tft display vs super amoled display pricelist

Thanks for the display technology development, we have a lot of display choices for our smartphones, media players, TVs, laptops, tablets, digital cameras, and other such gadgets. The most display technologies we hear are LCD, TFT, OLED, LED, QLED, QNED, MicroLED, Mini LED etc. The following, we will focus on two of the most popular display technologies in the market: TFT Displays and Super AMOLED Displays.

TFT means Thin-Film Transistor. TFT is the variant of Liquid Crystal Displays (LCDs). There are several types of TFT displays: TN (Twisted Nematic) based TFT display, IPS (In-Plane Switching) displays. As the former can’t compete with Super AMOLED in display quality, we will mainly focus on using IPS TFT displays.

OLED means Organic Light-Emitting Diode. There are also several types of OLED, PMOLED (Passive Matrix Organic Light-Emitting Diode) and AMOLED (Active Matrix Organic Light-Emitting Diode). It is the same reason that PMOLED can’t compete with IPS TFT displays. We pick the best in OLED displays: Super AMOLED to compete with the LCD best: IPS TFT Display.

If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

tft display vs super amoled display pricelist

AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.

AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.

Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.

Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..

Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.

Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.

Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.

Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.

Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.

Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.

AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.

The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.

Nauticomp Inc.provides world-class fully customizable touchscreen displays for commercial and industrial settings. With features like sunlight readability, brightness adjustability, infrared lighting, full backlighting, all-weather capabilities, etc., our displays are second to none. Contact us today to learn more.

tft display vs super amoled display pricelist

A Thin Film Transistor (TFT) FT display is a form of Liquid Crystal Display with thin film transistors for controlling the image formation. The TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen. The pixels themselves do not produce light; instead, the screen uses a backlight for illumination. Discover our TFT Products

Standing for Active Matrix Organic Light Emitting Diode, this type of display requires no backlight and can light up or turn off each of their pixels independently, meaning they offer better contrast and colour. As the name suggests they are made of organic material.

Otherwise knows as the IPS display, this superior version of the TFT provides all round viewing angles and exceptional contrast ratio, however this comes at a premium cost compared to standard TFT models. Read more here.

As with all display choice, knowing your intended audience, user requirements and environmental conditions, all form part of the initial design process, which will ultimately determine the best display at the right price for your application. Before you make your choice, why not speak with us and we will be happy to talk you through your options.

tft display vs super amoled display pricelist

When we purchase a new smartphone we go through a list of specifications that includes the processor, software, cameras, display type, battery, etc. The display of the smartphone is something which has always been a concern for people. And smartphone technology has advanced so much in the past decade that you get several display technology options to choose from.

Today, a smartphone is not just a means to send and receive calls and texts. It has become a general necessity, so choosing the right technology should be your main priority. Coming back to displays, as we said there are plenty of display types available right now.

Two of the main contenders for display technologies that are widely available are AMOLED and LCD. Here in this article, we will be comprising AMOLED vs LCD and find out which one is better for you.

Starting with the AMOLED first, it is a part of the OLED display technology but with some more advanced features. To completely know about it must understand its all three components. The first one is LED, “Light Emitting Diode”. Then we have “O” which stands for organic and makes the OLED.

It actually means that organic material is placed with two conductors in each LED, which helps to produce the light. And the “AM” in AMOLED means Active Matrix, it has the capability to increase the quality of a pixel.

The AMOLED display is similar to the OLED in various factors like high brightness and sharpness, better battery life, colour reproduction, etc. AMOLED display also has a thin film transistor, “TFT” that is attached to each LED with a capacitor.

TFT helps to operate all the pixels in an AMOLED display. This display might have a lot of positives but there are a few negatives too let’s point both of them out.

A major issue with these displays is of burning of pixels. After showing a specific image or colour for a longer period of time, the pixel can get burned. And if there is a problem with a single pixel it will affect the entire display.

Low outdoor visibility, usually the AMOLED Displays are quote not bright in direct sunlight and outdoor readability could be a problem for some devices but average screen brightness.

The LCD stands for “Liquid Crystal Display”, and this display produces colours a lot differently than AMOLED. LCD display uses a dedicated backlight for the light source rather than using individual LED components.

The LCD displays function pretty simply, a series of thin films, transparent mirrors, and some white LED lights that distributes lights across the back of the display.

As we have mentioned, an LCD display always requires a backlight and also a colour filter. The backlight must have to pass through a thin film transistor matrix and a polarizer. So, when you see it, the whole screen will be lit and only a fraction of light gets through. This is the key difference comparing AMOLED vs LCD and this is what differentiates these two display technologies.

The LCD displays are cheaper compared to the AMOLED as there is only one source of light which makes it easier to produce. Most budget smartphones also use LCD displays.

LCD displays have bright whites, the backlight emits lots of light through pixels which makes it easy to read in outdoors. It also shows the “Accurate True to Life” colours, which means it has the colours that reflect the objects of the real world more accurately than others.

LCDs also offer the best viewing angle. Although it may depend on the smartphone you have. But most high-quality LCD displays support great viewing angles without any colour distortion or colour shifting.

The LCD displays can never show the deep blacks like AMOLED. Due to the single backlight, it always has to illuminate the screen making it impossible to show the deep blacks.

The LCDs are also thicker than other displays because of the backlight as it needs more volume. So, LCD smartphones are mostly thicker than AMOLED ones.

Both of these display technologies have their own Pros and Cons. Taking them aside everything ends up with the user preferences as people might have different preferences among different colours and contrast profiles. However, a few factors might help you to decide which one fits perfectly for you.

Let’s start with the pricing. Most AMOLED display smartphones always cost more than an LCD smartphone. Although the trend is changing a bit. But still, if you want to get a good quality AMOLED display you have to go for the flagship devices.

The colors are also very sharp and vibrant with the AMOLED displays. And they look much better than any LCD display. The brightness is something where LCDs stood ahead of the AMOLED display. So using an LCD display outdoors gives much better results.

The last thing is battery consumption, and there is no one near the AMOLED displays in terms of battery. As of now, all smartphones feature a Dark Mode and most of the apps and UI are dark black with a black background. This dark UI on smartphones doesn’t require any other light, it gives the AMOLED displays a boost in battery performance.

Looking at all these factors and comparing AMOLED vs LCD displays, the AMOLED displays are certainly better than the LCDs. Also, the big display OEMs, like Samsung and LG are focusing more the OLED technologies for their future projects. So, it makes sense to look out for AMOLED displays. That being said, if we see further enhancements in the LCD technology in terms of battery efficiency and more, there is no point to cancel them at this moment.

tft display vs super amoled display pricelist

Over time, the purpose of using mobile phones or Smartphones has changed. Comparatively, it has now become a basic necessity of every individual. Smartphone has dramatically transformed the lives of individuals. It has now become a mini-computer that everyone carries in their pocket. Instead, you can have multiple things at your fingertips in a few seconds. While there are plenty of things to look for, AMOLED vs OLED is also a part of it.

Before purchasing any Smartphone, everyone goes through a list of specifications. This list includes display type, screen size, battery backup, supported operating system, total internal memory, and many others. Today, we have brought a comprehensive study of the significant display technologies available nowadays.

This article will introduce you to AMOLED vs OLED display technologies. Then, we will discuss the properties of both display technologies, followed by the difference between AMOLED vs OLED.

It stands for Natural Light-Emitting Diode, a type of LED technique that utilises LEDs wherein the light is of organic molecules that cause the LEDs to shine brighter. These organic LEDs are in use to make what are thought to be the best display panels in the world.

When you make an OLED display, you put organic films among two conductors to make them. As a result, a bright light comes out when electricity is used—a simple design with many advantages over other ways to show things.

OLEDs can be used to make emissive displays, which implies that each pixel can be controlled and emits its very own light. As a result, OLED displays have excellent picture quality. They have bright colours, fast motion, and most importantly, very high contrast. Most of all, “real” blacks are the most important.  The simple design of OLEDs also makes it easy to create flexible displays that can bend and move.

PMOLED stands for Passive Matrix Organic Light Emitting Diode. The PMOLEDs are easy to find and much cheaper than other LEDs, but they cannot work for a long duration as their lifespan is very short. Therefore, this type of display is generally for small devices up to 3 inches.

AMOLED stands for Active Matrix Organic Light Emitting Diode. This type of display is generally for large platforms. It contains TFT, which further consists of a storage capacitor. It also works on the same principle as OLED displays.

AMOLED offers no restriction on the size of the display. The power consumption of AMOLED is much less than other display technologies. The AMOLED provides incredible performance. It is thinner, lighter, and more flexible than any other display technology like LED, or LCD technology.

The AMOLED display is widely used in mobiles, laptops, and televisions as it offers excellent performance. Therefore, SAMSUNG has introduced AMOLED displays in almost every product. For example, Full HD Super AMOLED in Samsung Galaxy S4 and Samsung Galaxy Note 3, Super AMOLED in Samsung Galaxy S3, HD Super AMOLED in Samsung Galaxy Note, and HD Super AMOLED Plus in Samsung Galaxy S3. Apart from this, it is also used in AMOLED vs OLED creating the following:

So far, we have discussed OLED and AMOLED display technologies. Now, we will look at some of the differences between OLED and AMOLED display technology:

OLED comprises thin layers of the organic component, which emits light when the current passes through it. In this technology, each pixel transmits its own light. On the other side, AMOLED consists of an additional layer of thin-film transistors (TFTs). In AMOLED, the storage capacitors are used to maintain the pixel states.

While the technology is different among various manufacturers, Samsung’s edge AMOLED displays use plastic substrates with poly-Si TFT technology similar to how LG uses it in their POLED technology. This technology is what makes the possibility to build curved displays using an active-matrix OLED panel.

OLED display much deeper blacks as compared to AMOLED displays. You cannot see the screen in AMOLED display under direct sunlight. The AMOLED display quality is much better than the OLEDs as it contains an additional layer of TFTs and follows backplane technologies.

These organic compounds are present between the protective layers of glass or plastic. Comparatively, AMOLED comprises an active matrix of OLED pixels along with an additional layer of TFTs. This extra layer is responsible for controlling the current flow in each pixel.

The OLED display offers a high level of control over pixels. Hence, it can be turned off completely, resulting in an excellent contrast ratio compared to the AMOLED displays and less power consumption. On the other side, AMOLED has faster refresh rates than OLEDs. Also, they offer a tremendous artificial contrast ratio as each pixel transmits light but consumes more power than OLEDs.

OLED displays are comparatively much thinner compared to LCDs. Hence, it provides more efficient and bright presentations. In addition, OLED offers support for large display sizes compared to traditional LCDs. AMOLEDs remove the limitation of display sizes. one can fit it into any display size.

Putting all the points mentioned above in view, the key difference to understand appropriately is that POLED is an OLED display with a plastic substrate. On the other hand, AMOLED is Samsung’s word for its display technology which is mainly for marketing. Therefore, most phone manufacturers having AMOLED displays mean that they are using Samsung displays. It is as simple as that. To add to that, all the curved display technology is made possible because of the usage of the plastic substrate.

So, based on the points mentioned above, the difference between OLED and AMOLED displays, you can choose any of the two display technology at your convenience. Both are good, offer excellent performance, and are customised according to your requirements.

The AMOLED display has a higher quality than OLEDs since it has an additional layer of TTs and uses backplane technologies. When compared to OLED screens, AMOLED displays are far more flexible. As a result, they are substantially more expensive than an OLED display.

Window to the digital world, the display is one of the first seen features when selecting a smartphone, so a show must be good, and an AMOLED display offers the same. Offering a great viewing experience, here are the top 3 AMOLED screen smartphones available in the market right now:

Realme 10 Pro Plus 5G features a 6.7-inch AMOLED display with 394 PPI display. It runs on MediaTek Dimensity 1080. On the rear, the Realme 10 Pro Plus 5G has a triple-camera setup with 108-megapixel primary sensor, 8-megapixel ultra-wide angle sensor, 2-megapixel sensor.

Coming to the front, it has a 16-megapixel selfie camera housed in the punch-hole display. It comes with a 5000mAh battery that supports 67W smart flash charging. The Realme 10 Pro Plus 5G is one of the best segments with a AMOLED FHD display.

The Xiaomi Redmi Note 12 Pro 5G runs on MediaTek Dimensity 1080 chipset bundled with Mali-G68 MC4 graphics processor and up to 12GB RAM. The display front comes with a 6.67-inch AMOLED display with FHD and 395 PPI.

The cameras have a triple rear camera setup with a 50-megapixel primary sensor, an 8-megapixel ultra-wide angle sensor, and a 2-megapixel macro sensor. In addition, it has a 16-megapixel selfie camera. It has a 5,000 mAh battery with 67W fast charging. The AMOLED display on the Redmi Note 12 Pro 5G is a treat for all media enthusiasts.

OPPO has recently launched the OPPO Reno8 5G with MediaTek Dimensity 1300 chipset coupled with Arm Mali-G77 MC9 GPU and up to 8GB of RAM. In addition, it comes with a 6.43-inch curved AMOLED display with support for HDR10+.

On the rear, it comes with a triple-camera setup with a 50-megapixel primary sensor, an 8MP ultra-wide angle sensor, a 2-megapixel macro camera. In addition, it has a 32-megapixel selfie camera integrated inside the punch-hole on display on the front. It comes with a 4,500mAh battery that supports 80W fast charging and can charge the phone 100 per cent in just 15 minutes. Since it comes with an Full HD+ AMOLED display on the display front, it is a treat for gamers and media consumption lovers.

Smartphone displays have advanced significantly in recent years, more so than most people realise in this technological age. Display screens are similar to windows in the mobile world, which has seen a tremendous transformation in innovative products in the last several years. People have gotten more selective when buying a phone in recent years, and although all of the functions are important, the display is always the most noticeable.

Major smartphone manufacturers attempt to provide their consumers with the most delicate devices possible that incorporate the most up-to-date technologies. In AMOLED vs OLED, AMOLED is a type of OLED and a more prominent example of both OLED and POLED, so there’s no debate about which is superior.

tft display vs super amoled display pricelist

The quality of a mobile phone"s display is arguably the most important factor to consider when you establish a relationship with a handset. It"s inescapable, really. Whether you"re playing a rousing game of Robot Unicorn Attack or (regrettably) drunk-dialing an ex, it"s the one interface element that you"re consistently interacting with. It"s your window to the world and your canvas for creation, and if it"s lousy, it"s going to negatively influence everything you see and do. Today, we"re delving into the world of mobile displays, where we"re aiming to entertain and edify, and hopefully save you from making regrettable decisions -- when it comes to purchasing new phones, anyway.

In this edition of Primed, we"ll be examining the different qualities and underlying technologies of several displays, starting with the ubiquitous TFT-LCD and moving through the nascent realm of glasses-free 3D and beyond. We"ll also be addressing the importance of resolution and pixel density. Finally, we"ll be scoping out a handful of upcoming technologies -- while some are thoroughly intriguing, others are just plain wacky. Go ahead... buy the ticket, take the ride, and join us after the break. It"s Primed time.

Generally speaking, two display types rule today"s mobile phones: the Liquid Crystal Display (LCD), and the Organic Light-Emitting Diode (OLED). While each technology carries a set of strengths and weaknesses, a very important distinction can be drawn between the two. The LCD uses the light modulating properties of liquid crystals (LCs), but LCs don"t emit light directly. As such, a light source is necessary for proper viewing. Conversely, the OLED uses organic compounds that illuminate when exposed to electric currents. As backlights aren"t necessary for OLEDs, they"re significantly thinner than traditional LCDs. All things equal, OLED phones should be slimmer than their LCD counterparts, but this isn"t always the case. Take for example the MEDIAS N-04C, which uses a TFT-LCD and measures 7.7mm thin, versus the Galaxy S II, which uses the latest Super AMOLED Plus display and is 8.5mm thick.

The most desirable phone displays today are variants of these two technologies. In the LCD camp, there"s the Super LCD (S-LCD) and the IPS display -- with the latter as the basis for the Retina Display and the NOVA display. Likewise, the OLED territory is filled with options such as Super AMOLED, Super AMOLED Plus and ClearBlack. We"ll discuss the important distinctions between these competing display types shortly, but first let"s develop a fundamental understanding of how these brilliant creations work and how they came to be.

Now let"s apply this knowledge to the modern TFT-LCD that you"re familiar with. It"s the basis for twisted nematic (TN) and in-plane switching (IPS) displays, and both technologies rely upon the thin film transistor (TFT) for the quick response time and image clarity that we take for granted. Fundamentally, the TFT is a matrix of capacitors and transistors that address the display pixel by pixel -- although at a blistering speed. Every pixel consists of three sub-pixels -- red, green and blue -- each with its own transistor, and a layer of insulated liquid crystals are sandwiched between conductive indium tin oxide layers. Shades are made possible by delivering a partial charge to the underlying LCs, which controls the amount of light that passes through the polarizing filter, thus regulating the intensity of each sub-pixel.

The most common LCD display is based on TN technology, which has been successful due to its relatively inexpensive production costs and fast refresh rates. Many of you will remember the shadow-trail that plagued early LCDs, and faster refresh rates reduce this effect and make the displays better suited for movies and games. Unfortunately, TN displays are famous for exhibiting poor viewing angles and most aren"t capable of showing the entire 24-bit sRGB color gamut. In attempt to mimic the full range of 16.7 million colors, many screens implement a form of dithering to simulate the proper shade. Basic TN screens are hardly fantastic, but they"re also good enough to survive the day without eliciting too many complaints.

IPS displays were created to resolve the long-standing problems of poor viewing angles and color reproduction of their TN counterparts. The fundamental difference between the two technologies is that liquid crystals run parallel to the panel rather than perpendicular. This alignment allows for wider viewing angles and more uniform colors, but at a loss of brightness and contrast. Traditionally, IPS panels were significantly more expensive than TN alternatives, but recent advances have lowered the production cost and improved the brightness and contrast issues. This technology is the basis for Apple"s Retina Display and the NOVA display -- both of which are manufactured by LG.

Another technology that"s gotten plenty of airtime is the Super LCD (S-LCD), which is a display that"s manufactured by a joint-venture between Sony and Samsung. It employs an alternate method to IPS and TN that"s known as super patterned vertical alignment (S-PVA). Here, the liquid crystals have varying orientations, which help colors remain uniform when viewed from greater angles. S-LCDs also feature improved contrast ratios over traditional TN displays, which exposes a greater amount of details in dark images. Further, these displays feature dual sub-pixels that selectively illuminate based on the brightness of the screen. As you can imagine, this provides power-saving benefits, along with refined control of colors on the screen.

Now, let"s take a look at OLEDs, which are a staple of many high-end phones today. As we"ve mentioned, these displays operate without a backlight. Instead, they use electroluminescent organic compounds that emit light when they"re exposed to an electric current. The main advantages of OLEDs include deeper black levels (because there"s no backlight), enhanced contrast ratios, and excellent viewing angles, while drawbacks include reduced brightness and colors that are often over-saturated. OLED screens also suffer an awkward aging effect, where the red, green and blue sub-pixels will deteriorate and lose efficiency at different rates, which causes brightness and color consistency to worsen over time. While improvements are being made, it"s important to understand that this display technology is still relatively immature.

You"re most likely familiar with the active-matrix OLED (AMOLED), which relies on a TFT backplane to switch individual pixels on and off. Coincidentally, active-matrix displays consume significantly less power than their passive-matrix OLED (PMOLED) counterparts, which makes them particularly well-suited for mobile devices. These displays are typically manufactured by printing electroluminescent materials onto a substrate, and that relatively simplistic process suggests that OLEDs will ultimately become cheaper and easier to manufacture than LCDs. Shockingly, the most challenging step is the creation of the substrate itself, which remains a difficult and expensive endeavor. Currently, the limited supply and high demand of AMOLED screens has restricted their availability, and you"re most likely to find them in high-end smartphones.

While all screens suffer from reduced visibility in direct sunlight, the original AMOLED screens were particularly vulnerable to this drawback. To resolve this, Samsung introduced the Super AMOLED display. With this new technology, the touch sensors were integrated into the screen itself. Naturally, this allowed for a thinner display, but this also improved brightness by eliminating the extra layer. Additionally, the screen"s reflection of ambient light and power consumption were significantly reduced. While colors were now bright and vibrant -- and acceptable in direct sunlight -- the displays still couldn"t match the crispness and clarity of LCD screens, particularly with respect to text. Samsung"s PenTile matrix is to blame, which is a hallmark of its AMOLED and Super AMOLED displays. Here, a single pixel is composed of two sub-pixels, either red and green, or blue and green, and the green sub-pixel is significantly more narrow than the other two. While the scheme works fine for images because the human eye is more sensitive to green, it makes the anti-aliasing of text rather imprecise, and the end result is a bit blurry. Like Super AMOLED, Nokia"s ClearBlack display was created to make the AMOLED screen more visible in direct sunlight. This was accomplished by adding a polarized filter to the display, which allows the viewer to see through the screen"s reflection and view the images as they would appear under more ideal conditions.

In its most recent incarnation, the Super AMOLED Plus features a traditional three sub-pixels of equal proportion within one pixel, along with an increased sub-pixel count and density. Both of these measures create a display that"s much more crisp, especially when it comes to text. Further, the tighter spacing between pixels results in better visibility under direct sunlight. The new Super AMOLED Plus screens are also thinner and brighter to boot.

By now, you"ve probably had the chance of viewing a glasses-free 3D screen for yourself. Whether you think the feature is cool, gimmicky or annoying -- or, all of the above -- it"s clear that autostereoscopic displays are moving into the mainstream. If you"ve ever wondered what makes this marvel possible, today is your lucky day. First, let"s start with stereoscopic imaging itself. This merely refers to a technique that creates an illusion of depth by presenting two offset images separately to the right and left eye of the viewer. Traditionally, glasses were required to complete the effect, but a creation known as the parallax barrier has done away with that. Essentially, it"s a layer of material placed atop the screen with precision slits that allows each eye to view a different set of pixels. As you"ve likely observed (or at least read about), you"re required to position the display at a very specific angle to properly view the 3D effect. Also, because the parallax barrier effectively blocks half the light emanating from the screen, the backlight is forced to shine twice as bright -- which really kills the battery. Granted, it"s an infant as technology goes, but researchers are already making refinements. For example, MIT"s HR3D is a promising project that touts better viewing angles, brightness and battery life -- largely by increasing the number and varying the orientation of the slits.

So far, we"ve discussed the underlying technologies of mobile displays, but these options are merely one factor for consideration as you select your next phone. Screen resolution is another very important topic, as it determines the amount of content that can be displayed at any given time. Many of you are likely aware of this, but the physical size of a screen conveys nothing about the content that it can display. For example, a 4.5-inch screen with an 800 x 480 resolution actually displays less information than a 3.5-inch screen with a 960 x 640 resolution. These numbers are simply measures of the physical number of pixels positioned vertically and horizontally across the screen. Taking it a step further, the 800 x 480 screen is capable of displaying 384,000 pixels worth of information, while the 960 x 640 screen is capable of displaying 614,400 pixels worth of information. Put simply, a low-res screen simply can"t convey the same amount of content as a high-res alternative.

The most common displays today are generally based around the Wide VGA (WVGA, 800 x 480) standard, and lower-res options include Half VGA (HVGA, 480 x 320) and Quarter VGA (QVGA, 320 x 240). Another variation of this is Full Wide VGA (FWVGA, 854 x 480), which is common to Motorola"s Droid family. Quarter HD (qHD) is an up-and-comer in the mobile industry, with a 960 x 540 resolution, which is one quarter the pixel count of full 1080 HD (1920 x 1080). Lest we not forget Apple"s Retina Display, which measures 960 x 640. As you"ve seen in our reviews, we"re particularly fond of high-res screens, and HVGA really is the minimum that you should accept when purchasing a new phone.

Another component of screen resolution is pixel density, which is the total number of pixels within a physical constraint. It"s calculated in pixels per inch (ppi), which is fundamentally a measure of how tightly pixels are squeezed together. This element was somewhat of an afterthought until Apple introduced the Retina Display, but it has important ramifications for the overall crispness of text and images. While the iPhone 3GS came with a 3.5-inch screen with an HVGA resolution, the iPhone 4 kept this same screen size yet boosted its resolution to 960 x 640. The result was a massive increase in pixel density, which grew from 163ppi in the iPhone 3GS to a staggering 326ppi with the iPhone 4. Of course, these numbers are merely academic until you examine the impact that a high pixel density has upon the overall legibility of small text and clarity of images. As you"d expect, other manufacturers aren"t letting Apple have all the fun in the pixel density war, and we"re seeing particularly exciting developments from Toshiba and Samsung (more on that a bit later).

If you"re interested in calculating pixel density for yourself, you"ll need to start by knowing the display size and screen resolution. From there, you"ll need to determine the diagonal resolution of the screen with a little help from our friend Pythagoras (famous for the Pythagorean theorem). For our purposes, his equation is best expressed as follows:

Now, take the diagonal resolution (in our case, 933 pixels), and divide that by the display size (4-inches). If you"ve done the math properly, you"ll see this particular display has a pixel density of 233ppi. While most smartphones on the market today feature perfectly acceptable pixel densities, this little tidbit could come in handy if you"re looking for the clearest possible display.

Now that we"ve examined display technologies and screen resolution, let"s take a brief moment to discuss touch screens, which are crucial elements for modern smartphones. The dominant touchscreen technology is known as capacitive touch, which receives feedback from your body"s ability to conduct electricity. When you place a finger on the display, the screen"s electrostatic field becomes distorted, and the change in capacitance is registered by the underlying sensor. From there, software is used to react to your input. The beautiful part about a capacitive touchscreen is its ability to register multiple points of contact at the same time, which enables multi-touch functionality such as pinch-to-zoom.

Another type of touchscreen on the market today is known as the resistive touchscreen. It"s generally less expensive to produce and responds to physical force. While there are multiple elements to a resistive screen, the most important are two electrically conductive layers that are separated by a narrow space. When you press on the display, the two layers come into contact with one another, which registers as a change in current. Unfortunately, these added layers reduce the overall brightness of the display and increase the amount of glare reflected from the screen. You"ll generally find resistive touch screens in lower-end smartphones because they don"t support multi-touch, although a few individuals appreciate its ability to receive input from a stylus, gloved fingers or fingernails.

Hopefully we"ve given you a solid overview of the current state of mobile displays, but as you"d expect in an industry that"s rapidly evolving, there"s plenty of exciting possibilities on the horizon. Here"s a few gems that are sure to whet your palate for the future.

Ortustech (a joint-venture between Casio Computer and Toppan Printing) has developed a 4.8-inch screen with full 1080p resolution and a stunning pixel density of 458ppi. While a touchscreen isn"t in the mix, manufacturers understand the appeal of full HD, and we"re seeing the industry continually advancing upon this holy grail. Likewise, Hitachi has announced a 4.5-inch IPS display with a 1280 x 720 resolution that supports glasses-free 3D to boot. Toshiba has introduced a 4-inch contender, also at 720p, with a stunning 367ppi resolution. Samsung isn"t resting on its laurels, either, and is working on mobile displays that will push between 300 and 400ppi -- by 2015, anyway. While this announcement was specifically for tablets, we know Sammy"s smartphones are bound to benefit.

Manufacturers are finding a new take on our mobile phones being a window to the world, as transparent displays are now coming into the fray. TDK began production of a see-through OLED earlier this year, and while we"d be shocked to see this novelty crop up in smartphones, it"s sure to give some added intrigue to the feature phone segment. Whether it can actually save SMS fiends from walking into oncoming traffic is still debatable.

If you find your current smartphone far too rigid, 2012 could be quite a milestone, as Samsung is readying flexible AMOLED displays for production next year. While we plan to see smartphones with large screens that can be folded into a smaller form -- a definite improvement over current hinge-based designs -- we"d love to see an outlandish solution that fully incorporates the flexible spirit.

Take one quick look at your smartphone"s power consumption and it"s painfully obvious that the display is the primary culprit. With projects such as Mirasol and E Ink Triton leading the way, we"re hoping to see a day when color "electronic ink" becomes useful for smartphones. In addition to requiring only a fraction of the power of its illuminated brethren, these displays offer full visibility in direct sunlight. Of course, the need for a light source is a given, and current refresh rates would make for lousy gaming and video playback, but these alternatives are getting better with each new announcement. For those needing maximum battery life at all costs, these displays can"t come soon enough.

tft display vs super amoled display pricelist

AMOLED and TFT are two types of display technology used in smartphones. AMOLED (active-matrix organic light-emitting diode) displays are made up of tiny organic light-emitting diodes, while TFT (Thin-Film Transistor) displays use inorganic thin-film transistors.

AMOLEDs are made from organic materials that emit light when an electric current is passed through them, while TFTs use a matrix of tiny transistors to control the flow of electricity to the display.

What Are the Main Differences between AMOLED and TFT Displays?Backlight: One of the main differences between AMOLED and TFT displays is how they are lit up. A backlight is used to light up TFT screens, while AMOLED screens are self-illuminating. This means that TFT displays require more power to operate than AMOLED displays.

Refresh Rate: Another key difference between AMOLED and TFT displays is the refresh rate. The refresh rate is how often the image on the screen is updated. AMOLED screens have a higher refresh rate than TFT screens, which means that they can display images more quickly and smoothly.

Response Time: The response time is how long it takes for the pixels to change from one colour to another. AMOLED screens have a shorter response time than TFT screens..

Colour Accuracy/Display Quality: AMOLED screens are more accurate when it comes to displaying colours. This is because each pixel on an AMOLED screen emits its own light, which means that the colours are more pure and true to life. TFT screens, on the other hand, use a backlight to illuminate the pixels, which can cause the colours to appear washed out or less vibrant.

Viewing Angle: The viewing angle is the angle at which you can see the screen. AMOLED screens have a wider viewing angle than TFT screens, which means that you can see the screen from more angles without the colours looking distorted.

Power Consumption: One of the main advantages of AMOLED displays is that they consume less power than TFT displays. This is because the pixels on an AMOLED screen only light up when they need to, while the pixels on a TFT screen are always illuminated by the backlight.

Production Cost: AMOLED screens are more expensive to produce than TFT screens. This is because the manufacturing process for AMOLED screens is more complex, and the materials used are more expensive.

Availability: TFT screens are more widely available than AMOLED screens and have been around for longer. They are typically used in a variety of devices, ranging from phones to TVs.

Usage: AMOLED screens are typically used in devices where power consumption is a concern, such as phones and wearable devices. TFT screens are more commonly used in devices where image quality is a higher priority, such as TVs and monitors.

AMOLED and TFT are two different types of display technology. AMOLED displays are typically brighter and more vibrant, but they are more expensive to produce. TFT displays are cheaper to produce, but they are not as bright or power efficient as AMOLED displays.

The display technology that is best for you will depend on your needs and preferences. If you need a screen that is bright and vibrant, then an AMOLED display is a good choice. If you need a screen that is cheaper to produce, then a TFT display is a good choice. However, if you’re worried about image retention, then TFT may be a better option.

Tried and trusted TFT technology works by controlling brightness in red, green and blue sub-pixels through transistors for each pixel on the screen. The pixels themselves do not produce light; instead, the screen uses a backlight for illumination.

By contrast the Active Matrix OLED (AMOLED) display requires no backlight and can light up or turn off each of their pixels independently. As the name suggests, they are made of organic material.

An AMOLED display has many other benefits which make it a superior looking display including exceptional vieiwng angles and a display that looks practically black when it is switched off.

So, why use a TFT display? Well, it is a mature technology meaning the manufacturing processes are efficient, yields high and cost much lower than AMOLED.

TFT displays also have a much longer lifespan than AMOLED displays and are available in a far greater range of standard sizes, which can be cut down to fit a space restricted enclosure for a relatively low cost adder.

TFT is an abbreviation for Thin Film Transistor, a flat panel display used to improve the operation and utility of LCD screens. In order to portray an appearance to the audience, a liquid crystal display (LCD) utilizes a crystalline-filled fluid to modify rear lighting polarized origin through the use of an electromagnetic force among two relatively thin metal wires such as indium oxide (ITO). However, color TFT displays are associated with this method, which can be employed in both divided and pixelated display systems.

With motion pictures displayed on an LCD, the intrinsic sluggish rate of increase between liquid phases over a significant number of pixel components can be an issue due to capacitance impacts, which can create a blurring of the visuals. Placing a high-velocity LCD control device inside the formation of a thin-film transistor immediately next to the cell component just on a glass screen, the issue of LCD picture speed may be substantially improved, and image blur can be eliminated for all useful purposes entirely.

Organic light-emitting diodes (AMOLEDs) are a type of flat light-emitting advanced technologies that are created by interspersing a succession of organic thin sheets over two conducting conductors. An electrical charge causes a brilliant light to be produced when the current flows. AMOLED displays are light-emitting screens that do not require a backlight, making them thinner and more energy-efficient than liquid crystal displays (LCDs) (which will need a white backlight).

AMOLED displays are not only thin and fuel-intensive, but they also deliver the highest image quality available, so they can be made translucent, elastic, bendable, or even rollable and stretchy in the future, allowing for a variety of applications. AMOLEDs are a revolutionary technology in terms of display devices! It is possible to create an AMOLED by sandwiching a sequence of thin films across phase conductors. Electric charge causes a brilliant light to be emitted when the current flows through the coil.

Half-Life has been expanded. TFT displays have a far longer half-life than its LED equivalents, and they are available in a number of sizes, which might have an effect on the device"s half-life based on the phone"s usage as well as other variables. Touch panels for TFT screens can be either resistant or capacitance in nature.

Backlighting is unnecessary for AMOLEDs. LCDs produce images by selectively blocking parts of the illumination, whereas AMOLEDs produce light. AMOLEDs utilize less energy than LCDs since they don"t need backlighting. This is critical for battery-powered devices such as phones.

While AMOLED light-emitting sheets are lightweight, the substrate can also be elastic rather than stiff. AMOLED films are not limited to glass-like LEDs and LCDs.

AMOLEDs offer 170-degree ranges of vision. LCDs operate by obscuring the light. Hence they have intrinsic viewing obstacles. In addition, AMOLEDs have a substantially wider viewing spectrum.

AMOLEDs outperform LEDs. Since AMOLED organic coatings are less than LED inorganic crystal levels, AMOLED conducting and particle emitters layers can just be multi-layered. Also, LEDs and LCDs need glass backing, which absorbs light. AMOLEDs don"t need it.

AMOLEDs seem to be simpler to implement and larger. AMOLEDs are constructed of polymers and may be produced into big sheets. It takes a lot of extra liquid crystals to build and set down.

While red and green AMOLED sheets have a greater lifespan (46,000 to 230,000 hours), azure compounds have significantly shorter longevity (up to roughly 14,000 hours).

Due to the fact that AMOLED displays inherently emit illumination, they do not need a backlight when used on a monitor screen. Conversely, LCDs require backlights since the liquid crystals themselves are incapable of producing light under their own. Direct light emission from AMOLED displays also allows for the developing of lightweight display devices than others using TFT LCDs.

LCD displays have a higher brightness than AMOLED panels. This is owing to the LCD"s usage of led backlight, which may provide a brilliant illumination of the entire display. Despite the fact that AMOLEDs produce high levels of brilliance from their illumination, they will never be able to match the intensity of LCD lighting.

LCD screens use less power than AMOLED displays, which provides a slight advantage. The amount of energy consumed by AMOLED displays is dependent on the intensity of the screen. Lowered luminance results in lower energy usage, however, it might not be the best solution because the contrast would suffer as a result of the decreased brightness. In some situations, such as when to use an AMOLED device in direct sunlight, it is not an optimal situation.

However, the backlit keys of TFT displays account for the majority of their power usage. TFT screens" efficiency is considerably improved when the backlight is set to a lesser brightness level than the default setting. For example, replacing the light of an LCD TV with just an Led flash will have no effect on the image quality, but will result in lower power usage than replacing the light of an AMOLED TV.

With the exception of phones, numerous other technologies make use of displays to allow customers to engage in direct communication with them. To determine whether or not TFT LCD will be able to withstand the development of AMOLED innovation, we should first review the benefits

tft display vs super amoled display pricelist

The world of smartphones has been busy for the past few months. There have been numerous revolutionary launches with groundbreaking innovations that have the capacity to change the course of the smartphone industry. But the most important attribute of a smartphone is the display, which has been the focus for all prominent players in the mobile phone industry this year.

Samsung came up with its unique 18:5:9 AMOLED display for the Galaxy S8. LG picked up its old trusted IPS LCD unit for the G6’s display. These display units have been familiar to the usual Indian smartphone buyer. Honor, on the other hand, has just unveiled the new Honor 8 Pro for the Indian market that ships with an LTPS LCD display. This has led to wonder how exactly is this technology different from the existing ones and what benefits does it give Honor to craft its flagship smartphone with. Well, let’s find out.

The LCD technology brought in the era of thin displays to screens, making the smartphone possible in the current world. LCD displays are power efficient and work on the principle of blocking light. The liquid crystal in the display unit uses some kind of a backlight, generally a LED backlight or a reflector, to make the picture visible to the viewer. There are two kinds of LCD units – passive matrix LCD that requires more power and the superior active matrix LCD unit, known to people as Thin Film Transistor (TFT) that draws less power.

The early LCD technology couldn’t maintain the colour for wide angle viewing, which led to the development of the In-Plane Switching (IPS) LCD panel. IPS panel arranges and switches the orientation of the liquid crystal molecules of standard LCD display between the glass substrates. This helps it to enhance viewing angles and improve colour reproduction as well. IPS LCD technology is responsible for accelerating the growth of the smartphone market and is the go-to display technology for prominent manufacturers.

The standard LCD display uses amorphous Silicon as the liquid for the display unit as it can be assembled into complex high-current driver circuits. This though restricts the display resolution and adds to overall device temperatures. Therefore, development of the technology led to replacing the amorphous Silicon with Polycrystalline Silicon, which boosted the screen resolution and maintains low temperatures. The larger and more uniform grains of polysilicon allow faster electron movement, resulting in higher resolution and higher refresh rates. It also was found to be cheaper to manufacture due to lower cost of certain key substrates. Therefore, the Low-Temperature PolySilicon (LTPS) LCD screen helps provide larger pixel densities, lower power consumption that standard LCD and controlled temperature ranges.

The AMOLED display technology is in a completely different league. It doesn’t bother with any liquid mechanism or complex grid structures. The panel uses an array of tiny LEDs placed on TFT modules. These LEDs have an organic construction that directly emits light and minimises its loss by eradicating certain filters. Since LEDs are physically different units, they can be asked to switch on and off as per the requirement of the display to form a picture. This is known as the Active Matrix system. Hence, an Active Matrix Organic Light Emitting Diode (AMOLED) display can produce deeper blacks by switching off individual LED pixels, resulting in high contrast pictures.

The honest answer is that it depends on the requirement of the user. If you want accurate colours from your display while wanting it to retain its vibrancy for a longer period of time, then any of the two LCD screens are the ideal choice. LTPS LCD display can provide higher picture resolution but deteriorates faster than standard IPS LCD display over time.

An AMOLED display will provide high contrast pictures any time but it too has the tendency to deteriorate faster than LCD panels. Therefore, if you are after greater picture quality, choose LTPS LCD or else settle for AMOLED for a vivid contrast picture experience.

tft display vs super amoled display pricelist

Apple has used the Super AMOLED screen developed by Samsung since the iPhone X. If the original OLED is replaced after the warranty period of the mobile phone screen, the iPhone X and iPhone XS will cost $549. The high cost of replacing screens is not something that every consumer is willing to accept. Soft OLED and hard OLED replacement screens have gradually become hot selling products in mobile phone repair shops. Recently, the appearance of in cell LCD adapted to the iPhone X has broken this calm. It uses lower-cost LCD instead of OLED screens and enters the iPhone X repair industry with an absolute price advantage. What are the advantages and disadvantages of in cell LCD and OLED screen?

In-cell LCD screen is darker than OLED, and the screen display color gamut and resolution are lower. When the mobile phone is in standby, the OLED screen can display pure black, while the LCD cannot.

The biggest advantage of the OLED screen is that the power consumption is small, the power consumption of the TFT LCD screen is larger than that of the OLED, and the standby time is shortened after the LCD screen is replaced.

According to the iPhone customer experience feedback information, the LCD screen is more in line with the current user habits on the market. Apple is developing LCD screens for both the iPhone Xr and iPhone 11. Compared with OLED, iPhone in cell TFT LCD has a larger display effect than the original screen, and the price is much cheaper than OLED.

tft display vs super amoled display pricelist

When you buy a smartphone and while reading the specifications of the phone, you often do not pay attention to the type of phone screen. Screen types abbreviations can be a bit confusing and most people don’t usually take them into consideration due to their ignorance. Don’t worry now we will give you everything you need to know about the main types of screens which are LCD, OLED and AMOLED.

Previously, there were only two main types in the smartphone industry, LCD and LED. But with the advancement in technology, many other types such as OLED, AMOLED, sAMOLED, and Retina have appeared. LCD screens are used in most mid-range phones from Xiaomi, Realme and other Chinese manufacturers and OLED in their top-end devices. Samsung uses AMOLED and sAMOLED displays, while Apple uses Retina displays. Let us discuss each of these types one by one.

LCD (abbreviation for Liquid Crystal Display). The oldest type of screen, it relied on backlighting as the only light source to illuminate the pixels. Also, LCD screens are brighter than most other types of screens, which makes them suitable for use in smartphones in bright sunlight. However, these screens suffer from less accurate colors. Smartphones use two main types of LCD screens:

TFTstands for Thin Film Transistor. TFT monitors are an advanced version of LCD monitors. While TFT has a relatively lower production cost and provides better image quality than previous generations of LCD monitors, it has higher power consumption, lower viewing angles and lower color representation.

IPSstands for In-Plane Switching. It is an improved version of TFT. Availability Provides better viewing angles and color representation by utilizing more powerful backlighting. It consumes less power than TFT, but its cost is higher overall.

OLED (Organic Light-Emitting Diode). The presence of this type is the main reason for the emergence of curved displays and foldable smartphones. Unlike LCD screens, which use backlighting, OLED screens do not require this because they contain a layer of organic matter that emits light when exposed to an electric current. OLED displays display more saturated and vibrant colors. Because of the luminance per pixel, OLED displays provide darker levels of black. Because the pixels that don’t get caught are in a sleep state, OLED screens usually use less power and give better battery life. These screens are of two main types:

AMOLEDstands for Active Matrix Organic Light-Emitting Diode. Similar to an OLED screen but has Thin Film Transistors (TFT) on the back panel. This ensures faster and more precise control as it can turn on or off any pixel individually, and it also has a storage capacitor which eliminates screen size limitations and provides the possibility of a larger screen. We will explain AMOLED screens in more detail due to their great popularity.

AMOLED (Active Matrix Organic Light-Emitting Diode). Improved OLED screens. The most important component of these displays is the TFT element that controls the flow in each pixel. With two TFTs per pixel, one to start and one to stop charging the storage capacitors this allows each LED to operate individually and generate light for itself. Due to its great flexibility it can be used in foldable phones.

You may have seen the term sAMOLED or Super AMOLED. These monitors were invented by Samsung and are available in their high-end models. This type provides a variety of colors with greater clarity. Super AMOLED displays can handle sunlight better than other AMOLED displays, while consuming less power.

Each of the above types of screens has its own advantages and disadvantages. In general, AMOLED is superior to LCD screens. Our primary comparison criteria are higher refresh rates, better color representation, and battery consumption. As for OLED versus AMOLED, we already mentioned that AMOLED is an improved version of OLED as it offers better image quality to battery consumption. Due to their low usability under sunlight, Super AMOLED screens are the best choices.

In the end, it all boils down to your needs and budget. If you’re on a tight budget, an LCD monitor isn’t a bad deal. But if your budget is good, you should definitely opt for the newer AMOLED screen especially for TVs.

tft display vs super amoled display pricelist

TFT is an abbreviation for Thin Film Transistor, a flat panel display used to improve the operation and utility of LCD screens. In order to portray an appearance to the audience, a liquid crystal display (LCD) utilizes a crystalline-filled fluid to modify rear lighting polarized origin through the use of an electromagnetic force among two relatively thin metal wires such as indium oxide (ITO). However, color TFT displays are associated with this method, which can be employed in both divided and pixelated display systems.

With motion pictures displayed on an LCD, the intrinsic sluggish rate of increase between liquid phases over a significant number of pixel components can be an issue due to capacitance impacts, which can create a blurring of the visuals. Placing a high-velocity LCD control device inside the formation of a thin-film transistor immediately next to the cell component just on a glass screen, the issue of LCD picture speed may be substantially improved, and image blur can be eliminated for all useful purposes entirely.

Organic light-emitting diodes (AMOLEDs) are a type of flat light-emitting advanced technologies that are created by interspersing a succession of organic thin sheets over two conducting conductors. An electrical charge causes a brilliant light to be produced when the current flows. AMOLED displays are light-emitting screens that do not require a backlight, making them thinner and more energy-efficient than liquid crystal displays (LCDs) (which will need a white backlight).

AMOLED displays are not only thin and fuel-intensive, but they also deliver the highest image quality available, so they can be made translucent, elastic, bendable, or even rollable and stretchy in the future, allowing for a variety of applications. AMOLEDs are a revolutionary technology in terms of display devices! It is possible to create an AMOLED by sandwiching a sequence of thin films across phase conductors. Electric charge causes a brilliant light to be emitted when the current flows through the coil.

The color display is fantastic. Color intensity, sharpness, and luminance settings that are second to none and can be customized to meet the needs of any application.

Half-Life has been expanded. TFT displays have a far longer half-life than its LED equivalents, and they are available in a number of sizes, which might have an effect on the device"s half-life based on the phone"s usage as well as other variables. Touch panels for TFT screens can be either resistant or capacitance in nature.

Due to the apparent glass panels, there is limited functionality. For instance, there are ineffective for outdoor use because the glass can display glares from its natural lighting)

They rely on backlight to give illumination rather than generating their own light. Hence they require constructed light-creating diodes (LEDs) in their backlit display framework to ensure enough brightness.

Backlighting is unnecessary for AMOLEDs. LCDs produce images by selectively blocking parts of the illumination, whereas AMOLEDs produce light. AMOLEDs utilize less energy than LCDs since they don"t need backlighting. This is critical for battery-powered devices such as phones.

While AMOLED light-emitting sheets are lightweight, the substrate can also be elastic rather than stiff. AMOLED films are not limited to glass-like LEDs and LCDs.

AMOLEDs offer 170-degree ranges of vision. LCDs operate by obscuring the light. Hence they have intrinsic viewing obstacles. In addition, AMOLEDs have a substantially wider viewing spectrum.

AMOLEDs outperform LEDs. Since AMOLED organic coatings are less than LED inorganic crystal levels, AMOLED conducting and particle emitters layers can just be multi-layered. Also, LEDs and LCDs need glass backing, which absorbs light. AMOLEDs don"t need it.

AMOLEDs seem to be simpler to implement and larger. AMOLEDs are constructed of polymers and may be produced into big sheets. It takes a lot of extra liquid crystals to build and set down.

While red and green AMOLED sheets have a greater lifespan (46,000 to 230,000 hours), azure compounds have significantly shorter longevity (up to roughly 14,000 hours).

Due to the fact that AMOLED displays inherently emit illumination, they do not need a backlight when used on a monitor screen. Conversely, LCDs require backlights since the liquid crystals themselves are incapable of producing light under their own. Direct light e