of cross-over points can be almost doubled by using a diagonal lattice layout, where, instead of x elements only ever crossing y elements, each conductive element crosses every other element .
In some designs, voltage applied to this grid creates a uniform electrostatic field, which can be measured. When a conductive object, such as a finger, comes into contact with a PCT panel, it distorts the local electrostatic field at that point. This is measurable as a change in capacitance. If a finger bridges the gap between two of the "tracks", the charge field is further interrupted and detected by the controller. The capacitance can be changed and measured at every individual point on the grid. This system is able to accurately track touches.
Unlike traditional capacitive touch technology, it is possible for a PCT system to sense a passive stylus or gloved finger. However, moisture on the surface of the panel, high humidity, or collected dust can interfere with performance.
These environmental factors, however, are not a problem with "fine wire" based touchscreens due to the fact that wire based touchscreens have a much lower "parasitic" capacitance, and there is greater distance between neighbouring conductors.
This is a common PCT approach, which makes use of the fact that most conductive objects are able to hold a charge if they are very close together. In mutual capacitive sensors, a capacitor is inherently formed by the row trace and column trace at each intersection of the grid. A 16×14 array, for example, would have 224 independent capacitors. A voltage is applied to the rows or columns. Bringing a finger or conductive stylus close to the surface of the sensor changes the local electrostatic field, which in turn reduces the mutual capacitance. The capacitance change at every individual point on the grid can be measured to accurately determine the touch location by measuring the voltage in the other axis. Mutual capacitance allows multi-touch operation where multiple fingers, palms or styli can be accurately tracked at the same time.
Self-capacitive touch screen layers are used on mobile phones such as the Sony Xperia Sola,Samsung Galaxy S4, Galaxy Note 3, Galaxy S5, and Galaxy Alpha.
Self capacitance is far more sensitive than mutual capacitance and is mainly used for single touch, simple gesturing and proximity sensing where the finger does not even have to touch the glass surface.
Capacitive touchscreens do not necessarily need to be operated by a finger, but until recently the special styli required could be quite expensive to purchase. The cost of this technology has fallen greatly in recent years and capacitive styli are now widely available for a nominal charge, and often given away free with mobile accessories. These consist of an electrically conductive shaft with a soft conductive rubber tip, thereby resistively connecting the fingers to the tip of the stylus.
Infrared sensors mounted around the display watch for a user"s touchscreen input on this PLATO V terminal in 1981. The monochromatic plasma display"s characteristic orange glow is illustrated.
An infrared touchscreen uses an array of X-Y infrared LED and photodetector pairs around the edges of the screen to detect a disruption in the pattern of LED beams. These LED beams cross each other in vertical and horizontal patterns. This helps the sensors pick up the exact location of the touch. A major benefit of such a system is that it can detect essentially any opaque object including a finger, gloved finger, stylus or pen. It is generally used in outdoor applications and POS systems that cannot rely on a conductor (such as a bare finger) to activate the touchscreen. Unlike capacitive touchscreens, infrared touchscreens do not require any patterning on the glass which increases durability and optical clarity of the overall system. Infrared touchscreens are sensitive to dirt and dust that can interfere with the infrared beams, and suffer from parallax in curved surfaces and accidental press when the user hovers a finger over the screen while searching for the item to be selected.
A translucent acrylic sheet is used as a rear-projection screen to display information. The edges of the acrylic sheet are illuminated by infrared LEDs, and infrared cameras are focused on the back of the sheet. Objects placed on the sheet are detectable by the cameras. When the sheet is touched by the user, frustrated total internal reflection results in leakage of infrared light which peaks at the points of maximum pressure, indicating the user"s touch location. Microsoft"s PixelSense tablets use this technology.
Optical touchscreens are a relatively modern development in touchscreen technology, in which two or more image sensors (such as CMOS sensors) are placed around the edges (mostly the corners) of the screen. Infrared backlights are placed in the sensor"s field of view on the opposite side of the screen. A touch blocks some lights from the sensors, and the location and size of the touching object can be calculated (see visual hull). This technology is growing in popularity due to its scalability, versatility, and affordability for larger touchscreens.
Introduced in 2002 by 3M, this system detects a touch by using sensors to measure the piezoelectricity in the glass. Complex algorithms interpret this information and provide the actual location of the touch.
The key to this technology is that a touch at any one position on the surface generates a sound wave in the substrate which then produces a unique combined signal as measured by three or more tiny transducers attached to the edges of the touchscreen. The digitized signal is compared to a list corresponding to every position on the surface, determining the touch location. A moving touch is tracked by rapid repetition of this process. Extraneous and ambient sounds are ignored since they do not match any stored sound profile. The technology differs from other sound-based technologies by using a simple look-up method rather than expensive signal-processing hardware. As with the dispersive signal technology system, a motionless finger cannot be detected after the initial touch. However, for the same reason, the touch recognition is not disrupted by any resting objects. The technology was created by SoundTouch Ltd in the early 2000s, as described by the patent family EP1852772, and introduced to the market by Tyco International"s Elo division in 2006 as Acoustic Pulse Recognition.
There are several principal ways to build a touchscreen. The key goals are to recognize one or more fingers touching a display, to interpret the command that this represents, and to communicate the command to the appropriate application.
Dispersive-signal technology measures the piezoelectric effect—the voltage generated when mechanical force is applied to a material—that occurs chemically when a strengthened glass substrate is touched.
There are two infrared-based approaches. In one, an array of sensors detects a finger touching or almost touching the display, thereby interrupting infrared light beams projected over the screen. In the other, bottom-mounted infrared cameras record heat from screen touches.
The development of multi-touch screens facilitated the tracking of more than one finger on the screen; thus, operations that require more than one finger are possible. These devices also allow multiple users to interact with the touchscreen simultaneously.
With the growing use of touchscreens, the cost of touchscreen technology is routinely absorbed into the products that incorporate it and is nearly eliminated. Touchscreen technology has demonstrated reliability and is found in airplanes, automobiles, gaming consoles, machine control systems, appliances, and handheld display devices including cellphones; the touchscreen market for mobile devices was projected to produce US$5 billion by 2009.
The ability to accurately point on the screen itself is also advancing with the emerging graphics tablet-screen hybrids. Polyvinylidene fluoride (PVDF) plays a major role in this innovation due its high piezoelectric properties, which allow the tablet to sense pressure, making such things as digital painting behave more like paper and pencil.
TapSense, announced in October 2011, allows touchscreens to distinguish what part of the hand was used for input, such as the fingertip, knuckle and fingernail. This could be used in a variety of ways, for example, to copy and paste, to capitalize letters, to activate different drawing modes, etc.
For touchscreens to be effective input devices, users must be able to accurately select targets and avoid accidental selection of adjacent targets. The design of touchscreen interfaces should reflect technical capabilities of the system, ergonomics, cognitive psychology and human physiology.
Guidelines for touchscreen designs were first developed in the 2000s, based on early research and actual use of older systems, typically using infrared grids—which were highly dependent on the size of the user"s fingers. These guidelines are less relevant for the bulk of modern touch devices which use capacitive or resistive touch technology.
From the mid-2000s, makers of operating systems for smartphones have promulgated standards, but these vary between manufacturers, and allow for significant variation in size based on technology changes, so are unsuitable from a human factors perspective.
Much more important is the accuracy humans have in selecting targets with their finger or a pen stylus. The accuracy of user selection varies by position on the screen: users are most accurate at the center, less so at the left and right edges, and least accurate at the top edge and especially the bottom edge. The R95 accuracy (required radius for 95% target accuracy) varies from 7 mm (0.28 in) in the center to 12 mm (0.47 in) in the lower corners.
This user inaccuracy is a result of parallax, visual acuity and the speed of the feedback loop between the eyes and fingers. The precision of the human finger alone is much, much higher than this, so when assistive technologies are provided—such as on-screen magnifiers—users can move their finger (once in contact with the screen) with precision as small as 0.1 mm (0.004 in).
Users of handheld and portable touchscreen devices hold them in a variety of ways, and routinely change their method of holding and selection to suit the position and type of input. There are four basic types of handheld interaction:
Touchscreens are often used with haptic response systems. A common example of this technology is the vibratory feedback provided when a button on the touchscreen is tapped. Haptics are used to improve the user"s experience with touchscreens by providing simulated tactile feedback, and can be designed to react immediately, partly countering on-screen response latency. Research from the University of Glasgow (Brewster, Chohan, and Brown, 2007; and more recently Hogan) demonstrates that touchscreen users reduce input errors (by 20%), increase input speed (by 20%), and lower their cognitive load (by 40%) when touchscreens are combined with haptics or tactile feedback. On top of this, a study conducted in 2013 by Boston College explored the effects that touchscreens haptic stimulation had on triggering psychological ownership of a product. Their research concluded that a touchscreens ability to incorporate high amounts of haptic involvement resulted in customers feeling more endowment to the products they were designing or buying. The study also reported that consumers using a touchscreen were willing to accept a higher price point for the items they were purchasing.
Unsupported touchscreens are still fairly common in applications such as ATMs and data kiosks, but are not an issue as the typical user only engages for brief and widely spaced periods.
Touchscreens can suffer from the problem of fingerprints on the display. This can be mitigated by the use of materials with optical coatings designed to reduce the visible effects of fingerprint oils. Most modern smartphones have oleophobic coatings, which lessen the amount of oil residue. Another option is to install a matte-finish anti-glare screen protector, which creates a slightly roughened surface that does not easily retain smudges.
Touchscreens do not work most of the time when the user wears gloves. The thickness of the glove and the material they are made of play a significant role on that and the ability of a touchscreen to pick up a touch.
Walker, Geoff (August 2012). "A review of technologies for sensing contact location on the surface of a display: Review of touch technologies". Journal of the Society for Information Display. 20 (8): 413–440. doi:10.1002/jsid.100. S2CID 40545665.
"The first capacitative touch screens at CERN". CERN Courrier. 31 March 2010. Archived from the original on 4 September 2010. Retrieved 2010-05-25. Cite journal requires |journal= (help)
Johnson, E.A. (1965). "Touch Display - A novel input/output device for computers". Electronics Letters. 1 (8): 219–220. Bibcode:1965ElL.....1..219J. doi:10.1049/el:19650200.
Stumpe, Bent; Sutton, Christine (1 June 2010). "CERN touch screen". Symmetry Magazine. A joint Fermilab/SLAC publication. Archived from the original on 2016-11-16. Retrieved 16 November 2016.
Technology Trends: 2nd Quarter 1986 Archived 2016-10-15 at the Wayback Machine, Japanese Semiconductor Industry Service - Volume II: Technology & Government
Biferno, M. A., Stanley, D. L. (1983). The Touch-Sensitive Control/Display Unit: A Promising Computer Interface. Technical Paper 831532, Aerospace Congress & Exposition, Long Beach, CA: Society of Automotive Engineers.
Potter, R.; Weldon, L.; Shneiderman, B. (1988). "Improving the accuracy of touch screens: an experimental evaluation of three strategies". Proceedings of the SIGCHI conference on Human factors in computing systems - CHI "88. Proc. of the Conference on Human Factors in Computing Systems, CHI "88. Washington, DC. pp. 27–32. doi:10.1145/57167.57171. ISBN 0201142376. Archived from the original on 2015-12-08.
Sears, Andrew; Plaisant, Catherine; Shneiderman, Ben (June 1990). "A new era for high-precision touchscreens". In Hartson, R.; Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex (1992). ISBN 978-0-89391-751-7. Archived from the original on October 9, 2014.
Apple touch-screen patent war comes to the UK (2011). Event occurs at 1:24 min in video. Archived from the original on 8 December 2015. Retrieved 3 December 2015.
Hong, Chan-Hwa; Shin, Jae-Heon; Ju, Byeong-Kwon; Kim, Kyung-Hyun; Park, Nae-Man; Kim, Bo-Sul; Cheong, Woo-Seok (1 November 2013). "Index-Matched Indium Tin Oxide Electrodes for Capacitive Touch Screen Panel Applications". Journal of Nanoscience and Nanotechnology. 13 (11): 7756–7759. doi:10.1166/jnn.2013.7814. PMID 24245328. S2CID 24281861.
Kent, Joel (May 2010). "Touchscreen technology basics & a new development". CMOS Emerging Technologies Conference. CMOS Emerging Technologies Research. 6: 1–13. ISBN 9781927500057.
Ganapati, Priya (5 March 2010). "Finger Fail: Why Most Touchscreens Miss the Point". Archived from the original on 2014-05-11. Retrieved 9 November 2019.
Beyers, Tim (2008-02-13). "Innovation Series: Touchscreen Technology". The Motley Fool. Archived from the original on 2009-03-24. Retrieved 2009-03-16.
"Acoustic Pulse Recognition Touchscreens" (PDF). Elo Touch Systems. 2006: 3. Archived (PDF) from the original on 2011-09-05. Retrieved 2011-09-27. Cite journal requires |journal= (help)
Hoober, Steven (2013-11-11). "Design for Fingers and Thumbs Instead of Touch". UXmatters. Archived from the original on 2014-08-26. Retrieved 2014-08-24.
Henze, Niels; Rukzio, Enrico; Boll, Susanne (2011). "100,000,000 Taps: Analysis and Improvement of Touch Performance in the Large". Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services. New York.
Lee, Seungyons; Zhai, Shumin (2009). "The Performance of Touch Screen Soft Buttons". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: 309. doi:10.1145/1518701.1518750. ISBN 9781605582467. S2CID 2468830.
Bérard, François (2012). "Measuring the Linear and Rotational User Precision in Touch Pointing". Proceedings of the 2012 ACM International Conference on Interactive Tabletops and Surfaces. New York: 183. doi:10.1145/2396636.2396664. ISBN 9781450312097. S2CID 15765730.
Hoober, Steven (2014-09-02). "Insights on Switching, Centering, and Gestures for Touchscreens". UXmatters. Archived from the original on 2014-09-06. Retrieved 2014-08-24.
Brasel, S. Adam; Gips, James (2014). "Tablets, touchscreens, and touchpads: How varying touch interfaces trigger psychological ownership and endowment". Journal of Consumer Psychology. 24 (2): 226–233. doi:10.1016/j.jcps.2013.10.003. S2CID 145501566.
Zhu, Ying; Meyer, Jeffrey (September 2017). "Getting in touch with your thinking style: How touchscreens influence purchase". Journal of Retailing and Consumer Services. 38: 51–58. doi:10.1016/j.jretconser.2017.05.006.
"A RESTAURANT THAT LETS GUESTS PLACE ORDERS VIA A TOUCHSCREEN TABLE (Touche is said to be the first touchscreen restaurant in India and fifth in the world)". India Business Insight. 31 August 2011. Gale A269135159.
Sears, A.; Plaisant, C. & Shneiderman, B. (1992). "A new era for high precision touchscreens". In Hartson, R. & Hix, D. (eds.). Advances in Human-Computer Interaction. Vol. 3. Ablex, NJ. pp. 1–33.
Sears, Andrew; Shneiderman, Ben (April 1991). "High precision touchscreens: design strategies and comparisons with a mouse". International Journal of Man-Machine Studies. 34 (4): 593–613. doi:10.1016/0020-7373(91)90037-8. hdl:
The requirements for this customer were for rugged fully sealed touch screen monitors used in a chemical mixing and weighing station in a well known hair care products factory. Sealing was important as there was a possibility of some chemical splashing or spillage in the location of the display.
One of our standard Poseidon 15” sealed touch screen monitors was perfect for this application and the cables for VGA signal , touch screen control and DC power to the monitor were supplied at the rear of the monitor to give reliable and cost effective sealing.
As a final touch we engraved the customers name onto the displays which “ brands” them as the customers, but also adds a certain security value as they are less attractive to theft due to their logo engraving which cannot be removed.
From jam-proof resistive technology to bezel-free, seamless, completely integrated projected capacitive touchscreens incorporated into the scratch and fingerprint-resistant decorative cover lenses with graphics, Eagle Touch is a top touch screen supplier with quick and effective solutions for any of your touchscreen problems.
As the most reliable touch screen manufacturer, Eagle Touch focuses on project and case personalization. We offer flexibility and full service to help our customers with their projects from concept to completion.
Cooperation requires a high level of dedication. That is why; Eagle Touch consistently focuses on the customer’s needs and offers prompt and effective solutions to issues and recommendations.
From jam-proof resistive technology to bezel-free, seamless, completely integrated projected capacitive touchscreens incorporated into the scratch and fingerprint-resistant decorative cover lenses with graphics, Eagle Touch is a top touch screen supplier with quick and effective solutions for any of your touchscreen problems.
As the most reliable touch screen manufacturer, Eagle Touch focuses on project and case personalization. We offer flexibility and full service to help our customers with their projects from concept to completion.
Cooperation requires a high level of dedication. That is why; Eagle Touch consistently focuses on the customer’s needs and offers prompt and effective solutions to issues and recommendations.
Eagle Touch has been designing, manufacturing, and supplying state-of-art touch screen sensor technology for 15 years. We are the leading touch screen supplier to OEMs and systems integrators, and our solutions are used in various sectors and applications. Millions of people every day all over the world interact with Eagle Touch solutions.
Eagle Touch has been designing, manufacturing, and supplying state-of-art touch screen sensor technology for 15 years. We are the leading touch screen supplier to OEMs and systems integrators, and our solutions are used in various sectors and applications. Millions of people every day all over the world interact with Eagle Touch solutions.
Eagle Touch, the all-in-one touch screen solution provider, Specially designed for your applications interactive displays have become more dependable, inexpensive, and usable outdoors and in damp environments. Touch displays are used more often in industrial, offices, and public areas as a by-product.
LCD monitors have become an essential tool for monitoring and controlling critical operations in modern industrial processes. Unlike traditional CRT (Cathode Ray Tube) monitors, LCD
Here are the top 20 most common questions and their answers about touchscreens: A touchscreen is an input device that allows users to control electronic
Touchscreen monitors are increasingly popular in industrial settings due to their ease of use and ability to improve productivity. However, selecting the right touchscreen monitor
An increasing number of companies are investigating how touchscreen tablets, monitors, and whatnot may increase their productivity, customer satisfaction, and income. In most instances, the
INTRODUCTION An LCD is a display type that produces pictures using liquid crystals. A wide range of gadgets, including televisions, PCs, and portable media players,
Meta Description A touchscreen monitor plays a vital role in addressing modern-day user requirements. Therefore, the guide illustrates all essentials for picking the right one.
Elo is a global leader in touchscreen solutions, including modern point-of-sale systems and interactive digital signage, ranging in size from 7’’ to 65’’. Elo now has more than 200,000 retail and hotel facilities in more than 80 regions/countries. Its products are designed in California and come with a three-year standard warranty. The Elo touchscreen experience always stands for reliability, innovation, and quality. Elo’s product portfolio includes various interactive touch screen monitors, OEM touch screens, touch screen computers, touch screen monitors, and touch screen controllers. You may have interacted with Elo touch screens in interactive kiosks, game consoles, hotel systems, Wayfinder displays, point-of-sale terminals, transportation applications, and interactive retail displays.
3M Touch Systems, Inc. manufactures and supplies pen-sensitive and touch-input systems. The company’s products include electronic whiteboards, touch screens, self-service kiosks, point-of-sale devices, information point displays, and entertainment and gaming systems. 3M Touch Systems provides services to customers worldwide. It was established in 1983 and is in St. Pual, USA.
DMC Co. Ltd. is a touch screen manufacturer with more than 20 years of experience, providing a series of touch screens from 3.8 inches to 46 inches diagonal for display panels.
· Available touch screen technology: resistive touch technology with multi-touch and single-touch functions, and the newer capacitive touch technology, which has a lighter operating pressure.
Through unique technology development methods, they successfully realized the mass production of glass resistive touch panel type, bringing the latest electronic components to advanced industries. They have made quite a lot of achievements in the automotive touch panels produced for the automotive industry; They have received overwhelming support in the areas of quality and service.
AMT focuses on providing high-quality touch technology for industrial, mission-critical, and medical applications. AMT was established in Taiwan in 1998. AMT has extensive experience in the development, design, and production of total touch solutions, and can provide one-stop production of PCAP and resistive controllers, touch panels, and device drivers.
Eagle Touch is a high-tech enterprise specializing in the design, manufacturing, research, development, and sales of touchscreen displays and touch screens, providing complete touch solutions and high-quality touchscreen products for the global touch market. As a Chinese touchscreen manufacturer, Eagle Touch always uses the latest technology to update the production line. Their current product line includes the resistive touch screen 4/5 line (PCAP) projected capacitive touch screen. (EETi and Ilitek solutions). Eagle Touch established a touch display production line in 2010, and its main products include open displays, touch screen displays, custom displays, and all-in-ones.
Zytronic has more than 2 years of experience in the field of digital display manufacturing company based in Newcastle and has now developed a global influence with the help of Zytronic Japan and Zytronic Inc. Committed to the future of touch interaction for self-service and public use, today’s multinational manufacturers continue to develop cutting-edge technologies, making them one of the fiercest competitors in the market.
Projected capacitive technology (PCT) experts make touch screens that are durable and of high quality-making, these screens are an ideal solution for all demanding work environments.
HIGGSTEC Inc is a Taiwanese company engaged in the research and development of touch technology. The company’s products include customized 5-wire resistive touch solutions, standard 5-wire resistive touch solutions, and projected capacitive touch solutions and controllers. Its products are used in the automotive, military, medical, gaming, and marine industries.
In addition to having a wide range of product applications and multi-faceted solutions, TPK is also equipped with industry-leading touch panel technology. Its products include various types of structures glass-film-film (GFF), such as glass-glass (GG), and single glass solution (SGS), including Touch-on-Lens (TOL)), single glass solution (OGS)), Glass-Film (G1F), etc. TPK goal is to improve the performance of TP products while making them lighter and thinner.
In addition, as an industry leader, through continuous research innovation, and development, TPK provides better multi-touch and large-size touch solutions and has obtained SITO structure (single indium tin oxide structure) and hundreds of other TP patents.
AD Metro is a leading supplier of touchscreen solutions for original equipment manufacturers (OEM), system integrators, and value-added resellers. Our touchscreen solutions are designed to meet the requirements of industrial, commercial, and military applications. AD Metro products are embedded in control panels, displays, kiosks, all-in-one PCs, and mobile computing devices. They are widely deployed in a wide range of applications in gaming, healthcare, aerospace, industrial, medical, marine, retail, transportation, and military fields. Millions of people around the world are exposed to the A D Metro solution every day.
A D Metro’s patented ULTRA armored glass touch screen is the industry’s most durable resistive touch screen sensor and a fully proven solution that is ideal for harsh operating environments.
Touch screen technology is the direct manipulation type of gesture-based technology. Direct manipulation is the ability to manipulate the digital world inside a screen. A Touch screen is an electronic visual display capable of detecting and locating a touch over its display area. This is generally referred to as touching the display of the device with a finger or hand. This technology most widely used in computers, user interactive machines, smartphones, tablets, etc to replace most functions of the mouse and keyboard.
Touch screen technology has been around for a number of years but advanced touch screen technology has come on in leaps and bounds recently. Companies are including this technology in more of their products. The three most common touch screen technologies include resistive, capacitive, and SAW (surface acoustic wave). Most low-end touch screen devices contain a standard printed circuit plug-in board and are used on SPI protocol. The system has two parts, namely; hardware and software. T