raspberry pi turn off lcd display made in china

This is a great solution for me, thanks. The app I"m running outputs log messages to the console, so I often just plug in a HDMI screen to see the status of the application on the RPi, but I don"t connect a keyboard to it.

And .xinitrc only works after you log in and run "startx" (or use a display manager that defaults to a user session, and allows .xinitrc instead of .xsession).

Is there no way to fix this? I"m sorry I"m not a linux programmer, but it seems ridiculous that there isn"t a fix to keep the frikin screen from turning off.

Found this thread as I was having the same blank screening issues ever since I enabled the PI to boot automatically, xscreensaver did the trick ! Many thanks for sharing your post tleland

About 2 years ago Rasadmin may well have posted THE answer for your system. However, I vote for carlhage, because that solution worked for my late model Raspbian system (uname -r says "3.12.22+" with LXDE display manager). Don"t put magic xset commands in /etc/rc.local as advised elsewhere. Use the magic @xset commands where carlhage says.

I am curious as to where all these obscure commands come from? Linux seems just so over whelming surely there must be documentation somewhere that explains these issues. I have tried the lightdm.conf , kdb and none of them have worked, The TV display blanks out after 10 mins. I start the GUI display which I assume is the X server via startx. It looks like the chap from France might have the fix for this.

raspberry pi turn off lcd display made in china

In the previous article, I described the steps needed to install an LCD touchscreen on the Raspberry Pi. In this article, I will show you how to adjust the screen rotation of the LCD to landscape mode, and will show you how to calibrate the touchscreen pointer for optimal accuracy. Just follow the steps below to compete the process of setting up your Raspberry Pi LCD touchscreen:

However, if you try to touch the screen now, you will find that the pointer movement does not correspond to your finger movement. This is because the LCD screen driver and the touchscreen controller driver have separate settings for screen rotation. We need to change the rotation of the touchscreen controller driver to match the rotation of the LCD screen driver.

After the Pi finishes rebooting, you should notice that when you move your finger across the touch screen, the pointer should follow correctly in both axes. If you are using the Raspberry Pi 2 Model B, you will need to complete the calibration steps below before the pointer follows your finger correctly (and make sure that you have enabled startx to load automatically – see step 6 in this article).

You can rotate the screen 90 degrees (as we did in this tutorial) and the power connector will be at the bottom of the screen, but you can also rotate it 270 degrees so that the power connector is at the top of the screen. To do this, simply enter fbtft_device.rotate=270 in the /boot/cmdline.txt file. Then change the DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 0 1 line in the /etc/X11/xinit/xinitrc file to DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 1 0. All you need to do is switch the values of the 0 and 1 at the end of this line.

Now that we have our LCD touchscreen up and running, the final step in the installation is the calibration of touch control. This will make the pointer much more accurate and easier to use.

4. Now we can use ts_calibrate. Enter ts_calibrate at the command prompt (make sure you are still in root mode) to run the ts_calibrate program. The program will consecutively display five crosses on different parts of the screen, which you need to touch with as much precision as possible:

This is kind of a long process, but it is well worth it if you want to get the LCD touchscreen set up properly. So if you have any trouble setting this up or have anything to say, please leave a comment below. Also, if you found this article useful, please share it with your friends!

raspberry pi turn off lcd display made in china

The RPi LCD can be driven in two ways: Method 1. install a driver to your Raspbian OS. Method 2. use the Ready-to-use image file of which the LCD driver was pre-installed.

2) Connect the TF card to the PC, open the Win32DiskImager software, select the system image downloaded in step 1 and click‘Write’ to write the system image. ( How to write an image to a micro SD card for your Pi? See RPi Image Installation Guides for more details)

3) Connect the TF card to the Raspberry Pi, start the Raspberry Pi. The LCD will display after booting up, and then log in to the Raspberry Pi terminal,(You may need to connect a keyboard and HDMI LCD to Pi for driver installing, or log in remotely with SSH)

1. Executing apt-get upgrade will cause the LCD to fail to work properly. In this case, you need to edit the config.txt file in the SD card and delete this sentence: dtoverlay=ads7846.

This LCD can be calibrated through the xinput-calibrator program. Note: The Raspberry Pi must be connected to the network, or else the program won"t be successfully installed.

Since the Raspberry Pi image and version are frequently updated, if you encounter a situation where the LCD cannot be used normally, please download the latest version of the image provided by us or from the official website of Raspberry Pi and install the latest driver provided by us.

When the Raspberry Pi starts normally, the PWR light is always on, and the ACT light is flashing. If it is found that both lights are always on, it may be that the TF card is not successfully programmed to the image or the TF card is in poor contact with the Raspberry Pi.

It is recommended to use a 5V 2.5A power adapter for the Raspberry Pi. If the Raspberry Pi is powered by the USB port of the PC, the Raspberry Pi may not be able to start normally due to an insufficient power supply.

raspberry pi turn off lcd display made in china

6) Power on the Raspberry Pi and wait for a few seconds until the LCD displays normally. And the touch function can also work after the system starts.

Note: If you use the 2021-10-30-raspios-bullseye-armhf image or the laster version, please add the line dtoverlay=rpi-backlight to the config.txt file and reboot.

raspberry pi turn off lcd display made in china

In this tutorial, we’ll install Alexa Smart Screen SDK on a Raspberry Pi 4 to essentially “make” our own version of the Echo Show. We’ll nickname this project, “PiShow.” This project is possible with the Amazon Alexa Smart Screen SDK, in addition to the Alexa Voice Service (AVS) SDK discussed in our previous article, How to Build an Alexa Speaker with Raspberry Pi.

Caveats about PiShowPiShow is not intended to be a replacement for the Echo Show. While many of the Echo Show capabilities are included with this version, significant capabilities including the ability to play videos natively were intentionally excluded from this build.

Alexa Skills are available on PiShow, and any visual screens within an Alexa Skill are also visible on PiShow. Furthermore, touchscreen functionality is enabled for Alexa Skills.

In our previous article, we addressed the cost differential of purchasing the AlexaPi project components vs. an Echo Dot. In this post, we fully disclose that it is less expensive to purchase an Echo Show vs. the components for PiShow.

If you already own a Raspberry Pi and a touchscreen, this could be a fun weekend STEM project. The fun is in the making and learning about how voice technology works behind the scenes.

HDMI monitor, 7” Raspberry Pi Touchscreen(opens in new tab), or 3.5” or 5” TFT screen(opens in new tab) - This project works with touchscreen capabilities.

Timing: Plan for a minimum of 3 hours to complete this project. The AVS Device SDK make install step takes around 2 hours depending on your Pi model and internet speed.

The majority of this tutorial is based on terminal commands. If you are not familiar with terminal commands on your Raspberry Pi, we highly recommend reviewing 25+ Linux Commands Raspberry Pi Users Need to Know first.

3. Attach your screen : I added a 7” Raspberry Pi Touchscreen for the PiShow version. But you could use a third-party touch screen that connects via either HDMI or via the GPIO pins. You can find such screens for as little as $23(opens in new tab) on Amazon. If you use a screen that’s non-touch, you can’t use those features.

9. Copy the config.json file from the AlexaPi project (/home/pi/) to the Install folder and generate the AlexaClientSDKConfig.json file.cp ~/config.json $HOME/sdk_folder/sdk-source/avs-device-sdk/tools/Install

23. This AlexaPi works slightly differently from the original AlexaPi project in that you’ll have to type ‘t’ followed by the Enter key before speaking to Alexa. Try it now. Press ‘t’ enter and say, “What time is it?”

31. You may need to authenticate the PiShow sample app as you did during step 22. If so, scroll up to find your code in the Terminal, then navigate tohttp://amazon.com/us/code(opens in new tab) and enter your code.

33. Give it a try!Quick note: index.html in Chromium must be the active window for PiShow to work. Hold down the ‘A’ key while you say, “Tell me the weather.”

Always use the same process: With /home/pi/sdk_folder/ss-build/modules/GUI/index.html as the active window, hold down the ‘A’ key while speaking to Alexa. You do not need to say the wake word, “Alexa.”

raspberry pi turn off lcd display made in china

The Raspberry Pi now has an official touch display. The 7-inch screen might not match your iPhone"s Retina display, but it can be used to turn the Pi into a touchscreen tablet and will be supported by a new on-screen keyboard integrated into the latest Raspbian OS.

The display, which costs £48, is the work of UK-based Inelco Hunter. It features an RGB 800x480 panel running at 60fps, with a 70-degree viewing angle and 10-finger touch.

Two connections from the board to the Pi are required -- one for power and one for data. The display doesn"t use HDMI, relying instead on either the Pi"s GPIO or DSI ports. When plugged into DSI port power for the display is supplied through microUSB.

Included with the screen is an adapter board, DSI Ribbon cable, screws to mount the adapter board and Pi to the back of the display, and jumper wires to power the board and Pi.Raspberry Pi Foundation

For an extra £10 a perspex frame that props up the Pi and touchscreen is included. The frame is available in six colours: red, blue, green, black, purple and orange.

Updates to the Raspbian OS will also be made to coincide with the launch of the touchscreen. On-screen keyboard functionality will be integrated into the latest version of the OS along with a range of touch-enabled educational and software programs for Pi.

The screen is compatible with Raspberry Pi 2 Model B, Raspberry Pi Model B+ and Raspberry PI Model A+. It will technically work with Model A and Model B boards, but the mounting screws won"t line up properly.

raspberry pi turn off lcd display made in china

Looking good! That"s nice to combine with this housing: https://www.sossolutions.nl/raspberry-p ... dinrail-2b (DIN-rail) so you can fit it into your meter cabinet.

HW: HP dc7900 USD running ESXi, RaspberryPi (few of it), AEON S2 USB stick, Fibaro modules (Dimmers, switches), 1-wire (DS18B20, DS2423), DSC Alarm with Envisalink ethernet module, MySensors, RFLink

Check the number in the table, this is your address. If there are more devices on your I2c bus, there will be several addresses visible. To be sure, unplug all other devices and the address left will be the LCD (or try them all)

HW: HP dc7900 USD running ESXi, RaspberryPi (few of it), AEON S2 USB stick, Fibaro modules (Dimmers, switches), 1-wire (DS18B20, DS2423), DSC Alarm with Envisalink ethernet module, MySensors, RFLink

raspberry pi turn off lcd display made in china

A number of people have used a Motorola Atrix Lapdock to add a screen and keyboard with trackpad to RasPi, in essence building a RasPi-based laptop computer. Lapdock is a very clever idea: you plug your Atrix smart phone into Lapdock and it gives you an 11.6" 1366 x 768 HDMI monitor with speakers, a keyboard with trackpad, two USB ports, and a large enough battery for roughly 5 hours of use. The smart phone acts as a motherboard with "good enough" performance. The advantage over a separate laptop or desktop computer is that you have one computing device so you don"t need to transfer files between your phone and your desk/laptop.

Unfortunately for Motorola, Lapdock was not successful (probably because of its US$500 list price) and Motorola discontinued it and sold remaining stock at deep discounts, with many units selling for US$50-100. This makes it a very attractive way to add a modest size HDMI screen to RasPi, with a keyboard/trackpad and rechargeable battery power thrown in for free.

Lapdock has two connectors that plug into an Atrix phone: a Micro HDMI D plug for carrying video and sound, and a Micro USB plug for charging the phone and connecting to the Lapdock"s internal USB hub, which talks to the Lapdock keyboard, trackpad, and two USB ports. With suitable cables and adapters, these two plugs can be connected to RasPi"s full-size HDMI connector and one of RasPi"s full-size USB A ports.

The RasPi forum has a long thread on Lapdock with many useful suggestions, photos, and links: I made a Raspberry PI Laptop. There"s also a good "blog entry at element14 with photos and suggestions of where to get cables and adapters: Raspberry Pi Laptop. TechRepublic has a tear-down article with photos of Lapdock internal components here: Cracking Open the Motorola Droid Bionic Lapdock. Paul Mano has a wealth of photos of Lapdock innards at Motorola Atrix Lapdock mod projects.

Lapdock uses the HDMI plug to tell if a phone is plugged in by seeing if the HDMI DDC/CEC ground pin is pulled low. If it"s not, Lapdock is powered off. As soon as you plug in a phone or RasPi, all the grounds short together and Lapdock powers itself on. However, it only does this if the HDMI cable actually connects the DDC/CEC ground line. Many cheap HDMI cables do not include the individual ground lines, and rely on a foil shield connected to the outer shells on both ends. Such a cable will not work with an unmodified Lapdock. There is a detailed "blog entry on the subject at element14: Raspberry Pi Lapdock HDMI cable work-around. The "blog describes a side-benefit of this feature: you can add a small power switch to Lapdock so you can leave RasPi attached all the time without draining the battery.

The Lapdock Micro USB plug is the upstream port of Lapdock"s internal USB hub, and connects to one of RasPi"s full-size USB ports. Lapdock is not USB compliant since it provides upstream power on its Vbus pin. Lapdock uses this to charge the Atrix phone. You can use this feature to power RasPi if you have a newer RasPi. The original RasPi rev 1 has 140 mA polyfuses F1 and F2 to protect the USB ports, which are too small for powering RasPi using upstream power. Newer RasPis replace F1 and F2 with zero Ohm jumpers or eliminate them entirely, which allows Lapdock to provide power. If you don"t mind modifying your original RasPi, you can add shorting jumpers over F1 and F2 or replace them with higher-current fuses.

What gets powered on depends on whether Lapdock is open or closed. If it"s open, the screen and all Lapdock USB ports are powered. If you close Lapdock, the screen and full-size USB ports are powered down, but the Micro USB still provides upstream power. This is for charging an Atrix phone. When you open or close Lapdock, the Micro USB power switches off for about a second so if your RasPi is connected it will reboot and you may have a corrupted file system. There"s discussion about this at the RasPi forum link, and someone has used a supercapacitor to work around the problem: Raspberry Pi lapdock tricks.

When you do not connect a HDMI monitor, the GPU in the PI will simply rescale (http://en.wikipedia.org/wiki/Image_scaling) anything that would have appeared on the HDMI screen to a resolution suitable for the TV standard chosen, (PAL or NTSC) and outputs it as a composite video signal.

The Broadcom BCM2835 only provides HDMI output and composite output. RGB and other signals needed by RGB, S-VIDEO or VGA connectors are however not provided, and the R-PI also isn"t designed to power an unpowered converter box.

Note that any conversion hardware that converts HDMI/DVI-D signals to VGA (or DVI-A) signals may come with either an external PSU, or expects power can be drawn from the HDMI port. In the latter case the device may initially appear to work, but there will be a problem, as the HDMI specs only provide in a maximum of 50mA (@ 5 Volt) from the HDMI port, but all of these adapters try to draw much more, up-to 500mA, in case of the R-PI there is a limit of 200mA that can be drawn safely, as 200mA is the limit for the BAT54 diode (D1) on the board. Any HDMI to VGA adapter without external PSU might work for a time, but then burn out D1, therefore Do not use HDMI converters powered by the HDMI port!

The solution is to either only use externally powered converters, or to replace D1 with a sturdier version, such as the PMEG2010AET, and to replace the power input fuse F3 with a higher rated one, as the current one is only 700mA, and the adapter may use 400mA itself. Also notice that the R-PI"s power supply also must be able to deliver the extra current.

Alternatively, it may be possible to design an expansion board that plugs into the LCD headers on the R.Pi. Here is something similar for Beagleboard:

The schematics for apples iPhone 3gs and 4g suggest they speak DSI, thus they can probably be connected directly. The older iPhones use a "Mobile Pixel Link" connection from National Semiconductor. The 3GS panel (480×320) goes as low as US $14.88, while the 4G one (960×640, possibly the LG LH350WS1-SD01, with specifications) can be had for US $17.99 or as low as US $14.28. The connectors used might be an issue, but this connector might fit. Additional circuitry might be necessary to provide the display with required 1.8V and 5.7V for operation, and an even higher voltage for the backlight.

The Raspberry Pi provides one clock lane and two data lanes on the S2 connector, as can be read from the schematics. It is currently unknown whether this is enough to drive the iPhone 4G screen, as that screen seems be driven with three data lanes in its original application.

I2C/SPI ADC can be used to interface 4 pin resistive Touch Screens, For example STMPE812A. Texas Instruments has a solution for 4 or 8 wire touchscreens using their rather cheap MSP4309.

Parallel interface displays can be found in many sizes, usually up to 7" and more. Parallel interfaces are usually 8 or 16-bits wide (sometimes 18 or 24-bit wide), plus some control-lines. The Raspberry Pi P1-connector does not contain enough GPIOs for 16-bit wide parallel displays, but this could be solved by borrowing some GPIOs from the CSI-connector or from P5 (on newer Raspberry Pis). Alternatively, some additional electronics (e.g. shift-registers or a CPLD) can be used, which could also improve the framerate or lower the CPU-load.

AdvaBoard RPi1: Raspberry Pi multifunction extension board, incl. an interface and software for 3.2"/5"/7" 16-bit parallel TFT-displays incl. touchscreen with up to 50 frames/s (3.2", 320x240)

Texy"s 2.8" TFT + Touch Shield Board: HY28A-LCDB display with 320 x 240 resolution @ 10 ~ 20fps, 65536 colors, assembled and tested £24 plus postage, mounts on GPIO pins nicely matching Pi board size, or via ribbon cable

raspberry pi turn off lcd display made in china

LCD screens are useful and found in many parts of our life. At the train station, parking meter, vending machines communicating brief messages on how we interact with the machine they are connected to. LCD screens are a fun way to communicate information in Raspberry Pi Pico projects and other Raspberry Pi Projects. They have a big bright screen which can display text, numbers and characters across a 16 x 2 screen. The 16 refers to 16 characters across the screen, and the 2 represents the number of rows we have. We can get LCD screens with 20x2, 20x4 and many other configurations, but 16x2 is the most common.

In this tutorial, we will learn how to connect an LCD screen, an HD44780, to a Raspberry Pi Pico via the I2C interface using the attached I2C backpack, then we will install a MicroPython library via the Thonny editor and learn how to use it to write text to the display, control the cursor and the backlight.

2. Import four librariesof pre-written code. The first two are from the Machine library and they enable us to use I2C and GPIO pins. Next we import the sleep function from Time enabling us to pause the code. Finally we import the I2C library to interact with the LCD screen.from machine import I2C, Pin

3. Create an objecti2c to communicate with the LCD screen over the I2C protocol. Here we are using I2C channel 0, which maps SDA to GP0 and SCL to GP1.i2c = I2C(0, sda=Pin(0), scl=Pin(1), freq=400000)

4. Create a variableI2C_ADDR,which will store the first I2C address found when we scan the bus. As we only have one I2C device connected, we only need to see the first [0] address returned in the scan.I2C_ADDR = i2c.scan()[0]

5. Create an objectlcdto set up the I2C connection for the library. It tells the library what I2C pins we are using, set via the i2c object, the address of our screen, set via I2C_ADDRand finally it sets that we have a screen with two rows and 16 columns.lcd = I2cLcd(i2c, I2C_ADDR, 2, 16)

6. Create a loopto continually run the code, the first line in the loop will print the I2C address of our display to Thonny’s Python Shell.while True:

8. Write two lines of textto the screen. The first will print “I2C Address:” followed by the address stored inside the I2C_ADDR object. Then insert a new line character “\n” and then write another line saying “Tom’s Hardware" (or whatever you want it to say). Pause for two seconds to allow time to read the text.lcd.putstr("I2C Address:"+str(I2C_ADDR)+"\n")

9. Clear the screenbefore repeating the previous section of code, but this time we display the I2C address of the LCD display using its hex value. The PCF8574T chip used in the I2C backpack has two address, 0x20 and 0x27 and it is useful to know which it is using, especially if we are using multiple I2C devices as they may cause a clash on the bus.lcd.clear()

11. To flash the LED backlight, use a for loopthat will iterate ten times. It will turn on the backlight for 0.2 seconds, then turn it off for the same time. The “Backlight Test” text will remain on the screen even with the backlight off.for i in range(10):

12. Turn the backlight back onand then hide the cursor. Sometimes, a flashing cursor can detract from the information we are trying to communicate.lcd.backlight_on()

13. Create a for loopthat will print the number 0 to 19 on the LCD screen. Note that there is a 0.4 second delay before we delete the value and replace it with the next. We have to delete the text as overwriting the text will make it look garbled.for i in range(20):

Save and runyour code. As with any Python script in Thonny, Click on File >> Saveand save the file to your Raspberry Pi Pico. We recommend calling it i2c_lcd_test.py. When ready, click on the Green play buttonto start the code and watch as the test runs on the screen.

raspberry pi turn off lcd display made in china

One of the most awaited plugins for Volumio is finall here: the touchscreen plugin. With it you can easily show the gorgeous Volumio UI on any display, included the official Raspberry PI Display, available on our Shop. Let’s see how to easily achieve a fantastic touchscreen for your favourite music player in less than 10 minutes. This tutorial will explain how to connect the Raspberry PI display and enable the Volumio UI with the plugin.

Assuming you’ve already downloaded and flashed Volumio to your Raspberry PI (we suggest to use the newest  Raspberry PI 3), the first step is the wiring:First, let’s attach the ribbon cable going from the Raspberry PI Display to the PI itself. On the Raspberry PI Side, make sure the blue part of the ribbon cable is facing outwards. Your final goal should look like this:

You’ll have 4 coloured cables to connect too. They are 5v, GND, SDA and SCL. You can look at the below image to identify the proper pin on the Pi itself.

Notoriously, feeding your PI with an adequate Power Supply is mandatory to have a reliable system. That’s especially true when we connect a power-hungry device like the Raspberry PI Display. Luckily, there’s a way to understand if your PSU is good enough: just power on your pi and observe the screen, if you see a coloured square on the top-right side of the screen, it means that power to your PI is not enough. Don’t you see it? Then all is good.

The installation will last about 7 minutes, so wait patiently until you see “Installation Complete”. Now you can enable or disable the Display output to your likings.

I must admit that altough this display is not particularly brilliant when it comes to resolution and colour accuracy, it looks indeed very nice with Volumio’s UI. Also, usability is very good on the Raspberry PI 3 and the UI runs smoothly also with big libraries… So, folks, enjoy!

If you don’t have a Raspberry PI, or you’re simply looking for alternatives to the Official Raspberry PI Display, there are at least two extra options for you:

The Odroid display is not only a viable alternative, it also have several advantages over its PI counterpart:Since it takes power from USB and video signal from HDMI, it can be used virtually with any Computer with an HDMI output, not just the Odroid or the Raspberry PI.

UPDATE: Lot of time since I published the original article. The Odroid 7” does not seem to work properly with Raspberry PI (not tested with the Odroid). So, if you’re looking for a display for the Raspberry PI, get the official one.

The Waveshare 7” display has become rapidly a widely adopted display, thanks to its cheap price. However this particular touchscreen has shown several reliability issues (altough this seems fixed in latest models, thanks to a firmware update), it requires a particular touchscreen driver which is not always included in major distros and its colour reproduction is not the best.

Here we are folks! Hope you found this article helpful, you can share via comment below how you use your Volumio’s touchscreen setup and if there are other display alternatives!

raspberry pi turn off lcd display made in china

The Raspberry Pi always attracts compatible third-party hardware and its new keyboard computer, the Raspberry Pi 400, is now available with touchscreen displays to make a complete system.

The Raspberry Pi 400 is a Chinese-made keyboard top with UK-made insides, including a Raspberry Pi 4 with 4GB of RAM, USB ports, a GPIO header, HDMI ports, Wi-Fi and Bluetooth.

The Pi 400 alone costs $70, but there"s also the $100 Raspberry Pi 400 Personal Computer Kit, which includes the Raspberry Pi 400, a USB mouse and USB-C power supply, a micro SD card with Raspberry Pi OS pre-installed, and a micro HDMI cable for the display.

The kit is almost complete except for a display. But, as spotted by CNX-Software, Shenzhen-based electronics seller Waveshare is now offering its own Pi 400 Personal Computer Kit bundle with a choice of two touchscreen displays.

The Raspberry Pi 400 Kit with a seven-inch HDMI touch display is available for $180. It"s an IPS display with a resolution of 1,024 x 600 pixels, a toughened glass cover, and five-point capacitive touch. It connects to the Pi 400 with an HDMI port but lacks a speaker.

The larger display option costs $267 and comes with a 13.3-inch display with a resolution of 1,920 x 1,080 pixels, 10-point capacitive touch and an embedded speaker. It also includes a separate power supply, whereas the smaller one runs off the power supply from the keyboard. Both displays include a kick stand but are only available with a UK keyboard for the moment.

The two display options push the Pi 400 towards laptop-like mobility, but since the computer lacks a battery, it can"t be considered as mobile as a laptop. Still, it is a more mobile way of configuring the Pi 400 than a desktop display and could help, say, students move the device between school and home.

ZDNet asked Raspberry Pi Trading whether it is planning to make a full Raspberry Pi laptop but the answer for now is that it"s focused on meeting demand for the keyboard in more languages.