lcd panel test patterns pricelist
Have you ever properly checked the display quality of the LCD you habitually use? Very often people become aware of previously unnoticed problems in display quality when they run a check using test patterns and so on. This time we are going to talk about the basic points used to assess LCD display quality, and show you a simple way to test it.
Below is the translation from the Japanese of the ITmedia article "The difference in image quality is perfectly obvious! – Let"s check the LCD"s monitor" published April 22, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.
First of all, bear with us in the following simple test. Below is image data of a row of three squares. In the center of each square is a letter so faint as to be barely distinguishable, so there are three letters in all. Read from the left they make up a word. Can you see that hidden word?
That"s right. The answer is "LCD" (it is displayed if you drag the space between the brackets). We assume that probably many users could read the letters concealed in the squares.
So, the next test is much more difficult. A word is concealed in the four squares below, just as in the image above. The letters are written in colors that are very similar to those of the boxes and we expect that, in many cases, it is hard to distinguish them in your browser. We would like you to download the image and check it closely in photo retouching software or a viewer that is capable of accurate color reproduction.
This time the answer is "EIZO" (it is displayed if you drag the space between the brackets). Depending on the lighting or the user"s environment it may be hard to make out but, if you can read these four letters, the display quality, or more accurately the still image gradation expression, of your LCD is extremely high.
Let"s get down to details then. "Image quality" is the top priority of the LCD, of course. However, recently LCD prices are fiercely competitive and there are surprisingly few products that insist on high image quality and performance. It may be nice to be able to get hold of a wide-screen monitor with full HD (1920 × 1080 dot) resolution or higher fairly cheaply, but it cannot be denied that such LCDs tend not to place too much importance on display quality.
On the other hand, the increasing opportunities to enjoy things like HD videos and games, and high resolution digital photographs on the computer make LCD display quality even more important. As far as possible it"s best to use an LCD with excellent display quality in order to fully enjoy the charms of the visual content.
Even so, perhaps you think that there can"t really be that much wrong with the LCDs that so many people are using at the moment. Here we would like to show you a simple method to check LCD display quality. You can get a good idea of whether the basic display quality is good or bad just by looking at how some simple test images are displayed, just like in the introductory quiz. First of all, we would like you to get a sense of how important it is that "image data can be properly displayed" by checking the display of the LCD that you currently use, (that"s right, the one you are using to view this page!).
The test items use color / monochrome patterned images to check gradation expression, and simple images to check brightness / chromaticity variation. Downloads are available of several test images, such as gradation patterns. We would like you to display the downloaded test images in photo retouching software or a viewer that can reproduce color accurately. As we mentioned at the start of this article, you have to be careful as in many cases colors cannot be displayed accurately in web browsers. (Currently only a few browsers such as Safari and Firefox 3.x can handle color management).
Before starting your visual check of the display quality, please return to your LCD"s setting to default, and select Adobe RGB or sRGB as the image quality mode. If these modes are not available it is fine to set the color temperature to 6500K and gamma to 2.2. If you cannot adjust the color temperature and gamma, simply adjust the brightness and contrast so that they are easier to discern. Of course, if it"s an LCD environment that has been color calibrated it"s OK to leave it as it is.
The average LCD takes some time for the monitor to stabilize after it is switched on so, after start up, please wait at least 30 minutes or so before doing the test. (Most EIZO monitors are an exception to this as they are equipped with our proprietary dimming function and the monitor stabilizes in a short time after start up.)
The surface treatment of an LCD makes a difference to the background reflection. Glare panels impede the surface diffusion of backlight, which does make it easier to achieve high color purity, but also makes distinct reflections of the user or lighting much more likely (photo on the left).
If the lights are similarly trained on a non-glare panel they do not have much effect on the display, only appearing as a fuzzy brightness (photo on the right).
For your reference, we ran a test on an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W, for this article. The FlexScan SX series comes with a number of high image quality functions and boasts top class display quality as a general-purpose LCD intended for a computer.
When checking the display quality of an LCD it is comparatively easy to understand the gradation expression capability by a visual check. Let"s display color and monochrome gradation images and check whether the entire image is smoothly reproduced. If there is a problem with the gradation expression it produces things like blocked-up shadows in dark areas and blown-out highlights in light areas, banding (vertical or horizontal stripes) in the middle gradations, and color cast, so you should check for problems like these.
Test images of color / monochrome gradations are shown below. Each test image is prepared for three resolution levels (1280 × 800 dots / 1680 × 1050 dots / 1920 × 1200 dots). When you click on an image it is displayed in that actual resolution. We would like you to download the images in the resolution which matches that of your current LCD. Gradation expression can vary according to whether the image is viewed horizontally or vertically, so it will be more effective if you rotate these images and view them vertically as well.
A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 16 gradients as they change to white or black. This is an easy test image so we expect that it can be seen in most environments that each color bar is divided into 16 blocks.
A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 64 gradients as they change to white or black. Each color bar is divided into 64 rectangular blocks. With this many gradients we expect that many LCDs will find it hard to make distinctions in the dark areas or the areas that are close to primary colors.
A smooth gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 256 gradients as they change to white or black. At this level of difficulty you cannot distinguish between adjoining colors from a distance but, if you have an LCD with excellent gradation expression, if you look closely you should be able to see that each color is divided into thin rectangular blocks.
A gradation pattern that changes from black to white. It is divided into 5 horizontal bars: from the top, smooth, 128 gradients, 64 gradients, 32 gradients and 16 gradients. Even if all the differences can be distinguished in the 16 and 32 gradient patterns near the bottom, we expect that there will be some parts in the 64 and 128 gradient patterns where it is hard to see the boundaries between adjoining colors. With this kind of monochrome test image you should also check whether any unnecessary colors are mixed with the gray.
On an average LCD gradations of gray that are close to black tend to appear as blocked-up shadows (gradations of gray that are close to white are displayed comparatively accurately). If your LCD"s OSD menu allows you to adjust the contrast, please try gradually turning down the contrast. Turning down the contrast often makes it possible to see gradations that had been subject to blocked-up shadows or blown-out highlights.
Probably most LCDs will be able to detect some degree of banding and color cast in the middle gradations. Banding in the middle gradations is tone jump (Missing gradations) and, along with color cast, means that the RGB gamma curves are unequal. Unlike blocked-up shadows or blown-out highlights, this is an area that it is hard to improve with adjustments made by the user.
When we looked at these test images on the FlexScan SX2462W, in the smooth gradation there was blocked-up shadows right next to the black but we could distinguish differences in gradations of gray until very close to the black area. When it comes to such subtle gradation distinctions the brightness of the room and the adaptability of the eye come into play, so the range that is visible will vary according to the environment and the individual. The gradation expression was excellent, with almost no blown-out highlights in light areas, middle gradation banding or color cast.
The answer is "The far right" (it is displayed if you drag the space between the brackets). If the other grays looked correct, color may not be being correctly recognized for a variety of reasons, such as the lighting environment or the LCD settings.
The two image patterns below are easy to understand examples of optical illusions. When you look at them you should be able to understand how heavily the human eye is influenced by surrounding colors.
Now let"s assess the gradation expression with some slightly different test images. Below are color patterns with a spread of pale colors in gradations close to the dark range and the light range. They are arranged so that a distinction cannot be made between adjoining colors on an LCD with insufficient gradation expression.
We expect that you could roughly get the whole picture in the gradation patterns on the previous page, but in the patterns this time some parts that cannot be seen may have appeared in some cases. As we mentioned earlier, LCDs tend to display gradations close to black as a blocked-up shadows, and color patterns that are close to black are particularly hard to distinguish.
Since there are some parts that cannot be seen, the possibility arises subtle skin colors and tones cannot be accurately recognized when doing things like retouching photographs, though the misrecognition will vary according to the user"s eyesight. People who place importance on color reproduction should probably bear this in mind when they think about replacing their LCD or buying an extra one.
Incidentally, when we checked the FlexScan SX2462W with these tests we could distinguish everything in both the close to white and the close to black patterns. As well as no blown-out highlights or blocked-up shadows, we saw no unnatural color casts.
This shows the color patterns displayed on the FlexScan SX2462W. It was taken with a digital camera so some parts look a little patchy but they were accurately displayed when we did a visual check.
Every LCD has some degree of brightness and chromaticity variation, but there are many products where the variations become more obvious when the brightness is lowered. A comparison of the brightness and chromaticity variation of a number of LCDs reveals that there is a fairly large difference between products, so this is a point to bear in mind.
If you actually try this test you may be surprised to find more variation than you expected when gray or a near-white pale color is displayed. Generally speaking, the center of an LCD screen is the brightest and it gradually gets darker towards the edges. This is no problem if there is not a big difference in brightness between the central and peripheral areas, but there are some products where this difference is very striking.
Incidentally, this test is also an effective way to test the LCD for dot defects (normal lighting / unlit room). We would like you to check the black display in a darkened environment, for example by switching off all the room lights at night. Although you probably saw the whole screen as uniformly black in a light environment, very often in a dark environment you can find variations in some parts due to light leaks.
The FlexScan SX2462W got good results again when we tried it with the brightness and chromaticity variation tests. The brightness decreased slightly at the edges of the screen, particularly the lower edge, but overall the display was even and pleasing. It is installed with a "digital uniformity equalizer" that measures brightness and chromaticity throughout the screen and makes corrections so that the entire screen is uniform.
Monochrome full-screen displays on a FlexScan SX2462W. Only the screen display is shown. The bottom right is a near-white pale orange. There are not many LCDs that can display this kind of pale color as uniformly as this
However, the pitfall here is that it simply means that "the screen is visible". The thing is that the viewing angle specifications are permitted to use the term "visible" until the display contrast ratio drops to an extremely low 10:1 or 5:1 when the screen is viewed from an angle (the steeper the angle from which the LCD screen is viewed, the more the contrast generally declines). In other words, they do not take into account the display uniformity of the central and peripheral areas of the screen, or the level of chromatic change, when the screen is viewed from an angle.
The ideal viewing angles is that the brightness and chromaticity is very uniform and there is not much chromatic change, even when the screen is viewed from a slight angle. The viewing angles given in the specifications are not really very helpful, but you can judge the standard of the panel type that the LCD (liquid crystal panel) adopts. IPS liquid crystal panels have the least change in brightness or chromaticity when the screen is viewed from an angle, and they are followed by VA panels. An IPS or VA liquid crystal panel can be said to indicate the superior nature of the product itself, so this is often included in the catalog or specifications. It is probably a good idea to look through the catalogs of various products.
On the other hand, monitors installed with cost-effective TN liquid crystal panels are in fact the most numerous. However, the TN type lags far behind the IPS and VA types in terms of characteristic viewing angle changes in brightness and chromaticity. Simply viewing the screen from a slightly different angle makes the coloration change dramatically, and the screen looks completely different according to whether it is viewed vertically or horizontally. If the vertical and horizontal viewing angles in the specifications are different then it is a TN type. There are quite a few products with a 20-inch wide screen or larger where colors look different in the central and peripheral areas even when the screen is viewed straight on.
The display on an IPS panel. Even when viewed from this angle, the displayed content can of course be distinguished completely and the colors also show up really well
The display on a VA panel. Compared with the IPS panel the screen is a little whitish and the chromaticity has slipped, but it is a satisfactory viewing angle for actual use
The display on a TN panel. There is a very clear difference from the IPS and VA panels. The display throughout the entire screen lacks uniformity and there is a yellow cast
The gradation images and monochrome images from earlier in this article can be used as they are to check the viewing angles. Display an image on the whole screen, look at it straight on and check whether the brightness and colors are uniform at the top and bottom of the screen, and in the center and at both sides. Then gradually shift the angle from which you view the screen and check how the brightness and coloration change. If you do this with photographic data as well as the test images, you should be able to get a better sense of the difference in the display.
When we checked the viewing angles of the FlexScan SX2462W there was absolutely nothing to criticize since, in addition to the use of an IPS panel, it is equipped with many high image quality functions, including the afore-mentioned digital uniformity correction circuit. The brightness and chromaticity throughout the whole screen is very uniform, and the coloration hardly changed at all when the viewing angle was changed.
We explained here about easy ways to check LCD monitor quality. How were the results for your current LCD? We think that many people were probably very bothered by the blocked-up shadows and blown-out highlights when the test images to check gradation were displayed, by the middle gradation banding, and by the variations in brightness and chromaticity when the monochrome images were displayed.
As we mentioned at the beginning, recently the number of LCDs with excellent display quality is on the decline. Although we would not go so far as to say that the display quality of inexpensive products is poor. Of course a high quality LCD is indispensable if you want to enjoy using your computer, properly handle the needs of applications that require color reproducibility, and to fully enjoy all the benefits of rich content.
The EIZO FlexScan LCD series has excellent display quality in those regards, and we have no qualms about recommending them to everyone. The product line-up is diverse but each model is clearly ranked according to the purpose to which it is suited and its screen size, and they all guarantee above-standard display quality. They may cost a little more than you had budgeted for but the clear value they offer exceeds their price.
If, after trying these tests, you have doubts about the display quality of the LCD that you usually use, we would certainly urge you to consider an EIZO LCD. We would also recommend that you construct a multi-display environment by making the new LCD your main monitor and the one that you have been using your sub monitor.
Prices for all TV panel sizes fluctuated and are forecast to fluctuate between 2020 and 2022. The period from March 2020 to July 2021 saw the biggest price increases, when a 65" UHD panel cost between 171 and 288 U.S. dollars. In the fourth quarter of 2021, such prices fell and are expected to drop to an even lower amount by March 2022.Read moreLCD TV panel prices worldwide from January 2020 to March 2022, by size(in U.S. dollars)Characteristic32" HD43" FHD49"/50" UHD55" UHD65" UHD------
DSCC. (January 10, 2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph]. In Statista. Retrieved February 28, 2023, from https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars)." Chart. January 10, 2022. Statista. Accessed February 28, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. (2022). LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars). Statista. Statista Inc.. Accessed: February 28, 2023. https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC. "Lcd Tv Panel Prices Worldwide from January 2020 to March 2022, by Size (in U.S. Dollars)." Statista, Statista Inc., 10 Jan 2022, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
DSCC, LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) Statista, https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/ (last visited February 28, 2023)
LCD TV panel prices worldwide from January 2020 to March 2022, by size (in U.S. dollars) [Graph], DSCC, January 10, 2022. [Online]. Available: https://www.statista.com/statistics/1288400/lcd-tv-panel-price-by-size/
LCDs don’t emit light on their own and must instead have a backlight that shines through the LCD material to display an image. Today’s LCD-based displays use a number of LEDs for the backlighting. To achieve a greater contrast ratio than a standard dynamic range display, the LEDs in the backlight change their brightness level, allowing the display to dim the backlight for darker blacks and brighten it for brighter whites, which creates a wider contrast ratio. There are several different dimming designs that can be used in the backlight to accomplish this.
Global Dimming: The backlight, which consists of a string of LEDs on one edge of the LCD panel, is treated as a single “zone” and is dimmed for dark scenes and brightened for bright scenes. This is the least expensive type of dimming and can be accomplished with a standard LCD panel. This approach works well for scenes with a limited dynamic range. This type of dimming is typically found on notebooks as it has the lowest power consumption of any dimming technique and generates the least amount of heat. The disadvantage of this design is that the simultaneous contrast ratio is never greater than the contrast ratio of the LCD panel, usually around 1000:1.
1D Local Dimming: This design also uses an “edge-lit” string of LEDs, but in this case groups of LEDs on the string can be independently controlled. For most displays, the string of LEDs is located at the bottom of the panel, resulting in a number of vertical zones, equally spaced across the horizontal edge of the display. An edge-lit LED string typically contains between eight and sixteen LED groups, resulting in eight to sixteen dimming zones. This design allows for simultaneous contrast ratios of 6,000:1 to 100,000:1. 1D local dimming is currently the most common design found in HDR televisions and displays.
1.5D Local Dimming: Similar to the 1D local dimming, using edge lighting. However in this design an LED lighting string exists on two sides of the panel, typically top and bottom although left and right designs also exists. The advantage of this design is that it typically has 2×16 zones, so twice as many zones as 1D, but more importantly the top and the bottom of the screen are independently controlled, versus the 1D design where each zone is typically the full vertical height of the screen.
2D or Full array local dimming (FALD): In this design the backlight LEDs are moved from the edge of the panel to the rear of the panel and are arranged in a two-dimensional matrix of LEDs. Each LED is independently controlled and adjusts the brightness of just one “square of a checkerboard” on the display, although typically they are rectangles rather than perfect squares. Today’s HDR displays and televisions typically have between 384 and 1152 zones. These designs are the most expensive, due to the complexity of the circuitry and the processing demands required. The design can also generate a large amount of heat, and often requires cooling fans and/or heat sinks to be placed behind the LCD panel to draw heat away from the display electronics. Full array local dimming produces the best image quality of all of these designs and can achieve simultaneous contrast ratios of 20,000:1 to 500,000:1. Due to the high cost of this design, these displays command the highest prices and typically cost thousands of dollars.
Active-dimming: is the term VESA adopted for one of the new tests in our Certification Test Spec v1.1 (CTS v1.1) where we added a new kind of validation procedure to ensure that displays were actually dimming the backlight based on real-time analysis of the video content, rather than merely only dimming when metadata changes occurred in the video stream. It would be typical that during a movie or game that the metadata for HDR10 would not change, however each frame may have a different peak luminance than the prior frame, and thus could adjust the backlight accordingly. This yields better power saving, and better HDR blacks. The new tests in CTS v1.1 ensure that we test, without changing the metadata of the signal, a dramatic reduction in peak luminance from a full-white checkerboard, to a checkerboard where the white boxes are only 5 cd/m2, this provides ample opportunity for the dimming algorithm to reduce the backlight power. When reducing the backlight power the black level of the black segments of the checkerboard will also reduce, and this is what is measured and used in our calculation of active-dimming stops, (for the more technical, “stops” originally used in photography are a power-of-2 logarithmic function).
The test pattern consists of two arrays of individual patches 4.7mm wide by 4.0mm high. The total image area consists of 291 patches in a grid layout measuring approximately 71mm wide by 83mm high. Screen dot patterns use round dots having a pitch of 169.3 microns (150.03 LPI).
55in. diagonal edge-lit LED professional LCD. 24x7 reliability. 1920x1080. 700 nits brightness. Data, video, HD-SDI inputs. RS-232, Ethernet control. Landscape and portrait. Requires at least 1.2 in. mount depth (Compatible with WMT-MXL only).
55in Transparent display, OLED panel, black, ERO bonded glass, HDMI x4, DP x1 inputs, FHD (1920x1080), landscape or portrait - inverted or tiling mounting possible, internal power, standard mount
55in Transparent display, OLED panel, black, ERO bonded glass, HDMI x4, DP x1 inputs, FHD (1920x1080), landscape or portrait - inverted or tiling mounting possible, internal power, straight mount
Clarity Matrix LX46HD: 46" 1920x1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix LX46HD with ERO: 46" 1920x1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix LX46HD: 46" 1920 x 1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Portrait Only. Special Order Item Longer Lead time applies.
Clarity Matrix LX46 3D: 46" WXGA 3D LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix LX55HD: 55" 1920x1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix LX55HD with ERO: 55" 1920x1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix LX55HD with ERO: 55" 1920x1080, 450 nit LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Portrait Only. Special Order Item Longer Lead time applies.
Clarity Matrix MX46HD: 46" 1920x1080 LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix MX55: 55" 1920x1080 LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix MX55 with ERO: 55" 1920x1080 LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Landscape Only.
Clarity Matrix MX55: 55" 1920x1080 LCD video wall system. Includes 1 LCD module, required power supply, quad controller electronics and mount. Portrait Only. Special Order Item Longer Lead time applies.
55 in. diagonal edge-lit LED professional LCD. Ultra slim, narrow bezel, low power, and lightweight. 1920x1080 resolution with 400 nits brightness . DVI, HDMI, Display Port, VGA inputs. Supports up to 10x10 Video Wall mode. IR, RS-232, and Ethernet control. Landscape and portrait.
15 inch Black HID Compliant 5-wire Resistive Touchscreen LCD, dual Serial and USB controller, VGA, external DC power supply, speakers, -3 to 25 degree tilt range, 75mm VESA compatible.
17 inch Black HID Compliant single-touch 5-wire resistive LED LCD, dual Serial and USB controller, VGA, internal power, DC power connector, speakers, -5 to 90 degree tilt range, 75 mm and 100mm VESA compatible.
17 inch Black HID Compliant 5-wire Resistive Touchscreen edge-lit LED LCD, USB controller, VGA, internal power, speakers, -5 to 90 degree tilt range, 100mm VESA compatible.
19" Black 5-Wire Resistive Touch Screen LCD with dual serial/USB Driver, Analog/DVI-D, internal power, speakers, 5 to 90 tilt - Supports MSR Kit 997-5618-00
32-inch wide black projected capacitive multi-touch FHD edge-lit LED LCD, USB controller, HDMI, DP, DVI-D and VGA inputs, Control via RS-232, internal power, speakers, 600 x 200 mm, 200 x 200 mm VESA compatible, no desk stand.
TD3200 LookThru 32 inch Transparent LCD Display Box, White, ERO(TM) Bonded Glass, HDMI Input, 1366x768 res, 29.5in x 17.5in x 15.0in (WxHxD), 200 x 200 mm VESA, External Power.
PanelTest™ performs rapid display optical measurements for cell phone, tablet, and laptop sized LCD or OLED displays. It comes standard with three optical instruments for display measurement, an LCD tester for display drive, and can be optionally configured to provide viewing angle and multi-point measurements.
PanelTest provides an entire dark room laboratory in a cabinet. PanelTest can be used on the LCD or OLED production line or in the lab with test times as little as 60 seconds per display. The PanelTest software performs Pass/Fail testing and calculates statistical process parameters, such as Cpk, while logging all test data to a database. Data can be exported to Excel reports
PanelTest™ employs three sensors, each optimized for specific measurement tasks. A high sensitivity spectrometer with a cooled back-thinned CCD provides the highest measurement accuracy throughout the color gamut for luminance, contrast and color measurements. A CCD camera provides rapid uniformity measurements. Westar’s proven
In the past, qualification and QC testing of mobile displays often involved a dark room laboratory with optical instruments mounted on home-made fixtures. Testing was labor intensive and took too long to acquire significant statistical data. This resulted in very long test times for qualification testing and limited QC verification. With its fully integrated instruments, display drive, and powerful software, PanelTest makes rapid qualification testing and QC testing possible!
A certified Westar installer will arrive at your facility to install the PanelTest Display Measurement System. After installing the system, the installer will provide up to 2 days of training on operation.
The PanelTest Display Measurement System comes with a limited 1 year warranty and 1 year of technical support. Contact Westar for extended warranty and support options.
The Samsung QN85C broke cover completely today with full specifications, features, and pricing for the USA. The series comprises four models: Samsung QN85QN85C - specifications; USD 3,800 Samsung QN75QN85C - specifications; USD 2,700 Samsung QN65QN85C - specifications; USD 2,000 Samsung QN55QN85C - specifications; USD 1,500 We suppose that the use of 4K VA panels for the 85" and 75" models and IPS panels for the 65"...
Asus ROG Strix XG27AQMR is the latest gaming monitor by the brand. It features a 27-inch Fast IPS display with a QHD resolution (2560 x 1440). The display has a native refresh rate of 300 Hz and delivers a 1 ms GTG response time. The typical brightness is 350 nits and the peak one - 600 nits, which is enough for an HDR10 and a VESA DisplayHDR 600 certification. The model covers 97% of the DCI-P3 color space. It is...
Toshiba QF5D is the latest series of QLED TVs by the brand based on Fire TV. It is identical in terms of design and hardware to the Toshiba QA5D series from 2022 but arrives with Fire TV and Alexa built-in instead of Android TV and Google Assistant. The QF5D series comprises four models: Toshiba 65QF5D53 - specifications Toshiba 55QF5D53 - specifications Toshiba 50QF5D53 - specifications Toshiba 43QF5D53...
According to the latest Omdia report on TV displays, the demand recovery for LCD TV panel orders from the top global Korean and Chinese TV producers is around the corner. This market rebounds by 19% YoY in Q2 of 2023 and is expected to reach 161.4 million units. That will increase by 8% YoY, focusing on 50-inch and larger screens. If these expectations materialize, the market will return to its peak levels in 2020...
The DP-V3010 4K Reference Display features a 16:10 aspect ratio for the display of video signal information essential to VFX creation. With a tightly packed pixel pitch of 157.5æm, the Canon DP-V3010 4K Display provides high-accuracy tonal gradations between darkest and brightest areas, with 1024 shades in each color channel. The technology enabling such performance is a new and proprietary display engine developed by Canon that helps maximize color accuracy and brightness uniformity. The actual panel employed by the DP-V3010 4K Display is an IPS (in-plane switching) LCD with full array RGB LED scanning backlight technology that delivers excellent color accuracy, and crisp video imagery without the perception of motion blurring between frames. By featuring an IPS LCD panel with polarizing and filtering film layers to prevent changes in color and contrast, the DP-V3010 4K Reference Display enables image viewing within a wide viewing angle, top to bottom and left to right.
Markers, time code display and test patterns are provided within the Canon DP-V3010 4K Reference Display. A variety of markers (aspect, safety zone, grid, and center) and test patterns (pluge, grayscale [20 percent], white, five-step, ramp, color bars, and black) are also built into the DP-V3010 Display.