raspberry pi turn off lcd display quotation

Hello, I have the new display up and it looks great. The one issue I have that I would like to find a solution to is how to force the monitor into sleep mode? I am in CLI mode and it seems to go into sleep mode and the CLI text vanishes after a time, but the backlight remains on with the little color indicator in the upper right corner.

No it"s not official. I don"t represent the RPF. It"s a "paraphrase" of something I"ve seen Gordon write either here in this forum or as an answer to a question on the original display launch blog post. I expect he"ll be along shortly to tell me I"m talking a load of nonsense or say I"m roughly right

I realize that this is going to be a request for "feature creep" (aka "creeping featurism"), but could this feature also permit the display to be dimmed on command?

What I want to do is have the display always on, but dim it at night as the intent is to use it as a bedside alarm clock and automatically (via cron) dimming it at night would be a very nice feature.

Any updates on this one? Also I forgot to mention that is we can turn it off, I would like to turn it back on via PRI sensor detection or via touching the screen to wake it up would be nice too..

Before using the official raspberry pi display, I also used a touchscreen (HDMI). It was possible to turn it on/off using a relais breakout board. The official display does not support this - Switching off the 5V and reconnecting it, will not switch the display on (I read a post here in this forum which explains why this happens). Would be a perfect solution to have this for the official display.

I was expecting to have brightness control, but writing values between 128 and 255 to [b]/sys/class/backlight/rpi_backlight/brightness[/b] does not seem to have any effect on brightness. Values below 128 unexpectedly turn the display off entirely. Not what I was expecting to see based on Gordon"s example where he echos a value of 80 to the backlight setting.

If you play with this feature, please be aware that the setting is persistent across boots. The display will show boot progress initially and then apply the last brightness setting. Be sure you have remote access working (e.g. ssh) before experimenting since it is hard to change the setting back when you can"t see the screen. Disconnecting the display to force HDMI output doesn"t help since the 7" display must be connected to change the backlight setting.

Another way I found to turn off the display is to set [b]/sys/class/backlight/rpi_backlight/bl_power[/b] to a value of 1. For example, the following turns off the display. Writing a value of 0 turns it back on.

My wish list is to have brightness control actually work and to have the display be powered off automatically at shutdown to avoid the vintage TV snow effect. An ugly defect in an otherwise excellent display.

Now, the strange thing is I re-enabled power saving and noticed that after 5 or 6 reboot cycles, whilst the PI display would switch off it didn"t reboot/crash and when my PIR was activated the screen would turn back on (due to power saving being deactivated) successfully.

When running this I initially get "permission denied" - even when I run it prefixed with SUDO. So I changed the permissions and as expected it shuts down the display....and also reboots the PI.

raspberry pi turn off lcd display quotation

TIP: I define the above as backlight_off and backlight_on in ~/.bash_aliases. Be sure to save that file elsewhere, since you"ll lose it if you re-image.

First save the above as backlight_off.sh and backlight_on.sh (with proper #!/bin/sh shebang header), maybe saved to /usr/local/bin/ if you want it available in your $PATH

There are downsides to this, and you may need to run your Python script as sudo (not a good idea, generally) or make configuration changes to your Pi. You"ll learn a bit going down this rabbit hole..

raspberry pi turn off lcd display quotation

some jokes (dark jokes preferably, because I"m a horrible human being) displayed from JokeApi. I basically copied the example script and started from there.

logging.info(f"{quote},\n Font size: {size}, Line count: {line_length}, Quote height: {quote_height}, Offset: {offset_y}, Screen height: {screen_height}")

raspberry pi turn off lcd display quotation

You may remember from the Get_iplayer installation instructions that I recommended not running the FFMPEG compile via ssh. The reason for this was because when you do something in ssh, if you close the ssh session it kills the process – game over (and that compile takes 3.5 hours).

Well I just found out about an excellent little program called screen, which enables you to run processes within a “terminal tty instance”. This allows you to disconnect and reconnect the instance containing the process. You can even log off the ssh session altogether and connect from a different computer, then reconnect the terminal tty instance and the process will still be there doing whatever it was doing when you disconnected. Cool.

If you only have one screen instance open, just -r will be enough. If you have more than one, you have to specify which one you want to reconnect with by typing its name after the -r

raspberry pi turn off lcd display quotation

In the previous article, I described the steps needed to install an LCD touchscreen on the Raspberry Pi. In this article, I will show you how to adjust the screen rotation of the LCD to landscape mode, and will show you how to calibrate the touchscreen pointer for optimal accuracy. Just follow the steps below to compete the process of setting up your Raspberry Pi LCD touchscreen:

However, if you try to touch the screen now, you will find that the pointer movement does not correspond to your finger movement. This is because the LCD screen driver and the touchscreen controller driver have separate settings for screen rotation. We need to change the rotation of the touchscreen controller driver to match the rotation of the LCD screen driver.

After the Pi finishes rebooting, you should notice that when you move your finger across the touch screen, the pointer should follow correctly in both axes. If you are using the Raspberry Pi 2 Model B, you will need to complete the calibration steps below before the pointer follows your finger correctly (and make sure that you have enabled startx to load automatically – see step 6 in this article).

You can rotate the screen 90 degrees (as we did in this tutorial) and the power connector will be at the bottom of the screen, but you can also rotate it 270 degrees so that the power connector is at the top of the screen. To do this, simply enter fbtft_device.rotate=270 in the /boot/cmdline.txt file. Then change the DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 0 1 line in the /etc/X11/xinit/xinitrc file to DISPLAY=:0 xinput --set-prop "ADS7846 Touchscreen" "Evdev Axis Inversion" 1 0. All you need to do is switch the values of the 0 and 1 at the end of this line.

Now that we have our LCD touchscreen up and running, the final step in the installation is the calibration of touch control. This will make the pointer much more accurate and easier to use.

4. Now we can use ts_calibrate. Enter ts_calibrate at the command prompt (make sure you are still in root mode) to run the ts_calibrate program. The program will consecutively display five crosses on different parts of the screen, which you need to touch with as much precision as possible:

This is kind of a long process, but it is well worth it if you want to get the LCD touchscreen set up properly. So if you have any trouble setting this up or have anything to say, please leave a comment below. Also, if you found this article useful, please share it with your friends!

raspberry pi turn off lcd display quotation

Connecting an LCD display to your Raspberry Pi is sure to take any project up a notch. They’re great for displaying sensor readings, songs or internet radio stations, and stuff from the web like tweets and stock quotes. Whatever you choose to display, LCDs are a simple and inexpensive way to do it.

In this tutorial, I’ll show you two different ways to connect an LCD to the Raspberry Pi with the GPIO pins. The first way I’ll show you is in 8 bit mode, which uses 10 GPIO pins. Then I’ll show you how to connect it in 4 bit mode, and that uses only 6 pins. After we get the LCD hooked up I’ll show you how to program it with C, using Gordon Henderson’s WiringPi LCD library.

I’ll show you how to print text to the display, clear the screen, position the text, and control the cursor. You’ll also see how to scroll text, create custom characters, print data from a sensor, and print the date, time and IP address of your Pi.

There’s another way to connect your LCD that uses only two wires, called I2C. To see how to do that, check out our tutorial How to Set Up an I2C LCD on the Raspberry Pi.

Most people probably want to connect their LCD in 4 bit mode since it uses less wires. But in case you’re interested, I’ll show you how to connect it in 8 bit mode as well.

In 8 bit mode, each command or character is sent to the LCD as a single byte (8 bits) of data. The byte travels in parallel over 8 data wires, with each bit travelling through it’s own wire. 8 bit mode has twice the bandwidth as 4 bit mode, which in theory translates to higher data transfer speed. The main downside to 8 bit mode is that it uses up a lot of GPIO pins.

In 4 bit mode, each byte of data is sent to the LCD in two sets of 4 bits, one after the other, in what are known as the upper bits and lower bits. Although 8 bit mode transfers data about twice as fast as 4 bit mode, it takes a longer time for the LCD driver to process each byte than it takes to transmit the byte. So in reality, there isn’t really a noticeable difference in speed between 4 bit mode and 8 bit mode.

If you’ve never worked with C programs on the Raspberry Pi, you may want to read our article How to Write and Run a C Program on the Raspberry Pi first. It will explain how to write, compile, and run C programs.

WiringPi is a C module that makes it easy to program the LCD. If you already have WiringPi installed on your Pi, you can skip this section. If not, follow the steps below to install it:

WiringPi has it’s own pin numbering system that’s different from the Broadcom (BCM) and RPi physical (BOARD) pin numbering systems. All of the programs below use the WiringPi pin numbers.

To use different pins to connect the LCD, change the pin numbers defined in lines 5 to 14. You’ll need to convert the WiringPi pin numbers to the physical pin numbers of the Raspberry Pi. See here for a diagram you can use to convert between the different numbering systems.

To use the LCD in 4 bit mode, we need to set the bit mode number to 4 in the initialization function (line 20 below). The following code prints “Hello, world!” to the screen in 4 bit mode:

By default, text is printed to the screen at the top row, second column. To change the position, use lcdPosition(lcd, COLUMN, ROW). On a 16×2 LCD, the rows are numbered from 0 to 1, and the columns are numbered from 0 to 15.

The function lcdClear(lcd) clears the screen and sets the cursor position at the top row, first column. This program prints “This is how you” for two seconds, clears the screen, then prints “clear the screen” for another two seconds:

Each LCD character is a 5×8 array of pixels. You can create any pattern you want and display it on the LCD as a custom character. Up to 8 custom characters can be stored in the LCD memory at a time. This website has a nice visual way to generate the bit array used to define custom characters.

To print a single custom character, first define the character. For an example of this see lines 12 to 19 below. Then use the function lcdCharDef(lcd, 2, omega) to store the character in the LCD’s memory. The number 2 in this example is one of the 8 locations in the LCD’s character memory. The 8 locations are numbered 0-7. Then, print the character to the display with lcdPutchar(lcd, 2), where the number 2 is the character stored in memory location 2.

Here’s an example of using multiple custom characters that prints the Greek letters omega, pi, and mu, plus thermometer and water drop symbols for temperature and humidity:

As an example to show you how to display readings from a sensor, this program prints temperature and humidity readings to the LCD using a DHT11 temperature and humidity sensor. To see how to set up the DHT11 on the Raspberry Pi, see our article How to Set Up the DHT11 Humidity Sensor on the Raspberry Pi.

Hopefully this helped you get your LCD up and running on your Raspberry Pi. The programs above are just basic examples, so try combining them to create interesting effects and animations.

If you have any problems or questions about installing the LCD or programming it, just leave a comment below. And don’t forget to subscribe to get an email when we publish new articles. Talk to you next time!

raspberry pi turn off lcd display quotation

Both the display driver board and the Pi need power- you can bridge them using the red and black jump wires supplied from the 5v and GND on the display driver board to the 5V and GND on the Pi ( find them here: http://pi.gadgetoid.com/pinout ) then plug the power into the display board.

If your touchscreen or display doesn’t work, triple check the FPC connectors - I’ve tested a lot of “not working” LCDs to find them working perfectly. In all cases the cables should be pushed in firmly and the clips secured fully- the larger FPC for the display ribbon takes quite a bit of force. I’ve posted a guide to the FPC connectors here: http://forums.pimoroni.com/t/raspberry-pi-official-7-touchscreen-assembly/1132

If you’ve got any reservations about connecting wires to your Pi’s GPIO, I recommend our split dial microB USB power cable: https://shop.pimoroni.com/products/split-microb-usb-power-cable

Make sure you update your Pi first, you’ll need the latest software and the Raspbian OS in order to drive the screen. A full reinstall of Raspbian Jessie works best, you can find it here: https://www.raspberrypi.org/downloads/raspbian/

Follow the linked Installation Guide, and make sure you go into Menu -> Preferences -> Raspberry Pi Configuration and expand your filesystem when you first boot up your Pi.

There’s no better place to learn everything you might need to know about the screen than the Raspberry Pi blog post which you can find here: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/

This is unfortunately a side-effect of many developers assuming a minimum screen resolution of 1024x768 pixels. You can usually reveal hidden buttons and fields by;

Yes and no. As explained in the official Pi blog on the subject, only applications which know how to output over HDMI can be used. An example is given for OMXPlayer: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/

It is possible to use both display outputs at the same time, but it does require software to choose the right display. Omxplayer is one application that has been modified to enable secondary display output.

Please note, you may need to increase the amount of memory allocated to the GPU to 128MB if the videos are 1080P, adjust the gpu_mem value in config.txt for this. The Raspberry Pi headline figures are 1080P30 decode, so if you are using two 1080P clips it may not play correctly depending on the complexity of the videos.

Currently you can’t run a dual display X desktop, and we don’t know when or if this will be possible. If you know how to make it happen, you can chime in on this thread: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120541

Note: An update has been pushed to Raspbian to flip the screen ( rotate it by 180 degrees ) for a better desktop viewing angle. This makes it upside-down in our stand and the official Pi stand, so you’ll need to change a setting to flip it back.

With the software updated it’s actually reasonably straight-forward to get the touchscreen working with a Model A or B Raspberry Pi. First you must make two additional connections between your Pi’s GPIO and the touchscreen: these are the SDA ( http://pinout.xyz/pinout/pin3_gpio2 ) and SCL ( http://pinout.xyz/pinout/pin5_gpio3 ) lines ( which you can connect using the supplied green and yellow wires ).

Note: This will give your i2c over to the Pi for running the LCD/Touchscreen and you wont be able to use any other i2c devices or add-on boards which require i2c.

If you absolutely need an extra 10 degrees of vertical viewing you can fit a Pibow Coupe to the back of the LCD screen and remove the legs. This lets it rest slightly further back while still remaining stable enough for everyday use. It also fits pretty neatly into a bag, too.

If you get a black screen, it likely means your DSI cable ( the one between the Pi and the driver board ) isn’t seated correctly or is… backwards ( I’m not even sure this is a real thing! ). We’ve had some success reversing the cable in this case- switching which end plugs into which part.

I’ve tried a number of USB cables from the USB port on the LCD driver board to the power input of my Pi and have invariably seen the little rainbow square indicating undervoltage in the top right hand corner of the LCD. (Note: This has seen been updated to a lightning bolt indicating the same)

I have put together a prototype split cable, and we’re looking into sourcing microUSB cable splitters to use in conjunction with the official Pi power supply as the most reliable solution.

Chris_c on the official Pi forums has discovered how to enable right-click with a simple configuration change. This allows you to press and hold on the touchscreen to trigger a right click.

As Clive demonstrates below, you can make a much more compact setup by flipping your Pi and mounting it with the ports facing towards the back of the LCD.

A standard GPIO ribbon cable will not fit between the two metal risers, so it’s impossible to route a Black HAT Hack3r or Cobbler out from the display in this position, but there might be cables out there that fit.

Gasp! Okay, I can see why you’d want to do this! I couldn’t put it better than the great step-by-step forum post here: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120793

You can find a technical drawing with dimensions of the display and mount hole locations here: https://github.com/raspberrypi/documentation/tree/master/hardware/display

Make sure you mount your screen by screwing, gently, into the mounting holes either side of the metal frame, or for the driver board. Don’t attempt to mount the screen by the glass front. The tape bonding the glass to the rest of the screen isn’t designed to carry the weight of the screen, your Pi and whatever else might be connected.

The Compute Module IO board (for CM and CM3) includes a connector for the screen, see: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md

raspberry pi turn off lcd display quotation

Both the display driver board and the Pi need power- you can bridge them using the red and black jump wires supplied from the 5v and GND on the display driver board to the 5V and GND on the Pi ( find them here: http://pi.gadgetoid.com/pinout ) then plug the power into the display board.

If your touchscreen or display doesn’t work, triple check the FPC connectors - I’ve tested a lot of “not working” LCDs to find them working perfectly. In all cases the cables should be pushed in firmly and the clips secured fully- the larger FPC for the display ribbon takes quite a bit of force. I’ve posted a guide to the FPC connectors here: http://forums.pimoroni.com/t/raspberry-pi-official-7-touchscreen-assembly/1132

If you’ve got any reservations about connecting wires to your Pi’s GPIO, I recommend our split dial microB USB power cable: https://shop.pimoroni.com/products/split-microb-usb-power-cable

Make sure you update your Pi first, you’ll need the latest software and the Raspbian OS in order to drive the screen. A full reinstall of Raspbian Jessie works best, you can find it here: https://www.raspberrypi.org/downloads/raspbian/

Follow the linked Installation Guide, and make sure you go into Menu -> Preferences -> Raspberry Pi Configuration and expand your filesystem when you first boot up your Pi.

There’s no better place to learn everything you might need to know about the screen than the Raspberry Pi blog post which you can find here: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/

This is unfortunately a side-effect of many developers assuming a minimum screen resolution of 1024x768 pixels. You can usually reveal hidden buttons and fields by;

Yes and no. As explained in the official Pi blog on the subject, only applications which know how to output over HDMI can be used. An example is given for OMXPlayer: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/

It is possible to use both display outputs at the same time, but it does require software to choose the right display. Omxplayer is one application that has been modified to enable secondary display output.

Please note, you may need to increase the amount of memory allocated to the GPU to 128MB if the videos are 1080P, adjust the gpu_mem value in config.txt for this. The Raspberry Pi headline figures are 1080P30 decode, so if you are using two 1080P clips it may not play correctly depending on the complexity of the videos.

Currently you can’t run a dual display X desktop, and we don’t know when or if this will be possible. If you know how to make it happen, you can chime in on this thread: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120541

Note: An update has been pushed to Raspbian to flip the screen ( rotate it by 180 degrees ) for a better desktop viewing angle. This makes it upside-down in our stand and the official Pi stand, so you’ll need to change a setting to flip it back.

With the software updated it’s actually reasonably straight-forward to get the touchscreen working with a Model A or B Raspberry Pi. First you must make two additional connections between your Pi’s GPIO and the touchscreen: these are the SDA ( http://pinout.xyz/pinout/pin3_gpio2 ) and SCL ( http://pinout.xyz/pinout/pin5_gpio3 ) lines ( which you can connect using the supplied green and yellow wires ).

Note: This will give your i2c over to the Pi for running the LCD/Touchscreen and you wont be able to use any other i2c devices or add-on boards which require i2c.

If you absolutely need an extra 10 degrees of vertical viewing you can fit a Pibow Coupe to the back of the LCD screen and remove the legs. This lets it rest slightly further back while still remaining stable enough for everyday use. It also fits pretty neatly into a bag, too.

If you get a black screen, it likely means your DSI cable ( the one between the Pi and the driver board ) isn’t seated correctly or is… backwards ( I’m not even sure this is a real thing! ). We’ve had some success reversing the cable in this case- switching which end plugs into which part.

I’ve tried a number of USB cables from the USB port on the LCD driver board to the power input of my Pi and have invariably seen the little rainbow square indicating undervoltage in the top right hand corner of the LCD. (Note: This has seen been updated to a lightning bolt indicating the same)

I have put together a prototype split cable, and we’re looking into sourcing microUSB cable splitters to use in conjunction with the official Pi power supply as the most reliable solution.

Chris_c on the official Pi forums has discovered how to enable right-click with a simple configuration change. This allows you to press and hold on the touchscreen to trigger a right click.

As Clive demonstrates below, you can make a much more compact setup by flipping your Pi and mounting it with the ports facing towards the back of the LCD.

A standard GPIO ribbon cable will not fit between the two metal risers, so it’s impossible to route a Black HAT Hack3r or Cobbler out from the display in this position, but there might be cables out there that fit.

Gasp! Okay, I can see why you’d want to do this! I couldn’t put it better than the great step-by-step forum post here: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120793

You can find a technical drawing with dimensions of the display and mount hole locations here: https://github.com/raspberrypi/documentation/tree/master/hardware/display

Make sure you mount your screen by screwing, gently, into the mounting holes either side of the metal frame, or for the driver board. Don’t attempt to mount the screen by the glass front. The tape bonding the glass to the rest of the screen isn’t designed to carry the weight of the screen, your Pi and whatever else might be connected.

The Compute Module IO board (for CM and CM3) includes a connector for the screen, see: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md

raspberry pi turn off lcd display quotation

matchbox-window-manager & unclutter -idle 0.1 & xset s off xset -dpms xset s noblank su $TOUCHUI_USER -c "chromium-browser $(echo $CHROME_ARGS|tr -d "\n")"

# Start window manager, unclutter to remove cursor and start chromium as specific user matchbox-window-manager & unclutter -idle 0.1 & xset s off & xset -dpms & xset s noblank & su $TOUCHUI_USER -c "chromium-browser $(echo $CHROME_ARGS|tr -d "\n")"

raspberry pi turn off lcd display quotation

Rather than plug your Raspberry Pi into a TV, or connect via SSH (or remote desktop connections via VNC or RDP), you might have opted to purchase a Raspberry Pi touchscreen display.

Straightforward to set up, the touchscreen display has so many possibilities. But if you"ve left yours gathering dust in a drawer, there"s no way you"re going to experience the full benefits of such a useful piece of kit.

The alternative is to get it out of the drawer, hook your touchscreen display to your Raspberry Pi, and reformat the microSD card. It"s time to work on a new project -- one of these ideas should pique your interest.

Let"s start with perhaps the most obvious option. The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you"ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.

Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels -- images from /r/EarthPorn and quotes from /r/ShowerThoughts -- and mixes them together.

Rather than wait for the 24th century, why not bring the slick user interface found in Star Trek: The Next Generation to your Raspberry Pi today? While you won"t be able to drive a dilithium crystal powered warp drive with it, you can certainly control your smart home.

In the example above, Belkin WeMo switches and a Nest thermostat are manipulated via the Raspberry Pi, touchscreen display, and the InControlHA system with Wemo and Nest plugins. ST:TNG magic comes from an implementation of the Library Computer Access and Retrieval System (LCARS) seen in 1980s/1990s Star Trek. Coder Toby Kurien has developed an LCARS user interface for the Pi that has uses beyond home automation.

Building a carputer has long been the holy grail of technology DIYers, and the Raspberry Pi makes it far more achievable than ever before. But for the carputer to really take shape, it needs a display -- and what better than a touchscreen interface?

Setting up a Raspberry Pi carputer also requires a user interface, suitable power supply, as well as working connections to any additional hardware you employ. (This might include a mobile dongle and GPS for satnav, for instance.)

Now here is a unique use for the Pi and its touchscreen display. A compact, bench-based tool for controlling hardware on your bench (or kitchen or desk), this is a build with several purposes. It"s designed to help you get your home automation projects off the ground, but also includes support for a webcam to help you record your progress.

The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display -- plus a thermal printer -- you can build a versatile photo booth!

Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!

How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.

Naturally, a larger display would deliver the best results, but if you"re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.

Many existing projects are underway, and we took the time to compile six of them into a single list for your perusal. Use this as inspiration, a starting point, or just use someone else"s code to build your own information-serving smart mirror.

Want to pump some banging "toons" out of your Raspberry Pi? We"ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it"s a lot easier to find the station you want to listen to!

This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.

Alternatively, you might prefer the option to integrate your Raspberry Pi with your home audio setup. The build outlined below uses RuneAudio, a Bluetooth speaker, and your preferred audio HAT or shield.

Requiring the ProtoCentral HealthyPi HAT (a HAT is an expansion board for the Raspberry Pi) and the Windows-only Atmel software, this project results in a portable device to measure yours (or a patient"s) health.

With probes and electrodes attached, you"ll be able to observe and record thanks to visualization software on the Pi. Whether this is a system that can be adopted by the medical profession remains to be seen. We suspect it could turn out to be very useful in developing nations, or in the heart of infectious outbreaks.

We were impressed by this project over at Hackster.io, but note that there are many alternatives. Often these rely on compact LCD displays rather than the touchscreen solution.

Many home automation systems have been developed for, or ported to, the Raspberry Pi -- enough for their own list. Not all of these feature a touchscreen display, however.

One that does is the Makezine project below, that hooks up a Raspberry Pi running OpenHAB, an open source home automation system that can interface with hundreds of smart home products. Our own guide shows how you can use it to control some smart lighting. OpenHAB comes with several user interfaces. However, if they"re not your cup of tea, an LCARS UI theme is available.

Another great build, and the one we"re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn"t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.

raspberry pi turn off lcd display quotation

For instance, a Raspberry Pi 3 Model B has a higher power requirement (2.5A) and, thus, necessitates a specific power brick. It will definitely still work, but a Raspberry Pi 2 Model B

The ideal board for the job is the £9.30 or AU$14.96) for the board. To set up and connect the Raspberry Pi, you will need a short HDMI cable and a microSD card of at least 8GB.

Finally, you will need supplies to mount the Raspberry Pi, the monitor"s power supply, all the cables and the female end of the extension cord on the back of the monitor. I used two-sided mounting tape. And I used duct tape to keep the excess cord attached as tightly to the back of the monitor as possible.

Typically, there isn"t enough room to install a Raspberry Pi inside the original backplate -- unless you"re using a Pi Zero W. Even then, the excess cords and the power supply for the monitor won"t fit. The monitor will sit closer to the wall without the back cover, so it"s best to discard it.

Connect the Raspberry Pi to the HDMI port on the monitor and -- without plugging in the extension cord -- connect the power cables to both the Raspberry Pi and the monitor. Use this to figure out the best layout of all the parts to keep everything as slim as possible.

As for the picture-hanging wire, there were no decent places to connect on the Dell monitor I used, so I drilled one hole on either side of the rear bezel that held the back cover on. This is where you might have to get creative, since no two monitors are the same.

Surprisingly, this project doesn"t require any special code for the Raspberry Pi. In fact, it will be running on Raspbian OS, a Linux distribution specifically for the Raspberry Pi.

DAKboard is the web interface used to display all the information on the monitor. It can be set up from the Raspberry Pi or from a computer, phone or tablet.

For background options, you can choose between a host of different sources, such as Instagram, Google Photos, Dropbox, OneDrive, Bing, Flickr, etc. After that, you can connect up to two ICAL calendars for free, select between Yahoo and AccuWeather for the forecast source, add a single RSS feed for rotating headlines, and connect Todoist, Wunderlist or Microsoft To-Do as a task manager to display and add a custom message to the DAKboard.

The idea is that, when powered on, the Raspberry Pi will automatically boot to your DAKboard. If you want to hang the monitor vertically instead of horizontally, you will also need to rotate the display.

First, power on the Raspberry Pi, open Terminal and type in sudo raspi-config. Once in the configuration tool:Go to Boot Options > Desktop Autologin Desktop GUI and press Enter.

Next, you will want to edit the config.txt file to rotate the screen 90 degrees. In Terminal, type sudo nano /boot/config.txt and press Enter. This opens the config file in the nano text editor. Add these lines to the end of the file (without the bullet points):# Display orientation. Landscape = 0, Portrait = 1

Finally, to force the screen to stay on and automatically boot with dakboard.com loaded in Chromium, type sudo nano ~/.config/lxsession/LXDE-pi/autostart and press Enter. Inside nano, add these four lines (without the bullet points):@xset s off

Once the Raspberry Pi has fully rebooted, use a connected mouse and keyboard to log in to DAKboard. Click Login and enter your credentials. Your DAKboard should load with your previously configured settings. If you want to change anything, click the settings cog in the upper right corner of the display (move the cursor to make it appear).

Hang the monitor on the wall and you"ll have yourself a digital clock and calendar, the week"s forecast, important headlines and beautiful pictures on display all day.

If you would prefer the monitor to turn on and off at different times to save power, DAKboard includes instructions on how to set that up with a script.

DAKboard is a great way to set up a Raspberry Pi display in a hurry. It"s easy and user-friendly and it looks great. However, it has its limitations and encourages users to upgrade to Premium to unlock the best features.