how lcd monitors work quotation

Liquid crystal display technology works by blocking light. Specifically, an LCD is made of two pieces of polarized glass (also called substrate) that contain a liquid crystal material between them. A backlight creates light that passes through the first substrate. At the same time, electrical currents cause the liquid crystal molecules to align to allow varying levels of light to pass through to the second substrate and create the colors and images that you see.

Most LCD displays use active matrix technology. A thin film transistor (TFT) arranges tiny transistors and capacitors in a matrix on the glass of the display. To address a particular pixel, the proper row is switched on, and then a charge is sent down the correct column. Since all of the other rows that the column intersects are turned off, only the capacitor at the designated pixel receives a charge. The capacitor is able to hold the charge until the next refresh cycle.

The other type of LCD technology is passive matrix. This type of LCD display uses a grid of conductive metal to charge each pixel. Although they are less expensive to produce, passive matrix monitors are rarely used today due to the technology"s slow response time and imprecise voltage control compared to active matrix technology.

how lcd monitors work quotation

To create an LCD, you take two pieces ofpolarized glass. A special polymer that creates microscopic grooves in the surface is rubbed on the side of the glass that does not have the polarizing film on it. The grooves must be in the same direction as the polarizing film. You then add a coating of nematic liquid crystals to one of the filters. The grooves will cause the first layer of molecules to align with the filter"s orientation. Then add the second piece of glass with the polarizing film at a right angle to the first piece. Each successive layer of TN molecules will gradually twist until the uppermost layer is at a 90-degree angle to the bottom, matching the polarized glass filters.

If we apply an electric charge to liquid crystal molecules, they untwist. When they straighten out, they change the angle of the light passing through them so that it no longer matches the angle of the top polarizing filter. Consequently, no light can pass through that area of the LCD, which makes that area darker than the surrounding areas.

Building a simple LCD is easier than you think. Your start with the sandwich of glass and liquid crystals described above and add two transparent electrodes to it. For example, imagine that you want to create the simplest possible LCD with just a single rectangular electrode on it. The layers would look like this:

The LCD needed to do this job is very basic. It has a mirror (A) in back, which makes it reflective. Then, we add a piece of glass (B) with a polarizing film on the bottom side, and a common electrode plane (C) made of indium-tin oxide on top. A common electrode plane covers the entire area of the LCD. Above that is the layer of liquid crystal substance (D). Next comes another piece of glass (E) with an electrode in the shape of the rectangle on the bottom and, on top, another polarizing film (F), at a right angle to the first one.

The electrode is hooked up to a power source like a battery. When there is no current, light entering through the front of the LCD will simply hit the mirror and bounce right back out. But when the battery supplies current to the electrodes, the liquid crystals between the common-plane electrode and the electrode shaped like a rectangle untwist and block the light in that region from passing through. That makes the LCD show the rectangle as a black area.

how lcd monitors work quotation

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, calculators, and mobile telephones, including smartphones. LCD screens have replaced heavy, bulky and less energy-efficient cathode-ray tube (CRT) displays in nearly all applications. The phosphors used in CRTs make them vulnerable to image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs do not have this weakness, but are still susceptible to image persistence.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.

In 1888,Friedrich Reinitzer (1858–1927) discovered the liquid crystalline nature of cholesterol extracted from carrots (that is, two melting points and generation of colors) and published his findings at a meeting of the Vienna Chemical Society on May 3, 1888 (F. Reinitzer: Beiträge zur Kenntniss des Cholesterins, Monatshefte für Chemie (Wien) 9, 421–441 (1888)).Otto Lehmann published his work "Flüssige Kristalle" (Liquid Crystals). In 1911, Charles Mauguin first experimented with liquid crystals confined between plates in thin layers.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,

The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.

CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.

EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.

WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.

RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.

Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.

Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.

A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.

The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.

Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.

STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.

Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.

High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.

Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.

Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.

In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.

Most of the new M+ technology was employed on 4K TV sets which led to a controversy after tests showed that the addition of a white sub pixel replacing the traditional RGB structure would reduce the resolution by around 25%. This means that a 4K TV cannot display the full UHD TV standard. The media and internet users later called this "RGBW" TVs because of the white sub pixel. Although LG Display has developed this technology for use in notebook display, outdoor and smartphones, it became more popular in the TV market because the announced 4K UHD resolution but still being incapable of achieving true UHD resolution defined by the CTA as 3840x2160 active pixels with 8-bit color. This negatively impacts the rendering of text, making it a bit fuzzier, which is especially noticeable when a TV is used as a PC monitor.

In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.

This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).

Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.

Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.

Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.

Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.

Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.

The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.

In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.

Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.

Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.

Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.

Color performance: There are multiple terms to describe different aspects of color performance of a display. Color gamut is the range of colors that can be displayed, and color depth, which is the fineness with which the color range is divided. Color gamut is a relatively straight forward feature, but it is rarely discussed in marketing materials except at the professional level. Having a color range that exceeds the content being shown on the screen has no benefits, so displays are only made to perform within or below the range of a certain specification.white point and gamma correction, which describe what color white is and how the other colors are displayed relative to white.

Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.

Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).

No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.

LCDs can be made transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.

Limited viewing angle in some older or cheaper monitors, causing color, saturation, contrast and brightness to vary with user position, even within the intended viewing angle. Special films can be used to increase the viewing angles of LCDs.

Uneven backlighting in some monitors (more common in IPS-types and older TNs), causing brightness distortion, especially toward the edges ("backlight bleed").

Display motion blur on moving objects caused by slow response times (>8 ms) and eye-tracking on a sample-and-hold display, unless a strobing backlight is used. However, this strobing can cause eye strain, as is noted next:

As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.

Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.

Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.

Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.

The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.

LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.

Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.

NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.

"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.

"Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.

Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.

An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.

Oleg Artamonov (January 23, 2007). "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis". X-bit labs. Archived from the original on May 16, 2008. Retrieved May 17, 2008.

how lcd monitors work quotation

In the past decade, LCD monitors have replaced CRT screens for all but the most specialist applications. Although liquid crystal displays boast perfect

how lcd monitors work quotation

First, we will provide a brief technical overview of functional principles as they relate to visual stimulus presentation. Detailed descriptions and parameter measurements are already available from the existing literature; however, our intention here is to equip readers with limited technical expertise with the necessary knowledge to set up computer experiments with LCD monitors. Thus, we keep our explanations relatively short and simplified.

LCD monitors work differently: Each pixel consists of liquid crystal threads that can be twisted or arranged in parallel by an electrical current applied to them. This leads to a polarization effect that either allows or prevents light passing through. A white light source located behind this crystal array uniformly and constantly illuminates the array. To display a black pixel, the crystal threads are twisted by 90° such that no light will pass through. A white pixel is achieved by aligning the crystals such that maximum light is allowed to pass through, until a different, non-white color needs to be displayed (see the lower panel of Fig. 1 for an LCD pixel’s brightness over time). This is a static process, not a pulsed one as in CRTs.

In theory, the difference in presentation methods, namely a strobing versus a static image, should be of no consequence if the light energy that falls onto the retina remains the same over the time period of one single frame. As the Talbot-Plateau law states2 is equally well detectable as a light flash presented for 60 ms at 40 cd/m2. This suggests that temporal integration can be easily described by energy summation”. Thus, in principle, LCD and CRT monitors should be able to yield comparable results.

However, due to the differences in technology, the visual signals produced by the two display types have different shapes (i.e., a different light energy-over-time-curve; see Fig. 1). Moreover, default luminance as well as visual-signal response times (in addition to other parameters, see below) differ between most CRT and LCD monitors

Table 1 reports the parameters we considered in setting up the CRT and LCD monitors. Certainly, most of them are commonly considered when setting up a computer experiment; nevertheless we deemed it important to mention them here explicitly, as their neglect might have unintended consequences. We used a 17” Fujitsu Siemens Scenicview P796-2 CRT color monitor previously used in several published studies including studies with masked presentation conditions

Our measurements revealed several interesting characteristics: First, luminance of the LCD monitor at default setting (i.e., maximum brightness) exceeded the CRT luminance at a ratio of 3.25:1. However, comparable average luminance can be (and was) achieved by downregulating the LCD monitor (the older CRT technology emits less energy even at maximum settings, see Table 2), without participants perceiving it as unnaturally dark. If one plans to upgrade from CRT to LCD monitors in an experimental laboratory, we therefore recommend measuring the CRT monitors’ brightness levels and matching them in the new LCD monitors’ user setup, if comparability with the old setup is needed. This will minimize hardware-dependent variability, thus contributing to better replicability. Please note that a brightness adaption is not a necessary precondition when employing LCD monitors; researchers should simply be aware that the brightness level can have an influence onto the resulting effects, especially in time-critical experiments with short and/or masked presentation. Thus, we recommend the adaptation for time-critical experiments in which researchers orient on existing empirical evidence gathered with CRT monitors. Furthermore, gray-to-gray response times varied slightly depending on the employed brightness levels2), so we suggest that researchers can rely on this more efficient method as an approximation.

For the empirical comparison of human performance with CRT and LCD monitors, we relied on these results and set the monitor settings accordingly (see Method section below).

Participants were administered a masked number priming task and a subsequent forced-choice prime discrimination task using both a CRT and an LCD monitor. In this well-established paradigm

Of central interest was the question whether both monitors would yield comparable masked priming effects. Monitors were set according to the parameters described in the previous section (see also Method section below). In order to obtain conclusive evidence, we decided for sequential hypothesis testing using Bayes factorshttps://osf.io/g842s/.

how lcd monitors work quotation

All-in-One refers to monitors with mini computer system embedded into the monitor. This allows for ease of use and space saving since an external computer is not needed but will raise the price of the monitor. Also, if an all-in-one is damaged and in needs replacing, it is more costly to replace an all-in-one than a stand-alone monitor or touch screen.

AG glass is added to protect the monitor’s LCD panel. When sunlight hits AG glass, the light energy is dispersed equally across the entire screen; these are no reflection “hot spots”. The AG coating results in a matte finish on the screen.

AR glass is added to protect the monitor’s LCD panel. When sunlight hits AR glass, the light energy is consolidated into a small but very bright reflected spot of light; the image on the rest of the screen stays in tact. By tilting or turning the monitor a few degrees, the operator can usually eliminate the bright spot entirely from his screen, and see clear start images even in direct bright sunlight.

The aspect ratio of a LCD display is the proportional relationship of its width compared to its height. The two numbers are commonly separated by a colon. The most common aspect ratios are 16:9 (aka widescreen) and 4:3 (closer to the shape of a square monitor, such as old CRT’s and TV’s). It is best to choose a monitor with the same aspect ratio as your video signal. You cannot customize a monitor’s native aspect ratio, so it is critical to know the aspect ratio of your incoming video signal beforehand.

Some monitors include built-in speakers that can play audio from your source. If a monitor does not have speakers built in, you may be able to run an aux cable from the audio output to an external speaker.

Auto re-start after power loss is a built-in feature, standard with all TRU-Vu monitors which ensures video is immediately displayed upon restoration of power following a power loss.

An automated ambient light sensor (sometimes shortened to ALS) on an LCD monitor allows for automatic brightness adjustment based on the environmental light surrounding the monitor. Ambient Light Sensors allow users to set brightness and timing ranges to control the intensity of these automatic adjustments. This means users have the ability to specify the maximum and minimum brightness levels the Ambient Light Sensor can adjust between. Additionally, you can specify how long you would like the sensor to wait before adjusting the brightness (between 1 and 60 seconds).

The bezel is the outside frame or edge that surrounds the monitor’s front glass or LCD panel. For aesthetics or hygiene, some people prefer frameless, Zero-Bezel monitors.

The bit depth is sometimes referred to as color depth and when referring to a pixel can be defined as bits per pixel. It defines how many colors the monitor can reproduce. The more bits, the more colors. The number of colors available for any X-bit image is just 2X. Therefore, a 24-bit (224)color monitor will produce 16.7 million colors.

Luminance (AKA Brightness) is the measurement of how much light a monitor emits. The SI unit for luminance is Candela per Square Meter (Cd/m²). One Cd/m² is equal to one “nit,” a more common term with LCD monitors. The measure of nits a LCD display emits will be the main factor in determining the monitor’s perceived brightness. A monitor luminance of around 250-350 nits will work well indoors and most monitors fall in this range. 400-700 nits would be ideal for daylight use (Daylight Viewable monitors). 1,000 nits or more is required for viewing in direct, bright sunlight (Sunlight Readable monitors)

Color temperature is a way to describe light appearance provided by a video source or monitor. Color temperature is measured in Kelvin (K) and typically ranges from 2500K to 7500K. Higher Kelvin results in a cooler, bluer, daylight color temperature. Lower Kelvin results in a warmer, redder, candlelight color temperature. A balanced color temperature where the colors look natural for the scene is considered “white balanced.” This is when the color white looks like a true white without any other color present. NTSC, PAL, and now ATSC standards suggest video content on monitors to be displayed using 6500K. However, not all content adheres to this, so monitors may need to be tuned for the content to achieve white balance.

The contrast ratio measures the range of brightness to darkness the monitor can produce. The end ratio is presented as X:1, where X represents the size of the range. The higher the number, the better the image quality. This is measured by showing the whitest white and comparing it to the blackest black on screen. The static contrast ratio is tested using the same image (usually a black and white checkered display) on screen to measure the range. Dynamic contrast ratio is unrealistic, and will inflate this number greatly by adjusting the screen settings during testing.

The control of a LCD monitor is usually accomplished through the OSD (On-Screen Display) via a small group of pushbuttons on the rear or front of the monitor, or via an IR remote that allow the user to access the monitor’s settings.

Display Colors is the number of colors the monitor can display. The higher, the better. These numbers are always shown in millions unless it is a dated monitor. Standard LCD monitors have 16.7 million colors, which equals 24-bit color. Color bits and display colors are directly related since display colors is based on the power of two. This is because 2 raised to the 24th power comes out to ~16.7 million.

DVI stands for Digital Video Interface; it is a video-only signal. DVI uses a locking connector. DVI-I (Integrated) works with both digital and analog signals, one of the only connectors to allow this. DVI-D (Digital) works with digital only signals and allows for higher resolution. 1920 x 1200 is the highest resolution DVI can support, but only up to 15 feet. Lower resolutions (1280 x 1024) can be transmitted up to 49 feet.

The enclosure of a monitor is what surrounds the screen and all other components. Enclosures offer different looks, feels, and advantages and disadvantages. For example, most waterproof monitors will have 304 stainless steel or aluminum to avoid corrosion. Lightweight monitors will generally feature a ABS enclosure, a nylon-reinforced plastic for added durability. Powder-coated steel is another material used in many industrial-grade monitor solutions which offers increased protection and durability.

A half-sine shock wave is a shock impulse with the shape of a half sine wave. These are part of classical shock testing and shows how the object responds to shock over time. Half-sine waves have a more curved shock wave than haversine shock waves, although similar.

Hue is just another word for color; each position around the color wheel represents a different hue. For monitors, you can adjust the overall picture’s hue to give a look that is closer to the desired hue.

The humidity specification on the LCD monitor data sheets relate to relative humidity (RH) and is shown as a percentage. Relative Humidity measures water vapor, but relative to the temperature of the air. It measures the amount of actual water vapor in the air compared to the total amount of vapor that can occur at the current temperature. The same absolute humidity level but in two different climates will result in two different relative humidities. The relative humidity would be higher in the cooler climate, and lower in the warmer climate. The higher the percentage, the more humid it is relative to the temperature in the environment. At 100% relative humidity, the air is saturated and is at its dew point.

Hertz (Hz) is the unit used to measure the refresh rate of a monitor. The refresh rate refers to the number of times a monitor can show a static image per second. This is similar to frame rate, but slightly different. Frame rate refers to the content itself, refresh rate refers to the display. Too low of a refresh rate on a monitor with high frame rate content will result in excessive motion blur.

Interlaced is a method of scanning video. Video sources that have the letter i in them are interlaced (e.g. 1080i). This method of scans the even and odd numbered lines as two separate fields. First the even scan lines are drawn, then the odd scan lines. One each of complete even and odd scan line fields make up one video frame. Interlaced video will double the perceived frame rate of a display without consuming extra bandwidth. However, interlacing effects like combing can occur if the interlaced video is displayed using a slower speed than it was captured, or in still frames.

IR (Infrared) touch screen monitors do not overlay the display with an additional screen or screen sandwich. Instead, infrared monitors use IR emitters and receivers to create an invisible grid of light beams across the screen. This ensures the best possible image quality. When an object interrupts the invisible infrared light beam, the sensors are able to locate the touch point, and send the X and Y coordinates to the controller. IR touch screens generally feature larger screen sizes.

Isotropic Failure results when direct sunlight and high ambient temperatures combine to overheat the LCD screen. The screen will darken, or turn completely black. If the monitor’s internal temperature approaches 100°C (212°F) temperatures, the LCD panel will suffer irreparable harm. Please note that a monitor’s internal temperature may far exceed ambient temperatures when positioned in direct, bright sunlight. Therefore, the rated operating temperature of the LCD panel and the overall monitor must be sufficient to survive the worst-case heat scenarios that the monitor will be exposed to.

LCD stands for Liquid Crystal Display. The LCD panel directs the light from the backlight and produces the picture we see on the monitor’s screen. LCD panels use tiny liquid crystals to shift the light from one color to the next. The crystals are controlled using voltage from the monitor. Different LCD panels offer different advantages and can vary the overall cost of the monitor greatly.

LED Backlights are the most common backlights used in LCD flat panel displays today. The LED backlights are what illuminates the LCD panel. Without any backlights, an image could not be seen. A monitor’s life is based on the life of the backlights because they are so essential. LED backlights succeeded CCFL backlights and are more energy efficient, offer better contrast and brightness, and greater color range. LED backlights must be used with LCD panels to display an image.

Luminance (AKA Brightness) is the measurement of how much light a monitor emits. The SI unit for luminance is Candela per Square Meter (Cd/m²). One Cd/m² is equal to one “nit,” a more common term with LCD monitors. The measure of nits a LCD display emits will be the main factor in determining the monitor’s perceived brightness. A monitor luminance of around 250-350 nits will work well indoors and most monitors fall in this range. 400-700 nits would be ideal for daylight use (Daylight Viewable monitors). 1,000 nits or more is required for viewing in direct, bright sunlight (Sunlight Readable monitors)

Virtually all TRU-Vu monitors feature VESA mount holes on the rear of the monitor. VESA is an industry-standard hole pattern compatible with nearly any mounting solution on the market. The hole patterns are measured in millimeters, from center-to-center, for each of the 4 holes, in a square or rectangular pattern, such as 75 x 75mm, 100 x 100, 200 x 100, etc.

MTBF stands for Mean Time Between Failure. A monitor’s MTBF refers to the time period when the the monitor’s backlights will dim to 50% of the original brightness. MTBF is typically measured in hours. If the backlights of an LCD monitor with standard brightness levels dim to 50%, it is considered unusable because the screen is not bright enough for any use.

However, with Sunlight Readable monitors, things are different. If a Sunlight Readable monitor, which features at least 1,000 nits of brightness, dims down to 50% brightness, the monitor still has 500 nits of brightness. 500 nits of brightness is still twice the brightness of standard indoor monitors. Therefore, the Sunlight Readable monitor can be repurposed for use in other applications where it will not be subjected to direct sunlight.

The MVA panel is a type of LCD panel. MVA panels are newer than TN panels and offer wider viewing angles (typically 178° x 178°) This allows the monitor to be used in landscape or portrait mode, or mounted above eye level, with no loss of image quality.

Nits is the measurement of luminance. Nit is believed to come from the Latin word nitere, to shine. It is the measure of light emitter in a unit area and frequently used to specify the brightness of a display. Standard displays feature 200-300 nits, whereas Sunlight Readable Monitors range from 1,000 – 2,500 nits.

Open frame monitors are provided without typical enclosures. They are often used for limited-space applications, or when the display will be integrated into a machine or system. Open frame monitors and touch screens are available in two configurations: all components are mounted to the rear of the LC panel, or in a “kit” version, the LCD panel and all other components are provided loose, enabling the end user to mount them in any way they desire.

The operating temperature of the LCD video display is the range of temperature that is deemed acceptable for using the monitor. Operating outside the high end of this range can result in isotropic failure, or the components can begin to fail at temperatures below the low end of the range. The storage temperature of a monitor will always be equal to or greater than the operating temperature since monitors generate heat when operated.

Adding glass over a LCD panel does protect it. However, this also causes increased internal reflections, both from external light as well as from the LCD’s own backlights, thereby reducing image quality. It also creates an air gap between the glass and the panel.

Optical Bonding is the process of injecting an optical-grade resin into the gap between the LCD panel and the glass. This eliminates internal reflections, eliminates the possibility of internal condensation, increases the contrast ratio, and improves the image quality.

Landscape orientated monitors are long like a sprawling landscape — they stretch left to right. Landscape oriented monitors are the most common for viewing since it is the industry standard for almost all media, from film to broadcast TV.

It is important to know your end goal with orientation. For example, sunlight readable monitors have polarization filters specified to the monitor’s native orientation. If you flip the orientation of the signal, you may also need to flip the polarizing filters if being viewed by someone wearing polarized sunglasses.

Overscan is when part of the video signal is outside the visible bounds of the screen. This occurs when the input video signal has a larger resolution than the monitor’s maximum resolution. Thankfully, this is not much of an issue any more with added standards (title and action safe) and expanded compatibility with signals and monitors. CRTs from the 1930s to the early 2000s were highly variable when it came to how the image was positioned within the border of the screen, resulting in overscan issues.

Sometimes referred to as a “dot,” as in “dots per inch”,