connect raspberry pi to tft lcd made in china
At this stage, any panel would need to connect either to the HDMI or VGA port. Although there is a dedicated TFT connector on the board it"s not currently available for use. Foundation hopes to sell/promote a tested TFT once all tht other stuff is done!
If you just want to use a display without all of the challenge of getting a display to work from the various pins, you might want to search around for small displays that take either composite or HDMI inputs. Adafruit.com has several displays that take composite. I have a MP4 player from JXD that is fairly small and does video input that I"ve been meaning to use when I get to the r-pi.
I have started a project writing framebuffer drivers for small TFT LCDs. I have written a helper module that greatly simplifies writing such a driver. That is if the display is RGB565 and uses SPI. I have ordered two more modules that I will try and make drivers for:
notro wrote:I have started a project writing framebuffer drivers for small TFT LCDs. I have written a helper module that greatly simplifies writing such a driver. That is if the display is RGB565 and uses SPI. I have ordered two more modules that I will try and make drivers for:
Key information: This device"s controller is an ILI9486, which is compatible with ILI9481. The driver for ILI9481 was already in my Raspberry Pi. Here"s what I did to make it work:
The second command sets the console (tty1) to map its output to the framebuffer (buffer 1). That"s why the parameters are 1 1. You can map any tty to the LCD.
I don"t care about the touch-screen, so I didn"t set it up. All I need this is to show me the IP address of the Raspberry Pi so I can connect through SSH. (This is an issue you may encounter only if you find your RPi connecting to WiFi where you cannot control the IP address assignments and with ridiculously short lease times.)
Well, I bought a Chinese LCD TFT touchscreen, 3.5 inches, but I cant get it working, because I cant find the drivers. The only thing it says in the back is www.mcufriend.com, but the page is not available. I tried following this tutorial, but the screen only appears white.
Connecting an LCD to your Raspberry Pi will spice up almost any project, but what if your pins are tied up with connections to other modules? No problem, just connect your LCD with I2C, it only uses two pins (well, four if you count the ground and power).
In this tutorial, I’ll show you everything you need to set up an LCD using I2C, but if you want to learn more about I2C and the details of how it works, check out our article Basics of the I2C Communication Protocol.
BONUS: I made a quick start guide for this tutorial that you can download and go back to later if you can’t set this up right now. It covers all of the steps, diagrams, and code you need to get started.
There are a couple ways to use I2C to connect an LCD to the Raspberry Pi. The simplest is to get an LCD with an I2C backpack. But the hardcore DIY way is to use a standard HD44780 LCD and connect it to the Pi via a chip called the PCF8574.
The PCF8574 converts the I2C signal sent from the Pi into a parallel signal that can be used by the LCD. Most I2C LCDs use the PCF8574 anyway. I’ll explain how to connect it both ways in a minute.
I’ll also show you how to program the LCD using Python, and provide examples for how to print and position the text, clear the screen, scroll text, print data from a sensor, print the date and time, and print the IP address of your Pi.
I2C (inter-integrated circuit) is also known as the two-wire interface since it only uses two wires to send and receive data. Actually it takes four if you count the Vcc and ground wires, but the power could always come from another source.
Connecting an LCD with an I2C backpack is pretty self-explanatory. Connect the SDA pin on the Pi to the SDA pin on the LCD, and the SCL pin on the Pi to the SCL pin on the LCD. The ground and Vcc pins will also need to be connected. Most LCDs can operate with 3.3V, but they’re meant to be run on 5V, so connect it to the 5V pin of the Pi if possible.
If you have an LCD without I2C and have a PCF8574 chip lying around, you can use it to connect your LCD with a little extra wiring. The PCF8574 is an 8 bit I/O expander which converts a parallel signal into I2C and vice-versa. The Raspberry Pi sends data to the PCF8574 via I2C. The PCF8574 then converts the I2C signal into a 4 bit parallel signal, which is relayed to the LCD.
Before we get into the programming, we need to make sure the I2C module is enabled on the Pi and install a couple tools that will make it easier to use I2C.
Now we need to install a program called I2C-tools, which will tell us the I2C address of the LCD when it’s connected to the Pi. So at the command prompt, enter sudo apt-get install i2c-tools.
Next we need to install SMBUS, which gives the Python library we’re going to use access to the I2C bus on the Pi. At the command prompt, enter sudo apt-get install python-smbus.
Now reboot the Pi and log in again. With your LCD connected, enter i2cdetect -y 1 at the command prompt. This will show you a table of addresses for each I2C device connected to your Pi:
We’ll be using Python to program the LCD, so if this is your first time writing/running a Python program, you may want to check out How to Write and Run a Python Program on the Raspberry Pi before proceeding.
There are a couple things you may need to change in the code above, depending on your set up. On line 19 there is a function that defines the port for the I2C bus (I2CBUS = 0). Older Raspberry Pi’s used port 0, but newer models use port 1. So depending on which RPi model you have, you might need to change this from 0 to 1.
The function mylcd.lcd_display_string() prints text to the screen and also lets you chose where to position it. The function is used as mylcd.lcd_display_string("TEXT TO PRINT", ROW, COLUMN). For example, the following code prints “Hello World!” to row 2, column 3:
On a 16×2 LCD, the rows are numbered 1 – 2, while the columns are numbered 0 – 15. So to print “Hello World!” at the first column of the top row, you would use mylcd.lcd_display_string("Hello World!", 1, 0).
You can use the time.sleep() function on line 7 to change the time (in seconds) the text stays on. The time the text stays off can be changed in the time.sleep() function on line 9. To end the program, press Ctrl-C.
You can create any pattern you want and print it to the display as a custom character. Each character is an array of 5 x 8 pixels. Up to 8 custom characters can be defined and stored in the LCD’s memory. This custom character generator will help you create the bit array needed to define the characters in the LCD memory.
The code below will display data from a DHT11 temperature and humidity sensor. Follow this tutorial for instructions on how to set up the DHT11 on the Raspberry Pi. The DHT11 signal pin is connected to BCM pin 4 (physical pin 7 of the RPi).
By inserting the variable from your sensor into the mylcd.lcd_display_string() function (line 22 in the code above) you can print the sensor data just like any other text string.
These programs are just basic examples of ways you can control text on your LCD. Try changing things around and combining the code to get some interesting effects. For example, you can make some fun animations by scrolling with custom characters. Don’t have enough screen space to output all of your sensor data? Just print and clear each reading for a couple seconds in a loop.
Let us know in the comments if you have any questions or trouble setting this up. Also leave a comment if you have any other ideas on how to get some cool effects, or just to share your project!
Raspberry Pi is a Palm Size computer that comes in very handy when prototyping stuff that requires high computational power. It is being extensively used for IOT hardware development and robotics application and much more memory hunger applications. In most of the projects involving the Pi it would be extremely useful if the Pi had a display through which we can monitor the vitals of our project.
The pi itself has a HDMI output which can be directly connected to a Monitor, but in projects where space is a constrain we need smaller displays. So in this tutorial we will learn how we can interface the popular 3.5 inch Touch Screen TFT LCD screen from waveshare with Raspberry pi. At the end of this tutorial you will have a fully functional LCD display with touch screen on top of your Pi ready to be used for your future projects.
It is assumed that your Raspberry Pi is already flashed with an operating system and is able to connect to the internet. If not, follow the Getting started with Raspberry Pi tutorial before proceeding.
It is also assumed that you have access to the terminal window of your raspberry pi. In this tutorial we will be using Putty in SSH mode to connect to the Raspberry Pi. You can use any method but you should somehow be able to have access to your Pi’s terminal window.
Connecting your 3.5” TFT LCD screen with Raspberry pi is a cake walk. The LCD has a strip of female header pins which will fit snug into the male header pins. You just have to align the pins and press the LCD on top of the Pi to make the connection. Once fixed properly you Pi and LCD will look something like this below. Note that I have used a casing for my Pi so ignore the white box.
For people who are curious to know what these pins are! It is used to establish a SPI communication between the Raspberry Pi and LCD and also to power the LCD from the 5V and 3.3V pin of the raspberry Pi. Apart from that it also has some pins dedicated for the touch screen to work. Totally there are 26 pins, the symbol and description of the pins are shown below
Now, after connecting the LCD to PI, power the PI and you will see a blank white screen on the LCD. This is because there are no drivers installed on our PI to use the connected LCD. So let us open the terminal window of Pi and start making the necessary changes. Again, I am using putty to connect to my Pi you can use your convenient method.
Step 2: Navigate to Boot Options -> Desktop/CLI and select option B4 Desktop Autologin Desktop GUI, automatically logged in as ‘pi’ user as highlighted in below image. This will make the PI to login automatically from next boot without the user entering the password.
Step 3: Now again navigate to interfacing options and enable SPI as show in the image below. We have to enable the SPI interface because as we discussed the LCD and PI communicates through SPI protocol
Step 4: Click on this waveshare driver link to download the driver as a ZIP file. Then move the ZIP file to you PI OS. I used Filezilla to do this, but you can also use a pen drive and simple copy paste work. Mine was placed in the path /home/pi.
Step 7: Now use the below command to restart your Pi. This will automatically end the terminal window. When the PI restarts you should notice the LCD display also showing the boot information and finally the desktop will appear as shown below.
You can also watch the video below to check how the LCD is connected and how it responds to touch. I am pretty much satisfied with its default accuracy so I am not going to do any calibration. But if you are interested you can view the official wiki page from waveshare where they discuss how to calibrate and enable camera view on the LCD screen.
Hope you understood the tutorial and were successful in interfacing your LCD with PI and got it working. If otherwise state your problem in the comment section below or use the forums for more technical quires.
The RPi LCD can be driven in two ways: Method 1. install driver to your Raspbian OS. Method 2. use the Ready-to-use image file of which LCD driver was pre-installed.
2) Connect the TF card to the PC, open the Win32DiskImager software, select the system image downloaded in step 1 and click‘Write’ to write the system image. ( How to write an image to a micro SD card for your Pi? See RPi Image Installation Guides for more details)
3) Connect the TF card to the Raspberry Pi, start the Raspberry Pi. The LCD will display after booting up, and then log in to the Raspberry Pi terminal,(You may need to connect a keyboard and HDMI LCD to Pi for driver installing, or log in remotely with SSH)
1. Executing apt-get upgrade will cause the LCD to fail to work properly. In this case, you need to edit the config.txt file in the SD card and delete this sentence: dtoverlay=ads7846.
This LCD can be calibrated through the xinput-calibrator program. Note: The Raspberry Pi must be connected to the network, or else the program won"t be successfully installed.
A number of people have used a Motorola Atrix Lapdock to add a screen and keyboard with trackpad to RasPi, in essence building a RasPi-based laptop computer. Lapdock is a very clever idea: you plug your Atrix smart phone into Lapdock and it gives you an 11.6" 1366 x 768 HDMI monitor with speakers, a keyboard with trackpad, two USB ports, and a large enough battery for roughly 5 hours of use. The smart phone acts as a motherboard with "good enough" performance. The advantage over a separate laptop or desktop computer is that you have one computing device so you don"t need to transfer files between your phone and your desk/laptop.
Unfortunately for Motorola, Lapdock was not successful (probably because of its US$500 list price) and Motorola discontinued it and sold remaining stock at deep discounts, with many units selling for US$50-100. This makes it a very attractive way to add a modest size HDMI screen to RasPi, with a keyboard/trackpad and rechargeable battery power thrown in for free.
Lapdock has two connectors that plug into an Atrix phone: a Micro HDMI D plug for carrying video and sound, and a Micro USB plug for charging the phone and connecting to the Lapdock"s internal USB hub, which talks to the Lapdock keyboard, trackpad, and two USB ports. With suitable cables and adapters, these two plugs can be connected to RasPi"s full-size HDMI connector and one of RasPi"s full-size USB A ports.
Motorola also made a Lapdock for the Motorola Droid Bionic smartphone. According to Jim Manley, the Droid Bionic Lapdock is identical to the Atrix Lapdock, except that the two Micro plugs are each rotated 180 degrees.
The RasPi forum has a long thread on Lapdock with many useful suggestions, photos, and links: I made a Raspberry PI Laptop. There"s also a good "blog entry at element14 with photos and suggestions of where to get cables and adapters: Raspberry Pi Laptop. TechRepublic has a tear-down article with photos of Lapdock internal components here: Cracking Open the Motorola Droid Bionic Lapdock. Paul Mano has a wealth of photos of Lapdock innards at Motorola Atrix Lapdock mod projects.
The hardest part about connecting Lapdock is getting the cables and adapters. Most HDMI and USB cables are designed to plug into jacks, whereas the Lapdock has plugs so the cables/adapters must have Micro HDMI and Micro USB female connections. These are unusual cables and adapters, so check the links.
Lapdock uses the HDMI plug to tell if a phone is plugged in by seeing if the HDMI DDC/CEC ground pin is pulled low. If it"s not, Lapdock is powered off. As soon as you plug in a phone or RasPi, all the grounds short together and Lapdock powers itself on. However, it only does this if the HDMI cable actually connects the DDC/CEC ground line. Many cheap HDMI cables do not include the individual ground lines, and rely on a foil shield connected to the outer shells on both ends. Such a cable will not work with an unmodified Lapdock. There is a detailed "blog entry on the subject at element14: Raspberry Pi Lapdock HDMI cable work-around. The "blog describes a side-benefit of this feature: you can add a small power switch to Lapdock so you can leave RasPi attached all the time without draining the battery.
The Lapdock Micro USB plug is the upstream port of Lapdock"s internal USB hub, and connects to one of RasPi"s full-size USB ports. Lapdock is not USB compliant since it provides upstream power on its Vbus pin. Lapdock uses this to charge the Atrix phone. You can use this feature to power RasPi if you have a newer RasPi. The original RasPi rev 1 has 140 mA polyfuses F1 and F2 to protect the USB ports, which are too small for powering RasPi using upstream power. Newer RasPis replace F1 and F2 with zero Ohm jumpers or eliminate them entirely, which allows Lapdock to provide power. If you don"t mind modifying your original RasPi, you can add shorting jumpers over F1 and F2 or replace them with higher-current fuses.
What gets powered on depends on whether Lapdock is open or closed. If it"s open, the screen and all Lapdock USB ports are powered. If you close Lapdock, the screen and full-size USB ports are powered down, but the Micro USB still provides upstream power. This is for charging an Atrix phone. When you open or close Lapdock, the Micro USB power switches off for about a second so if your RasPi is connected it will reboot and you may have a corrupted file system. There"s discussion about this at the RasPi forum link, and someone has used a supercapacitor to work around the problem: Raspberry Pi lapdock tricks.
When you do not connect a HDMI monitor, the GPU in the PI will simply rescale (http://en.wikipedia.org/wiki/Image_scaling) anything that would have appeared on the HDMI screen to a resolution suitable for the TV standard chosen, (PAL or NTSC) and outputs it as a composite video signal.
The Broadcom BCM2835 only provides HDMI output and composite output. RGB and other signals needed by RGB, S-VIDEO or VGA connectors are however not provided, and the R-PI also isn"t designed to power an unpowered converter box.
Note that any conversion hardware that converts HDMI/DVI-D signals to VGA (or DVI-A) signals may come with either an external PSU, or expects power can be drawn from the HDMI port. In the latter case the device may initially appear to work, but there will be a problem, as the HDMI specs only provide in a maximum of 50mA (@ 5 Volt) from the HDMI port, but all of these adapters try to draw much more, up-to 500mA, in case of the R-PI there is a limit of 200mA that can be drawn safely, as 200mA is the limit for the BAT54 diode (D1) on the board. Any HDMI to VGA adapter without external PSU might work for a time, but then burn out D1, therefore Do not use HDMI converters powered by the HDMI port!
The solution is to either only use externally powered converters, or to replace D1 with a sturdier version, such as the PMEG2010AET, and to replace the power input fuse F3 with a higher rated one, as the current one is only 700mA, and the adapter may use 400mA itself. Also notice that the R-PI"s power supply also must be able to deliver the extra current.
Alternatively, it may be possible to design an expansion board that plugs into the LCD headers on the R.Pi. Here is something similar for Beagleboard:
The SOC (system on a chip) does not support any kind of analog component video, including VGA, since the SOC is designed for mobile phone use where this would not be a requirement. Additional components would be needed to generate RGB signals. Additional components would push the price beyond the $25 target and therefore won"t happen.
An additional binary blob might be required for the DSI port to function correctly (or function at all). When or if such a blob will be made available is unknown. Update 04 Jun 2013: "DSI will get done though - there are 1.5M boards out there with the connector on - that would, as you say, have been a waste of money ($120k??) if it never gets used." [1]
The schematics for apples iPhone 3gs and 4g suggest they speak DSI, thus they can probably be connected directly. The older iPhones use a "Mobile Pixel Link" connection from National Semiconductor. The 3GS panel (480×320) goes as low as US $14.88, while the 4G one (960×640, possibly the LG LH350WS1-SD01, with specifications) can be had for US $17.99 or as low as US $14.28. The connectors used might be an issue, but this connector might fit. Additional circuitry might be necessary to provide the display with required 1.8V and 5.7V for operation, and an even higher voltage for the backlight.
The Raspberry Pi provides one clock lane and two data lanes on the S2 connector, as can be read from the schematics. It is currently unknown whether this is enough to drive the iPhone 4G screen, as that screen seems be driven with three data lanes in its original application.
I2C/SPI ADC can be used to interface 4 pin resistive Touch Screens, For example STMPE812A. Texas Instruments has a solution for 4 or 8 wire touchscreens using their rather cheap MSP4309.
These have controllers and interfaces for feeding in text (and symbols). Common screen sizes include 16x2 to 40x4. They"re often seen in keypads, industrial machines, cash registers, laser printers etc.
Parallel interface displays can be found in many sizes, usually up to 7" and more. Parallel interfaces are usually 8 or 16-bits wide (sometimes 18 or 24-bit wide), plus some control-lines. The Raspberry Pi P1-connector does not contain enough GPIOs for 16-bit wide parallel displays, but this could be solved by borrowing some GPIOs from the CSI-connector or from P5 (on newer Raspberry Pis). Alternatively, some additional electronics (e.g. shift-registers or a CPLD) can be used, which could also improve the framerate or lower the CPU-load.
AdvaBoard RPi1: Raspberry Pi multifunction extension board, incl. an interface and software for 3.2"/5"/7" 16-bit parallel TFT-displays incl. touchscreen with up to 50 frames/s (3.2", 320x240)
Texy"s 2.8" TFT + Touch Shield Board: HY28A-LCDB display with 320 x 240 resolution @ 10 ~ 20fps, 65536 colors, assembled and tested £24 plus postage, mounts on GPIO pins nicely matching Pi board size, or via ribbon cable
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
KING TECH is a TFT LCD IPS supplier solution specialist since 2003, we are the group company combined byAn Innolux authorized LCD panel&IC distribution company
We Provide Different Kinds of Custom TFT Display ServicesIf needed we can make custom size tft displays for customers, we have a good relationship with original TFT display module factories, and we can negotiate with them to tool up an LCD panel mask. The tooling cost will be very high and paid by the end customer, and MOQ is at least 25K/lot.
We are capable to change every structure of the TFT display module. To increase backlight brightness and make it sunlight readable, the highest brightness we’ve ever reached was 6500cd/m2.To change the display FPC shape and length. To customize a resistive touch panel(RTP) or capacitive touch panel(CTP/PCAP), we have a long-term cooperation supplier to work with us on such tooling, for CTP, we can also make different shapes and thicknesses of cover glass, single touch, and multi-touch, AG/AR/AF is also available.
With our own PCBA hardware& software design company, we can design different kinds of TFT display modules for our customers, from simple convert boards to complete motherboards, from HDMI driver boards to Android controller boards, from non-touch function boards to capacitive touch function boards, they are all part of our working.
We have our own TFT display module panel and driver distribution department, if you want to switch to another structure of display, we can also help, cause we know which TFT display module panel and the driver is more match, and which suit’s supply is more stable, which one we can get the lowest price.
In order to give the customer the best support, Kingtech, as one of the best TFT LCD IPS suppliers in China, also can provide industrial solutions such as developing a mother board, serial port UART board, T-CON board, HDMI board, and monitor according to the customer"s requirements.
Kingtech also has existing industrial solutions for the PV135 motherboard, PV901 Linux board, and PV804 motherboard. They can be connected between Raspberry pi and our TFT display module, which can make them work together.
For serial port UART board, Kingtech has a 2.8inch 240x320 LCD with serial port UART board, 3.5inch 320x480 module with serial port UART board, 4.3inch 480x272 display with a resistive touch with serial port UART board, 7inch 800x480/1024x600 TFT with capacitive touch with serial port UART board.
For exisiting monitor products, Kingtech has 8inch 1280x800 IPS monitor, 10.1inch 1280x800 monitor, 15.6inch 1280x800 LCD monitor, 12.3inch 1920x720 IPS 850nit LCD monitor, 18.5inch 1366x768 1000nits LCD monitor.
For the HDMI board, Kingtech has a 1.39inch 454x454 AMOLED round with HDMI board, 3.34inch 320x320 TFT round with HDMI board, 3.4inch 800x800 TFT round with HDMI board, 5inch 1080x1080 TFT with HDMI board, 4.3inch 800x480 TFT with HDMI board, 5inch 800x480 LCD with HDMI board, 7inch 800x480/1024x600 LCD display with HDMI board, 10.1inch 1280x800 LCD module with HDMI board.
Above all TFT display modules with board products can be used for industrial equipment, medical, smart-home, or others. Kingtech can also have industrial custom TFT display solutions according to the customer’s requirements. Ware is welcome to contact us. If you are interested in any tft display module products, we can negotiate with you at a reasonable TFT LCD display price. Thank you.
TFT display module is a Thin Film Transistor, and AMOLED is Active-matrix organic light-emitting Display. The TFT display module is backlight-on the liquid crystal panel; AMOLED is a panel that emits light on its own; TFT display module structure is more thick and strong, AMOLED is very thin and also weak, TFT display module is used widely than AMOLED, AMOLED is used in consumer products the most, like a smartwatch, mobile phone, and TV.
IPS is In-Plane Switching, It is also known as free viewing angle, which means the viewing angle of the display on 4 sides is the same, a normal display has its best viewing angle like 6 o’clock or 12 o’clock. While the TFT display module contains normal viewing angles and IPS display,IPS display is a kind of TFT display module.
TFT display module belongs to LCD, LCD is Liquid Crystal Display, it contains mono(single color) LCD and color LCD, single color LCD is barely used now, and color LCD has STN and TFT two types. Therefore, TFT display module is a kind of LCD display.
OLED is Organic Light Emitting Display, it is a display that emits light on its own, and it does not need an extra backlight, so it requests lower power consumption than TFT display module but its lifetime is shorter than TFT(5000 hours), AMOLED is a kind of OLED but it is more colorful. TFT display module requests a backlight to light on and power consumption are higher than OLED, but its lifetime is much longer(20000 hours).
The LED display is working by lighting up the LED lights, the TFT display module is lighted up by the backlight and the liquid crystal starts to work and shows contents. TFT display module has brighter and more true color, and lower price and LED display has lower power consumption, smaller heat, and longer lifetime.
Compares to other types of display, TFT display module is the more widely used, it can be made in different shapes and sizes, from very small sizes to big sizes. The resolution now is higher and higher, and the price of custom TFT display modules is more and more competitive. Its lifetime is longer than the OLED display, and its color is brighter than OLED.
A good solution for those seeking for a bigger resolution display for Raspberry Pi. it can work as a computer monitor just like any other general HDMI screen too (compatible with win7,、win8,、win 10 computers).
Connect Raspberry pi HDMI port to LCD HDMI port using a HDMI cable. Then any Raspberry pi USB port to any of LCD micro usb port using a USB cable for power and touch signal.
No driver is needed for touch control, both for Raspberry Pi and windows computer. Multitouch works only on Windows. On Raspbian, only single touch works.
1. This LCD requires a good amount of current to work properly. So, while the LCD is connected to Raspberry Pi USB port (for power + touch), power up the Raspberry Pi with a good 5V 2A power adapter or power bank. Otherwise, Raspberry Pi won"t boot up.
2. This display works right out of the box with Windows computer. But to use this LCD with Raspberry Pi, you need to modify "config.txt" file of the SD card in which you"ve installed the Raspbian OS. Open"config.txt" using Wordpad and add the following lines at the end of it, save it.
3.This display works with latest Raspberry Pi OS (may not work with Raspbian Jessie or older). Works with ONLY Raspberry pi 4 (HDMI 0) and Raspberry pi 3B+.
A few weeks ago, I wrote this article about using a text variable as an array, either an array of strings or an array of numbers, using the covx conversion function in addition for the latter, to extract single elements with the help of the spstr function. It"s a convenient and almost a "one fits all" solution for most use cases and many of the demo projects or the sample code attached to the Nextion Sunday Blog articles made use of it, sometimes even without mentioning it explicitly since it"s almost self-explaining. Then, I got a message from a reader, writing: "... Why then didn"t you use it for the combined sine / cosine lookup table in the flicker free turbo gauge project?"105 editions of the Nextion Sunday blog in a little over two years - time to look back and forth at the same time. Was all the stuff I wrote about interesting for my readers? Is it possible at all to satisfy everybody - hobbyists, makers, and professionals - at the same time? Are people (re-)using the many many HMI demo projects and code snippets? Is anybody interested in the explanation of all the underlying basics like the algorithms for calculating square roots and trigonometric functions with Nextion"s purely integer based language? Are optimized code snippets which allow to save a few milliseconds here and there helpful to other developers?Looking through the different Nextion user groups on social networks, the Nextion user forum and a few not so official but Nextion related forums can be surprising. Sometimes, Nextion newbies ask questions or have issues although the required function is well (in a condensed manner for the experienced developer, I admit) documented on the Nextion Instruction Set page, accessible through the menu of this website. On top of that, there is for sure one of my more than 100 Sunday blog articles which deals not only with that function, but goes often even beyond the usual usage of it. Apparently, I should sometimes move away from always trying to push the limits and listen to the "back to the roots!" calls by my potential readers...Do you remember the (almost) full screen sized flicker free and ultra rapid gauge we designed in June? And this without using the built-in Gauge component? If not, it"s time to read this article first, to understand today"s improvements. The June 2022 version does its job perfectly, the needle movement is quick and smooth, and other components can be added close to the outer circle without flickering since there is no background which needs constantly to be redrawn. But there was a minor and only esthetic weak point: The needle was a 1px thin line, sometimes difficult to see. Thus, already a short time after publishing, some readers contacted me and asked if there were a way to make the needle thicker, at least 2 pixels.Recently, when playing with a ESP32 based NodeMCU 32S and especially with its WiFi configuration, I did as (I guess) everybody does: I loaded an example sketch to learn more about the Wifi library. When you set up the ESP32 as an access point, creating its own wireless network, everything is pretty straightforward. You can easily hard code the Wifi name (SSID) and the password. But what about the client mode ? Perhaps one needs to use it in different environments. And then, a hard coded network name and password are definitively not the best solution. Thus, I thought, why not use a Nextion HMI for a dynamic WiFi setup functionality?Although the Nextion MIDI I/O interface has been primarily designed as an add-on for Nextion HMI screens to transform these in fully autonomous MIDI devices as shown in previous blog posts here, it is also of great use for any Arduino based electronic music project! Many MIDI projects for Arduino suffer from a lack good hardware support. There are sophisticated code, excellent libraries and an infinity of use cases, but afterwards, things tend not to work in a rather rough environment in the studio or on stage. That"s because two resistors and a few Dupont wires on a breadboard besides the Arduino are not really an interface which could drive your Synth, Sequencer, or Drum machine over a 5m long MIDI cable.
No! For about the price of a familiar 2x16 LCD, you get a high resolution TFT display. For as low as $4 (shipping included!), it"s possible to buy a small, sharp TFT screen that can be interfaced with an Arduino. Moreover, it can display not just text, but elaborate graphics. These have been manufactured in the tens of millions for cell phones and other gadgets and devices, and that is the reason they are so cheap now. This makes it feasible to reuse them to give our electronic projects colorful graphic displays.
There are quite a number of small cheap TFT displays available on eBay and elsewhere. But, how is it possible to determine which ones will work with an Arduino? And what then? Here is the procedure:ID the display. With luck, it will have identifying information printed on it. Otherwise, it may involve matching its appearance with a picture on Google images. Determine the display"s resolution and the driver chip.
Find out whether there is an Arduino driver available. Google is your friend here. Henning Karlsen"s UTFT library works with many displays. (http://www.rinkydinkelectronics.com/library.php?i...)
Download and install the driver library. On a Linux machine, as root, copy the library archive file to the /usr/share/arduino/libraries directory and untar or unzip it.
Load an example sketch into the Arduino IDE, and then upload it to the attached Arduino board with wired-up TFT display. With luck, you will see text and/or graphics.
For prototyping and testing:A solderless breadboard male-to-male jumpers male-to-female jumpers 22 gauge insulated hookup wire, solid Graph paper, for planning and sketching wiring diagrams and layouts
A couple of sets (4 each) of decent rechargeable NIMH AA batteries. Note: Beware of cheap ripoff batteries from Hong Kong. These typically take only a 200 mA charge, and even an "intelligent" charger will not refresh them. Purple, blue, and green ones are suspect -- see picture and ... Link #1Link #2
We"ll begin with a simple one. The ILI9163 display has a resolution of 128 x 128 pixels. With 8 pins in a single row, it works fine with a standard Arduino UNO or with a Mega. The hardware hookup is simple -- only 8 connections total! The library put together by a smart fella, by the name of sumotoy, makes it possible to display text in multiple colors and to draw lines.
Note that these come in two varieties, red and black. The red ones may need a bit of tweaking to format the display correctly -- see the comments in the README.md file. The TFT_ILI9163C.h file might need to be edited.
It is 5-volt friendly, since there is a 74HC450 IC on the circuit board that functions as a level shifter. These can be obtained for just a few bucks on eBay and elsewhere, for example -- $3.56 delivered from China. It uses Henning Karlsen"s UTFT library, and it does a fine job with text and graphics. Note that due to the memory requirement of UTFT, this display will work with a standard UNO only with extensive tweaking -- it would be necessary to delete pretty much all the graphics in the sketch, and just stay with text.
on the far side of the display. It has 220x176 resolution (hires!) and will accept either 3.3 or 5 volts. It will work hooked up to an Uno, and with a few pin changes, also with a Mega. The 11-pin row is for activating the display itself, and the 5-pin row for the SD socket on its back.
This one is a 2.2" (diagonal) display with 176x220 resolution and parallel interface. It has a standard ("Intel 8080") parallel interface, and works in both 8-bit and 16-bit modes. It uses the S6D0164 driver in Henning Karlsen"s UTFT library, and because of the memory requirements of same, works only with an Arduino Mega or Due. It has an SD card slot on its back
This one is a bit of an oddball. It"s a clone of the more common HY-TFT240, and it has two rows of pins, set at right angles to one another. To enable the display in 8-bit mode, only the row of pins along the narrow edge is used. The other row is for the SD card socket on the back, and for 16-bit mode. To interface with an Arduino ( Mega or Due), it uses Henning Karlsen"s UTFT library, and the driver is ILI9325C. Its resolution is 320x240 (hires!) and it incorporates both a touch screen and an SD card slot.
Having determined that a particular TFT display will work with the Arduino, it"s time to think about a more permanent solution -- constructing hard-wired and soldered plug-in boards. To make things easier, start with a blank protoshield as a base, and add sockets for the TFT displays to plug into. Each socket row will have a corresponding row next to it, with each individual hole "twinned" to the adjacent hole in the adjoining row by solder bridges, making them accessible to jumpers to connect to appropriate Arduino pins. An alternative is hard-wiring the socket pins to the Arduino pins, which is neater but limits the versatility of the board.
The key to an effective DIY shield is a neat and logical layout. Sketching the prospective shield on quadrille (graph) paper may be helpful. A multitester or continuity tester might be useful for detecting wiring and soldering errors.
In step 5, you mention that the TFT01 display can"t be used with the UTFT library on an Arduino Uno because of its memory requirements. It can - all you have to do is edit memorysaver.h and disable any display models you"re not using.
I think you should add a disclaimer that the code might make the Arduino Uno unprogrammable afterward (due to use up the two 0 and 1 pin) and link to how to fix it: https://stackoverflow.com/questions/5290428/how-to-reset-an-arduino-board/8453576?sfb=2#84535760
Not at all - it was your Instructable that got me going with the display to begin with! We all build off each other"s work, to the benefit of everyone.0
Tho I realize this is quickly becoming legacy hardware, these 8,16 bit parallel spi with 4 wire controller 3.2in Taft touch display 240x380. It has become very inexpensive with ally of back stock world wide so incorporating them into any project is easier then ever. Sorry to my question. I’m having difficulty finding wiring solution for this lcd. It is a sd1289 3.3 and 5v ,40 pin parallel 8,16 bit. I do not want to use a extra shield,hat or cape or adapter. But there’s a lot of conflicting info about required lvl shifters for this model any help or links to info would be great .. thank you. I hope I gave enough information to understand what I’m adoing
#1 you need a data sheet for the display and pinout and the i/o board attached to the cable.Than before you buy check for a driver for this chip Raydium/RM69071.if no driver lib are you able to write one and do you have the necessary tools to work on this scale to wire it up ..if you answer no than search for an arduino ready product.WCH0
hooking up and adding a lib is no piece of cake insure the screen you buy is arduino ready and sold by a reputable shop with step by step directions...WCH0
I"m sorry that I can"t help you with this. You"ll have to do your own research. See if you can identify the chipset and find out if there"s an Arduino driver for it.0
Thanks for the wealth of knowledge! It is amazing at what is possible with items the average person can easily acquire. I hope to put some of your tips to use this winter as I would like to build sensors and other items for home automation and monitoring. Being able to have small displays around the house in addition to gathering and controlling things remotely will help the family see room conditions without going to the computer. The idea of a touchscreen control for cheap is mind blowing.