tft lcd mega shield v2 2 pinout pricelist
Spice up your Arduino project with a beautiful touchscreen display shield with built in microSD card connection. This TFT display is 2.2" diagonal and colorful (18-bit 262,000 different shades)! 240x320 pixels with individual pixel control. As a bonus, this display has a optional Capacitive Touch Panel Controller FT6236 and resistive touch panel with controller XPT2046 attached by default.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (UNO/Due/Mega 2560).
This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
Spice up your Arduino project with a beautiful large touchscreen display shield with built in microSD card connection. This TFT display is big (2" diagonal) bright (4 white-LED backlight) and colorful (18-bit 262,000 different shades)! 320x240 pixels with individual pixel control.
The shield is fully assembled, tested and ready to go. No wiring, no soldering! Simply plug it in and load up our library - you"ll have it running in under 10 minutes! Works best with any classic Arduino (Due/Mega 2560). This display shield has a controller built into it with RAM buffering, so that almost no work is done by the microcontroller. You can connect more sensors, buttons and LEDs.
- The TFT LCD PCB adapter for Mega is compatible with the Arduino pins, the user can directly connect the TFT LCD PCB - Adapter on the shield and stand on the Arduino board. It can be used with a Mega2560 and LCD screen.
Für den Fall der Übermittlung von personenbezogenen Daten an die Google LLC. mit Sitz in den USA, hat sich Google LLC. für das us-europäische Datenschutzübereinkommen „Privacy Shield“ zertifiziert, welches die Einhaltung des in der EU geltenden Datenschutzniveaus gewährleistet. Ein aktuelles Zertifikat kann hier eingesehen werden: https://www.privacyshield.gov/list
Using this TFT LCD Mega Expansion Shield V2.2 for Arduino MEGA the users can now directly plug the LCD shields from 3.2″ to 5″ onto the Arduino Mega board.
This shield supports 16-bit mode. Arduino Mega board has enough pins for one to use SD card and Touch function simultaneously. The shield Support: TFT 3.2” 4.3” 5.0” 7.0”
TFT01 LCD works in 3.3V so that it can not be used directly on top of the Arduino motherboard to make the TFT01 LCD compatible for use with the Arduino board. Designed this section TFT Shield, it can be directly plugged into Arduino board Using the TFT01 LCD module.
The TFT01 LCD is now supported 16-bit mode, it will not exist encounter like in 328S, only using a set of SD card interface or touch screen interface for Arduino Mega256.
Adafruit took their popular 1.8" TFT breakout board and remixed it into an Arduino shield complete with microSD card slot and a 5-way joystick navigation switch and three selection buttons! Since the display uses only 4 pins to communicate and has its own pixel-addressable frame buffer, it can be used easily to add a display & interface without exhausting the memory or pins.
New! Adafruit have updated this shield to be "Arduino R3" format compatible so you can now use it with any and all Arduinos or Metros - including the Metro M0 or M4, Arduino Mega, Zero, etc. They also use Adafruit seesaw for the TFT backlight, TFT reset, and button inputs - you can query the buttons and joystick over I2C now, so only 2 pins are needed to communicate with all 8 switches.
The 1.8" display has 128x160 color pixels. Unlike the low cost "Nokia 6110" and similar LCD displays, which are CSTN type and thus have poor color and slow refresh, this display is a true TFT! The TFT driver (ST7735R) can display full 18-bit color (262,144 shades!).
The shield has the TFT display soldered on (it uses a delicate flex-circuit connector) as well as a ultra-low-dropout 3.3V regulator and a 3/5V level shifter so its safe to use with 3V or 5V Arduino compatibles. Adafruit also had some space left over so they placed a microSD card holder (so you can easily load full color bitmaps from a FAT16/FAT32 formatted microSD card), a 5-way navigation switch (left, right, up, down, select) and three tactile buttons marked A BC. The microSD card is not included.
If you just want to display text, shapes, lines, pixels, etc the shield uses the SPI pins (SCK/MOSI/MISO), I2C pins (SDA & SCL) and digital #8. For the microSD card, you"ll also give up Digital #4. This shield works with any Arduino UNO and compatibles, Mega, Zero, etc. If it"s shield compatible, you"re good to go.
Comes as a fully assembled and tested shield with the display, microsd card holder and nav switch as well as a stick of 0.1" header. To finish up and use, you will need to solder on the header onto the shield PCB, a quick 10 minute task.
Display current draw is mostly based on the backlight, with full backlight the current draw is ~100mA, this does not include the SD Card. SD cards can draw 20-100mA based on read/write. Measure current draw in circuit to get precise numbers.
This TFT LCD Screen Module, 40pins interface, not just a LCD screen but include the Touch, SD card and Flash design. So it’s a powerful extension module for your project.
Because TFT01 LCD is working at 3.3V voltage, it cannot be used directly on top of a standard Arduino board, so in order to make TFT01 LCD compatible for using on standard Arduino board, designed section TFT Shield, can be directly plugged into the Arduino board that use TFT01 LCD module
TFT01 LCD 16 can support the current mode, since there is sufficient Mega2560 IO, while using only a touch screen interface or SD card interface, like in the case of face 328S will not exist.
The Mega 2560 is a microcontroller board based on the ATmega2560 .It has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset button.
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
The next example is controlling an RGB LED using these three RGB sliders. For example if we start to slide the blue slider, the LED will light up in blue and increase the light as we would go to the maximum value. So the sliders can move from 0 to 255 and with their combination we can set any color to the RGB LED, but just keep in mind that the LED cannot represent the colors that much accurate.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
The TFT shows only a white and static screen with any example of the librery... I´m already change the parameters line with... "UTFT myGLCD(ILI9341_16, 38,39,40,41);" and "UTFT myGLCD(SSD1289, 38,39,40,41);"
I am using visual code with PlatformIO extension, and the library UTFT modified for ILI9341_16, becuase my supplier told me that this was the correct one.
I puzzled some hours with exactly the same hardware setup and made a quick & dirty, but successfully test script, combining LCD, Touch and SD Card Features.
Displays are one of the best ways to provide feedback to users of a particular device or project and often the bigger the display, the better. For today’s tutorial, we will look on how to use the relatively big, low cost, ILI9481 based, 3.5″ Color TFT display with Arduino.
This 3.5″ color TFT display as mentioned above, is based on the ILI9481 TFT display driver. The module offers a resolution of 480×320 pixels and comes with an SD card slot through which an SD card loaded with graphics and UI can be attached to the display. The module is also pre-soldered with pins for easy mount (like a shield) on either of the Arduino Mega and Uno, which is nice since there are not many big TFT displays that work with the Arduino Uno.
The module is compatible with either of the Arduino Uno or the Arduino Mega, so feel free to choose between them or test with both. As usual, these components can be bought via the links attached to them.
One of the good things about this module is the ease with which it can be connected to either of the Arduino Mega or Uno. For this tutorial, we will use the Arduino Uno, since the module comes as a shield with pins soldered to match the Uno’s pinout. All we need to do is snap it onto the top of the Arduino Uno as shown in the image below, thus no wiring required.
This ease of using the module mentioned above is, however, one of the few downsides of the display. If we do not use the attached SD card slot, we will be left with 6 digital and one analog pin as the module use the majority of the Arduino pins. When we use the SD card part of the display, we will be left with just 2 digital and one analog pin which at times limits the kind of project in which we can use this display. This is one of the reasons while the compatibility of this display with the Arduino Mega is such a good news, as the “Mega” offers more digital and analog pins to work with, so when you need extra pins, and size is not an issue, use the Mega.
To easily write code to use this display, we will use the GFX and TFT LCD libraries from “Adafruit” which can be downloaded here. With the library installed we can easily navigate through the examples that come with it and upload them to our setup to see the display in action. By studying these examples, one could easily learn how to use this display. However, I have compiled some of the most important functions for the display of text and graphics into an Arduino sketch for the sake of this tutorial. The complete sketch is attached in a zip file under the download section of this tutorial.
As usual, we will do a quick run through of the code and we start by including the libraries which we will use for the project, in this case, the Adafruit GFX and TFT LCD libraries.
With this done, the Void Setup() function is next. We start the function by issuing atft.reset() command to reset the LCD to default configurations. Next, we specify the type of the LCD we are using via the LCD.begin function and set the rotation of the TFT as desired. We proceed to fill the screen with different colors and display different kind of text using diverse color (via the tft.SetTextColor() function) and font size (via the tft.setTextSize() function).
Arduino 2.4" TFT LCD Touch shield is an Arduino UNO/ Mega compatible multicolored TFT display with touch-screen and SD card socket. It is available in an Arduino shield compatible pinout for attachment. The TFT driver is based on ILI9325D with 8bit data and 4bit control interface.
In this guide we’re going to show you how you can use the 1.8 TFT display with the Arduino. You’ll learn how to wire the display, write text, draw shapes and display images on the screen.
The 1.8 TFT is a colorful display with 128 x 160 color pixels. The display can load images from an SD card – it has an SD card slot at the back. The following figure shows the screen front and back view.
This module uses SPI communication – see the wiring below . To control the display we’ll use the TFT library, which is already included with Arduino IDE 1.0.5 and later.
The TFT display communicates with the Arduino via SPI communication, so you need to include the SPI library on your code. We also use the TFT library to write and draw on the display.
The 1.8 TFT display can load images from the SD card. To read from the SD card you use the SD library, already included in the Arduino IDE software. Follow the next steps to display an image on the display:
In this guide we’ve shown you how to use the 1.8 TFT display with the Arduino: display text, draw shapes and display images. You can easily add a nice visual interface to your projects using this display.