tft lcd backlight no image in stock

When an LED backlight doesn;t work, it is a bgi issue. An LCD backlight is a solution to make a LCD readable when there is not enough outside light. The LED backlight is the most common type of backlight used in character, static and mono graphic displays and illuminates the LCD from the side or back of the display. Backlights are used in displays to increase visibility in low light conditions. Most LCD’s that are equipped with a backlight employ a diffuser (similar to a lamp shade) to provide a more even light from the LED’s.

It is not uncommon when designing your product to have the LCD work, but it seems the LED backlight doesn"t work. Chances are the backlight still works, but isincorrectly connected.

LED backlights require Direct Current (DC), which means you must connect the positive of the backlight to the positive supply of your power supply. And the negative of the backlight to the negative supply of your power supply.

Connect one wire of the LED backlight to pin 15 and the other wire to pin 16. Turn on the power. If this does not work, turn off the power and reverse the wires.

Connect one wire of the LED backlight to pin #1 and the other wire to pin #2. Turn on the power. If this does not work, turn off the power and reverse the wires

When possible, we recommend designing your product so that pins 15 and 16 are used for the backlight. It is possible to power the backlight with pins 1 and 2, but this is the supply voltage for the LCD and we do not recommend this.

If, after reading this article and trying the steps outlined, you still find your LED backlight doesn"t work, call us. We"d be pleased to help. FocusLCDs.com carries standard LCDs in stock and in many cases can ship the same day. Call us today for help at 480-503-4295

tft lcd backlight no image in stock

Only US$14.99, buy best 3.5 inch tft color display screen module 320 x 480 support uno mega2560 geekcreit for arduino - products that work with official arduino boards sale online store at wholesale price.

It appears to me that there is no backlight control, either through software or hardware. Neither is there a comprehensive schematic for either the screen part or for the circuit board. The controller chip, the ILI9481 does, however, appear to be well documented.

Anyway, what I am hoping is that it is possible to disconnect the backlight leds at the 24 pin socket on the board, to which the screen is attached by ribbon cable. The pins numbered 1 to 6 look the most promising, with pins 1 & 3 being visibly connected to ground and pins 2,4 and 5 being connected together. If so, then I would use an appropriate transistor and PWM to regulate the light.

Of course, I am aware that this exercise would be hopeless if the backlight leds and the controller share both a common ground and common Vcc the wrong side of this connector.

I also found this picture which appears to imply you may be able to make a neater job by making 2 cuts on the board without disturbing the 24 pin connector. Cut the 2 visible traces to connector pin 1 at the point above the "1" on the silk screen and to the left of the chevron "<" then make your connection to the pad of the connector. Before making the connection, check with a meter (or by confirming that the back light no longer works) that pin 1 is really then isolated from the ground plane.

tft lcd backlight no image in stock

Troubleshooting CRTs versus LCDs begins with similar steps, but diverges due to the differing natures of the two display types. The first troubleshooting steps are similar for either display type: power down the system and display and then power them back up; make sure the power cable is connected and that the outlet has power; verify that the signal cable is connected firmly to both video adapter and display and that there are no bent pins; verify that the video adapter is configured properly for the display; try the problem display on a known-good system, or try a known-good display on the problem system; and so on. Once you"ve tried the "obvious" troubleshooting steps, if the problem persists, the next step you take depends on the type of display. The following sections cover basic troubleshooting for CRTs and LCDs.

CRTs seldom fail outright without obvious signs, such as a loud snap or a strong odor of burning electrical components. Most CRT problems are really problems with the power, video adapter, cable, or hardware/software settings. To eliminate the CRT as a possible cause, connect the suspect CRT to a known-good system, or connect a known-good display to the suspect system. It is worth noting, that older CRTs eventually wear out, and starts dimming. Common signs of a weak CRT are a dim picture, dysfunctional brightness and/or color controls, image smearing at high brightness, and in color CRTs, a tint towards a single color (Red Green Blue)

If the CRT is the problem, it is often not worth repairing. If the CRT is out of warranty, parts and labor may cost more than buying a new CRT, which also gives you better specs and a warranty. About the only CRTs we"d even consider repairing out-of-warranty are high-end 21" or larger models, and even there the economics are dubious.

Even if the CRT is in warranty, the shipping costs may exceed the value of the CRT. For example, shipping a CRT both ways can easily cost $75 or more. If that CRT is a year-old 17" model, you"re probably better off spending $100 to $200 for a new 17" or 19" CRT than paying $75 in shipping to have the old one repaired. CRTs have many components, all of which age together. Fixing one is no guarantee that another won"t fail shortly. In fact, that happens more often than not in our experience.

Never disassemble a CRT. At best, you may destroy the CRT. At worst, it may destroy you. Like televisions, CRTs use extremely high voltages internally, and have large capacitors that store that energy for days or even weeks after the CRT is unplugged. Robert once literally burned a screwdriver in half when working inside a color television that had been unplugged for several days. Also, the large, fragile tube may implode, scattering glass fragments like a hand grenade. People who repair CRTs and televisions for a living treat them with great respect, and so should you. If you must repair a CRT, take it to someone who knows what they are doing. You have been warned.

Check the obvious things first. Verify that the CRT is plugged in (and that the receptacle has power), the video cable is connected to the video card, the computer and CRT are turned on, and the brightness and contrast settings are set to the middle of their range. If none of these steps solves the problem, your CRT, video card, or video cable may be bad. Check the suspect CRT on a known-good system or a known-good CRT on the problem system.

If you have ACPI or APM power management enabled, it may be causing the problem. Some systems simply refuse to wake up once power management puts them to sleep. We have seen such systems survive a hardware reset without restoring power to the CRT. To verify this problem, turn off power to the system and CRT and then turn them back on. If the CRT then displays an image, check the power management settings in your BIOS and operating system and disable them if necessary.

This is a hardware problem with one of the electron guns. Replace the CRT. This problem may also manifest as a strong color cast during normal operation that is not correctable using the normal color balance controls.

Catastrophic CRT failure is imminent. The noises are caused by high-voltage arcing, and the smell is caused by burning insulation. Unplug the CRT from the wall before it catches fire, literally.

There are two likely causes. First, you may be driving the CRT beyond its design limits. Some CRTs display a usable image at resolutions and/or refresh rates higher than they are designed to use, but under such abuse the expected life of the CRT is shortened dramatically, perhaps to minutes. To correct this problem, change video settings to values that are within the CRT"s design specifications. Second, the power receptacle may be supplying voltage lower than the CRT requires. To correct this problem, connect the CRT to a different circuit or to a UPS or power conditioner that supplies standard voltage regardless of input voltage.

This is usually a minor hardware problem. The most likely cause is that the signal cable is not connected tightly to the CRT and/or video card, causing some pins to make contact intermittently or not at all. Verify that no pins are loose, bent, or missing on the cable or the connectors on the CRT and video card, and then tighten the cable at both ends, If that doesn"t fix the problem, open the computer, remove the video card, and reseat it fully.

In elderly systems, another possible cause is that some hardware DVD decoder cards "steal" one color (usually magenta) and use it to map the DVD video signal onto the standard video signal. Remove the DVD decoder card. If your video adapter includes hardware DVD support, or if you are upgrading to such an adapter, you don"t need a DVD decoder card.

The video card settings are likely outside the range supported by the CRT, particularly if you have just installed the CRT or have just changed video settings. To verify this, restart the system in Safe Mode (press F8 during boot to display the Windows boot menu and choose Safe Mode). If the system displays a VGA image properly, change your display settings to something supported by the CRT.

Most modern CRTs can display signals at many different scan frequencies, but this doesn"t mean that the CRT will necessarily automatically display different signals full-screen and properly aligned. Use the CRT controls to adjust the size and alignment of the image.

Depending on the CRT, video card, and video settings, this may be normal behavior, adjustable using the CRT controls. If the distortion is beyond the ability of the controls to correct, the problem may be with the video card, the CRT, or the driver. First try changing video settings. If the problem persists at several settings, move that CRT to a different system (or use a different video card) to determine whether the problem is caused by the CRT or video card. Repair or replace the faulty component.

This is usually caused by RF interference from another electrical or electronic device, particularly one that contains a motor. Make sure such devices are at least three feet from the CRT. Note that such interference can sometimes penetrate typical residential and office walls, so if the CRT is close to a wall, check the other side. Such image problems can also be caused by interference carried by the power line or by voltage variations in the AC power supply. To eliminate interference, plug the CRT into a surge protector. Better still, plug it into a UPS or power conditioner that supplies clean power at a constant voltage.

The CRT may need to be degaussed. A CRT that sits in one position for months or years can be affected even by the earth"s very weak magnetic field, causing distortion and other display problems. Exposing a CRT to a strong magnetic field, such as unshielded speakers, can cause more extreme image problems. Many modern CRTs degauss themselves automatically each time you cycle the power, but some have a manual degauss button that you must remember to use. If your CRT has a manual degauss button, use it every month or two. The degaussing circuitry in some CRTs has limited power. We have seen CRTs that were accidentally exposed to strong magnetic fields, resulting in a badly distorted image. Built-in degaussing did little or nothing. In that case, you can sometimes fix the problem by using a separate degaussing coil, available at RadioShack and similar stores for a few dollars. We have, however, seen CRTs that were so badly "magnet burned" that even a standalone degaussing coil could not completely eliminate the problem. The moral is to keep magnets away from your CRT, including those in speakers that are not video-shielded.

An incorrect yoke may have been attached to the CRT. Unless you have a lot of spare time on your hands, this is usually not worth fixing. Replace the display.

If your LCD displays no image at all and you are certain that it is receiving power and video signal, first adjust the brightness and contrast settings to higher values. If that doesn"t work, turn off the system and LCD, disconnect the LCD signal cable from the computer, and turn on the LCD by itself. It should display some sort of initialization screen, if only perhaps a "No video signal" message. If nothing lights up and no message is displayed, contact technical support for your LCD manufacturer. If your LCD supports multiple inputs, you may need to press a button to cycle through the inputs and set it to the correct one.

Unlike CRTs, where increasing the refresh rate always reduces flicker, LCDs have an optimal refresh rate that may be lower than the highest refresh rate supported. For example, a 17" LCD operating in analog mode may support 60 Hz and 75 Hz refresh. Although it sounds counterintuitive to anyone whose experience has been with CRTs, reducing the refresh rate from 75 Hz to 60 Hz may improve image stability. Check the manual to determine the optimum refresh rate for your LCD, and set your video adapter to use that rate.

First, try setting the optimal refresh rate as described above. If that doesn"t solve the problem and you are using an analog interface, there are several possible causes, most of which are due to poor synchronization between the video adapter clock and the display clock, or to phase problems. If your LCD has an auto-adjust, auto-setup, or auto-synchronize option, try using that first. If not, try adjusting the phase and/or clock settings manually until you have a usable image. If you are using an extension or longer than standard video cable, try connecting the standard video cable that was supplied with the display. Long analog video cables exacerbate sync problems. Also, if you are using a KVM switch, particularly a manual model, try instead connecting the LCD directly to the video adapter. Many LCDs are difficult or impossible to synchronize if you use a KVM switch. If you are unable to achieve proper synchronization, try connecting the LCD to a different computer. If you are unable to achieve synchronization on the second computer, the LCD may be defective. Finally, note that some models of video adapter simply don"t function well with some models of LCD.

If the screen is displaying a full, stable image, but that image is of poor quality, first verify that the display is not connected through a KVM switch or using an extension cable. If so, connect the display directly to the video adapter using the standard cable. If that is already the case, adjust the brightness, contrast, and focus controls. If you are unable to get a proper image using these controls, the problem is most likely a clock or phase mismatch, which you can cure by taking the steps described in the preceding item.

The best way to adjust clock and phase is to use auto-adjust first. Check the utility and driver CD that came with the monitor. It may have a wizard or at least the appropriate background screens to use while adjusting phase and clock settings. If not, go to the Windows Start menu and select Shutdown. When the screen goes gray and the Windows Shutdown dialog appears, leave that dialog onscreen, but ignore it. Use the gray screen to adjust clock and phase manually. Any problems with clock and phase and any changes you make to the clock and phase settings are clearly evident on the gray screen.

Always adjust clock first. Clock is usually not a problem if you have used the auto-adjust feature of your monitor, but if you do have clock problems they will be evident as large vertical bars on your screen. Tweak the clock setting until those bars disappear. Then adjust phase. Phase problems are evident as thin black lines running horizontally across the screen. Adjust phase until the lines disappear or are minimized.

Not all analog video cards synchronize perfectly with flat panels. The gray Shutdown screen exaggerates the problem, so don"t worry if very tiny movements are visible after you"ve adjusted clock and phase as well as possible. After you"ve set the clock and phase controls for the best image possible on the gray screen, cancel Shutdown and the image should be optimized.

Your video card is supplying a video signal at a bandwidth that is above or below the ability of your LCD to display. Reset your video parameters to be within the range supported by the LCD. If necessary, temporarily connect a different display or start Windows in Safe Mode and choose standard VGA in order to change video settings.

This occurs when you run an LCD at other than its native resolution. For example, if you have a 19" LCD with native 1280x1024 resolution but have your display adapter set to 1024x768, your LCD attempts to display those 1024x768 pixels at full screen size, which physically corresponds to 1280x1024 pixels. The pixel extrapolation needed to fill the screen with the smaller image results in artifacts such as blocky or poorly rendered text, jaggy lines, and so on. Either set your video adapter to display the native resolution of the LCD, or set your LCD to display the lower-resolution image without stretching the display (a feature sometimes referred to as display expansion), so that pixels are displayed 1:1, which results in the lower resolution using less than the entire screen.

This is a characteristic of LCDs, particularly older and inexpensive models, caused by defective pixels. Manufacturers set a threshold number below which they consider a display acceptable. That number varies with the manufacturer, the model, and the size of the display, but is typically in the range of 5 to 10 pixels. (Better LCDs nowadays usually have zero dead pixels.) Nothing can be done to fix defective pixels. Manufacturers will not replace LCDs under warranty unless the number of defective pixels exceeds the threshold number.

Some people claim that leaving the unit powered off for a day or two will "erase" a persistent after-image. Others suggest leaving a neutral gray screen (like the one used for phase adjustment) up on the screen to "equalize" the display. I dunno. FWIW, I"ve seen this problem on older Samsung panels but never on the Sony or NEC/LaCie panels I use.

Again, this is a characteristic of LCDs, particularly older and inexpensive models. The after-image occurs when the display has had the same image in one place for a long time. The after-image may persist even after you turn the display off.

Transistor-based pixels in an LCD respond more slowly than the phosphors in a CRT. The least-expensive LCDs exhibit this problem even with slow image movement, as when you drag a window. Better LCDs handle moderately fast image movement without ghosting, but exhibit the problem on fast-motion video. The best LCDs handle even fast-motion video and 3D gaming very well. The only solution to this problem is to upgrade to an LCD with faster response time.

Use the brightness control to increase image brightness. If you have set brightness to maximum and the image is still too dim, contact the display manufacturer. The CCRTs used to backlight the screen have a finite lifetime and may begin to dim as they near the end of their life.

If one or more horizontal and/or vertical lines appear on the display, first power-reset the computer and display. If the lines persist, run the auto-setup function of your display. If that does not solve the problem, power the system and display down, remove the video cable, and verify that the video plugs and jacks on both computer and display ends do not have broken or bent pins. Even if all appears correct, try a different video cable. If the problem persists, contact the display manufacturer.

tft lcd backlight no image in stock

Newhaven 160x100 graphic Chip-On-Glass (COG) Liquid Crystal Display shows dark pixels on a gray background. This reflective LCD Display is visible with high ambient light while offering a wide operating temperature range from -20 to 70 degrees Celsius. This NHD-C160100CZ-RN-FBW display has an optimal view of 6:00 and has no backlight. This display operates at 3V supply voltage and is RoHS compliant.

Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.

Choose from a wide selection of changes including shape, size, pinout, and component layout of your PCB to make it a perfect fit for your application.

tft lcd backlight no image in stock

Newhaven 16x1 character Liquid Crystal Display shows characters with dark pixels on a gray background. This reflective LCD Display is visible with high ambient light while offering a wide operating temperature range from -20 to 70 degrees Celsius. This NHD-0116AZ-RN-GBW display has an optimal view of 6:00 and has no backlight. This display operates at 5V supply voltage and is RoHS compliant.

Adjust the length, position, and pinout of your cables or add additional connectors. Get a cable solution that’s precisely designed to make your connections streamlined and secure.

Choose from a wide selection of changes including shape, size, pinout, and component layout of your PCB to make it a perfect fit for your application.

tft lcd backlight no image in stock

Afghanistan, Africa, Albania, American Samoa, Andorra, Armenia, Azerbaijan Republic, Bahrain, Bangladesh, Belarus, Bermuda, Bhutan, Bosnia and Herzegovina, Brunei Darussalam, Bulgaria, Cambodia, Central America and Caribbean, China, Cook Islands, Cyprus, Estonia, Fiji, French Polynesia, Georgia, Gibraltar, Greenland, Guam, Guernsey, Hong Kong, Iceland, India, Indonesia, Iraq, Israel, Jersey, Jordan, Kazakhstan, Kiribati, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Liechtenstein, Luxembourg, Macau, Macedonia, Maldives, Malta, Marshall Islands, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Nauru, Nepal, New Caledonia, Niue, Oman, Pakistan, Palau, Papua New Guinea, Philippines, Qatar, Russian Federation, Saint Pierre and Miquelon, San Marino, Saudi Arabia, Serbia, Slovenia, Solomon Islands, South America, Sri Lanka, Svalbard and Jan Mayen, Tajikistan, Tonga, Turkmenistan, Tuvalu, Ukraine, United Arab Emirates, Uzbekistan, Vanuatu, Vatican City State, Wallis and Futuna, Western Samoa, Yemen

tft lcd backlight no image in stock

The reason for LCD Display flashing screen: shielding coil; Signal interference; Hardware; Refresh frequency setting; Monitor time is too long; Too high frequency; Similar to the frequency of the light source.

LCD display, divided into CCFL backlight and LED backlight two. When the display uses CCFL backlight (that is, usually said LCD display), backlight power off, the lamp will continue to emit light for about a few milliseconds; When the display is backlit with an LED (commonly referred to as an LED backlight display), the characteristics of the LED light allow it to control the speed of switching on and off the power supply more quickly, so there will be no continuous lighting when the power is off. Therefore, the LED backlight flashing screen will be more obvious than the CCFL backlight.

LCD is easily disturbed by a strong electric field or magnetic field, and sometimes the screen jitter is caused by the magnetic field or electric field near the LCD. To liquid crystal display ruled out clean everything around interference, the computer can be moved to an empty table, surrounded by then boot test, if the screen dithering phenomenon disappears, it means that your computer where you found it has a strong electric field or magnetic field interference, please send suspiciously (e.g., speakers of the subwoofer, power transformers, magnetizing cup, etc.) from a computer nearby.

Turn off the LCD and turn it back on a few times to degaussing. (today’s monitors have automatic degaussing when turned on.) LCD screen flashing reason: LCD screen refresh rate problem & display and video card hardware problems display.

In fact, the main reason for the LCD screen dither is the LCD refresh frequency set lower than 75Hz caused by, at this time the screen often appear dither, flicker phenomenon, we only need to put the refresh rate to 75Hz above, then the phenomenon of the screen dither will not appear.

Sometimes because the use of liquid crystal display time is too long, there will be a jitter phenomenon. In order to test whether the electronic components inside the display are old or not, the faulty display can be connected to someone else’s computer for testing. If the fault still disappears, the display is broken and needs to be repaired.

The frequency of the LCD display screen itself is too high, which leads to screen flashing. Generally, there are a few problems in real life that cause screen flashing due to high frequency. People’s naked eyes have no flicker feeling for the picture over 60hz, while the design standard of the general LCD display screen is basically maintained on this data, so the frequency will not be too high under normal circumstances, but at the same time, the screen itself can not be ruled out fault. After the relevant instrument measurement is indeed the fault of the screen itself, in addition to the replacement of a new monochrome LCD screen is the design of equipment-related software.

LCD display and light source frequency close to the situation of the splash screen is very common, because the frequency of the different light source is different, in certain cases, the frequency of the LCD display screen and artificial light similar flicker is also more common, the best way at this time is a kind of artificial light or LCD display equipment, avoid the splash screen.

LCD display, although the price is not high, there are various problems. It will have various effects on our work and life. In ordinary life, when using LCD, as long as pay attention to the following points, will extend the life of LCD.

tft lcd backlight no image in stock

An LED-backlit LCD is a liquid-crystal display that uses LEDs for backlighting instead of traditional cold cathode fluorescent (CCFL) backlighting.TFT LCD (thin-film-transistor liquid-crystal display) technologies as CCFL-backlit LCDs, but offer a variety of advantages over them.

While not an LED display, a television using such a combination of an LED backlight with an LCD panel is advertised as an LED TV by some manufacturers and suppliers.

Unlike OLED and microLED displays, LCDs cannot achieve true blacks for pixels which are illuminated by the backlight. Some LED-backlit LCDs use local dimming zones to increase contrast between bright and dim areas of the display, but this can result in a "blooming" or "halo" effect on dark pixels in or adjacent to an illuminated zone.

The local dimming method of backlighting allows to dynamically control the level of light intensity of specific areas of darkness on the screen, resulting in much higher dynamic-contrast ratios, though at the cost of less detail in small, bright objects on a dark background, such as star fields or shadow details.

A 2016 study by the University of California (Berkeley) suggests that the subjectively perceived visual enhancement with common contrast source material levels off at about 60 LCD local dimming zones.

LED-backlit LCDs are not self-illuminating (unlike pure-LED systems). There are several methods of backlighting an LCD panel using LEDs, including the use of either white or RGB (Red, Green, and Blue) LED arrays behind the panel and edge-LED lighting (which uses white LEDs around the inside frame of the TV and a light-diffusion panel to spread the light evenly behind the LCD panel). Variations in LED backlighting offer different benefits. The first commercial full-array LED-backlit LCD TV was the Sony Qualia 005 (introduced in 2004), which used RGB LED arrays to produce a color gamut about twice that of a conventional CCFL LCD television. This was possible because red, green and blue LEDs have sharp spectral peaks which (combined with the LCD panel filters) result in significantly less bleed-through to adjacent color channels. Unwanted bleed-through channels do not "whiten" the desired color as much, resulting in a larger gamut. RGB LED technology continues to be used on Sony BRAVIA LCD models. LED backlighting using white LEDs produces a broader spectrum source feeding the individual LCD panel filters (similar to CCFL sources), resulting in a more limited display gamut than RGB LEDs at lower cost.

The evolution of energy standards and the increasing public expectations regarding power consumption made it necessary for backlight systems to manage their power. As for other consumer electronics products (e.g., fridges or light bulbs), energy consumption categories are enforced for television sets.

Using PWM (pulse-width modulation), a technology where the intensity of the LEDs are kept constant but the brightness adjustment is achieved by varying a time interval of flashing these constant light intensity light sources,

A first dynamic "local dimming" LED backlight was public demonstrated by BrightSide Technologies in 2003,Sony in September 2008 on the 40-inch (1,000 mm) BRAVIA KLV-40ZX1M (known as the ZX1 in Europe). Edge-LED lighting for LCDs allows thinner housing; the Sony BRAVIA KLV-40ZX1M is 1 cm thick, and others are also extremely thin.

LED-backlit LCDs have longer life and better energy efficiency than plasma and CCFL LCD TVs.mercury, an environmental pollutant, in their manufacture. However, other elements (such as gallium and arsenic) are used in the manufacture of the LED emitters; there is debate over whether they are a better long-term solution to the problem of screen disposal.

Because LEDs can be switched on and off more quickly than CCFLs and can offer a higher light output, it is theoretically possible to offer very high contrast ratios. They can produce deep blacks (LEDs off) and high brightness (LEDs on). However, measurements made from pure-black and pure-white outputs are complicated by edge-LED lighting not allowing these outputs to be reproduced simultaneously on screen.

Quantum dots are photoluminescent; they are useful in displays because they emit light in specific, narrow normal distributions of wavelengths. To generate white light best suited as an LCD backlight, parts of the light of a blue-emitting LED are transformed by quantum dots into small-bandwidth green and red light such that the combined white light allows a nearly ideal color gamut to be generated by the RGB color filters of the LCD panel. The quantum dors may be in a separate layer as a quantum dot enhacement film, or replace pigment-based green and red resists normally used in LCD color filters. In addition, efficiency is improved, as intermediate colors are no longer present and do not have to be filtered out by the color filters of the LCD screen. This can result in a display that more accurately renders colors in the visible spectrum. Companies developing quantum dot solutions for displays include Nanosys, 3M as a licensee of Nanosys, QD Vision of Lexington, Massachusetts, US and Avantama of Switzerland.Consumer Electronics Show 2015.quantum dot displays at CES 2017 and later formed the "QLED Alliance" with Hisense and TCL to market the technology.

Mini LED displays are LED-backlit LCDs with mini-LED–based backlighting supporting over a thousand full array local dimming (FALD) zones, providing deeper blacks and a higher contrast ratio.

LED backlights are often dimmed by applying pulse-width modulation to the supply current, switching the backlight off and on more quickly than the eye can perceive. If the dimming-pulse frequency is too low or the user is sensitive to flicker, this may cause discomfort and eyestrain similar to the flicker of CRT displays at lower refresh rates.

Competing display technologies for the best image performance; A.J.S.M. de Vaan; Journal of the society of information displays, Volume 15, Issue 9 September 2007 Pages 657–666; http://onlinelibrary.wiley.com/doi/10.1889/1.2785199/abstract?

Novitsky, Tom; Abbott, Bill (12 November 2007). "Driving LEDs versus CCFLs for LCD backlighting". EE Times. Archived from the original on 28 November 2010. Retrieved 21 November 2020.

LED TVs: 10 things you need to know; David Carnoy, David Katzmaier; CNET.com/news; 3 June 2010; https://www.cnet.com/news/led-tvs-10-things-you-need-to-know/

Method of and device for generating an image having a desired brightness; D.A. Stanton; M.V.C. Stroomer; A.J.S.M. de Vaan; US patent USRE42428E; 7 June 2011; https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=RE42428E

Controlling Power Consumption for Displays With Backlight Dimming; Claire Mantel et al; Journal of Display Technology; Volume: 9, Issue: 12, Dec. 2013; https://ieeexplore.ieee.org/document/6520956

Energy Efficiency Success Story: TV Energy Consumption Shrinks as Screen Size and Performance Grow, Finds New CTA Study; Consumer Technology Association; press release 12 July 2017; https://cta.tech/News/Press-Releases/2017/July/Energy-Efficiency-Success-Story-TV-Energy-Consump.aspx Archived 4 November 2017 at the Wayback Machine

LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived 1 August 2017 at the Wayback Machine

Broadband reflective polarizers based on form birefringence for ultra-thin liquid crystal displays; S.U. Pan; L. Tan and H.S. Kwok; Vol. 25, No. 15; 24 July 2017; Optics Express 17499; https://www.osapublishing.org/oe/viewmedia.cfm?uri=oe-25-15-17499&seq=0