space engineers lcd panel power usage quotation
@Remaarn, I have made some modifications so that it only loops through the blocks twice, once for the Power Stats and once to get the IMyPowerProducer blocks. Would you be interested in looking at that for inclusion?
How do we do it? Our agile workforce – from engineers and developers to supply chain experts – work together to respond quickly to a dynamically changing market, customizing solutions to fit each customer’s unique requirements.
"We are entering an era when we shall create resources which shall be so constantly renewed that the only loss will be not to use them. There will be such a plenteous supply of heat, light and power, that it will be a sin not to use all we want. This era is coming now. And it is coming by way of Water"
"I will build a motor car for the great multitude...constructed of the best materials, by the best men to be hired, after the simplest designs that modern engineering can devise...so low in price that no man making a good salary will be unable to own one-and enjoy with his family the blessing of hours of pleasure in God"s great open spaces."
"Youth should not be slandered. Boy nature and girl nature are less repressed and therefore more wholesome today than before. If they at times seem unimpressed by their elders, it is probably because we make a matter of authority what should be a matter of conference. These young people are new people sent to this scene by Destiny to take our places. They come with new visions to fulfill, new powers to exploit."
"As betting at the race ring adds neither strength nor speed to the horse, so the exchange of shares in the stock market adds no capital to business, no increase in the production and no purchasing power to the market."
Of course there is a humanitarian side to the shorter day & the shorter week, but dwelling on that side is likely to lead one astray, for leisure may be put before work instead of after it-where it belongs. Twenty years ago, introducing the eight-hour day generally would have made for poverty & not for wealth. Five years ago, introducing the five day week would have had the same result. The hours of labor are regulated by the organization of work and by nothing else. It is the rise of the great corporation with its ability to use power, to use accurately designed machinery, & generally to lessen the wastes in time, material & human energy that made it possible to bring in the eight hour day. Further progress along the same lines has made it possible to bring in the five day week...
Thus the result of more leisure is the exact opposite of what most people might suppose. Management must keep pace with this new demand--& it will. It is the introduction of power and machinery by manufacturers that has med the shorter day & the shorter week possible. That is a fact which working men must not forget. The eight-hour day was not the ultimate, & neither is the five day week. It is enough, however, to manage what we are equipped to manage and to let the future take care of itself. It will anyway. That is its habit. But probably the next move will come in the direction of shortening the day rather than the week."
The Model T was one of the largest factors in creating the conditions which now make the new model Ford possible. The world-wide influence of the Ford car in the building of good roads & in teaching the people the use & value of mechanical power is conceded. Nowadays everybody runs some kind of motor power but twenty years ago only the adventurous few could be induced to try an automobile. It had a harder time winning public confidence than the airplane has now. The Model T was a great educator in this respect. It had stamina & power. It was the car that ran before there were good roads to run on. It broke down the barriers of distance in rural sections, brought people of these sections closer together & placed education within the reach of everyone.
"Public officials are all right if they stay in their proper sphere and perform their proper functions but when they get greedy for wider scope and more power and money they lose their value and become parasites."
But it will decrease the performance of the game - you need to have powerful GPU for that, as each screen is essentially another frame to render. Thus if your FPS is 40, with another camera-on-screen it might drop to 20 (if low FPS was caused by taxed GPU, not overloaded CPU). And it will incur some cost in CPU performance.
But it will decrease the performance of the game - you need to have powerful GPU for that, as each screen is essentially another frame to render. Thus if your FPS is 40, with another camera-on-screen it might drop to 20 (if low FPS was caused by taxed GPU, not overloaded CPU). And it will incur some cost in CPU performance.
It did have the drawbacks it was claimed such a mod would have... it"s just, it was showcased on powerful computers with enough frames to spare. The second you don"t have a powerful computer, you"ll see the drawbacks quickly. This is why it wasn"t made vanilla.
It did have the drawbacks it was claimed such a mod would have... it"s just, it was showcased on powerful computers with enough frames to spare. The second you don"t have a powerful computer, you"ll see the drawbacks quickly. This is why it wasn"t made vanilla.
Duke Nukem 3d had a camera view to screen feature in a game with user generated maps/layouts 22 years ago. Granted it wasn"t 1080p but I don"t think anyones expecting that from a Text panel. Unpossible!
Duke Nukem 3d had a camera view to screen feature in a game with user generated maps/layouts 22 years ago. Granted it wasn"t 1080p but I don"t think anyones expecting that from a Text panel. Unpossible!
glad to see this thread bumped i find it ridiculous that this isn"t already in the game. Surely you could implement this with some sort of anti-rastorization method where you just don"t render the parts of the ship eclipsed by the display just like if you gave dirt or whatever a transparent texture back in minceraft, that"s how rodina does it; and even without the fact that this method would be way more efficient, you would also end up with a better, more spacey, implementation "cause it would have perspective.
glad to see this thread bumped i find it ridiculous that this isn"t already in the game. Surely you could implement this with some sort of anti-rastorization method where you just don"t render the parts of the ship eclipsed by the display just like if you gave dirt or whatever a transparent texture back in minceraft, that"s how rodina does it; and even without the fact that this method would be way more efficient, you would also end up with a better, more spacey, implementation "cause it would have perspective.
It is possible, but that was never a simple mod; that entry on the Steam workshop was just to add the terminal controls, the actual code was in a plugin (Client Extender) that you had to install alongside the game.It allowed you to write frames to textures and had a priority queue system so it would never drain your FPS more than you allowed it, and you could give client-side priority to cameras; if you"re in a big battle with a bunch of different people who also use LCD feeds then, from your perspective, yours would be updated first and fastest regardless.
It is possible, but that was never a simple mod; that entry on the Steam workshop was just to add the terminal controls, the actual code was in a plugin (Client Extender) that you had to install alongside the game.It allowed you to write frames to textures and had a priority queue system so it would never drain your FPS more than you allowed it, and you could give client-side priority to cameras; if you"re in a big battle with a bunch of different people who also use LCD feeds then, from your perspective, yours would be updated first and fastest regardless.
I saw Camera, LCD, then it was obvious I could link a camera feed to one of cockpit LCD to have a view..... even at low resolution, and even with limitation numbers.
I saw Camera, LCD, then it was obvious I could link a camera feed to one of cockpit LCD to have a view..... even at low resolution, and even with limitation numbers.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
In short, as many people out there, I really believe that this should"ve been in the vanilla game since the LCD"s were introduced and also believe that it would elevate the game play so much.
Having the ability to view a camera image from an LCD in a basement - which is what I nearly always end up building in order to protect my gear from meteorites - would be a massive boon.
Also, displaying multiple camera images on LCDs means that a ship could have a decent bridge buried deep inside it and still have good visibility of the surrounding space, without needing to cycle through cameras while sitting in a control seat.
Having the ability to view a camera image from an LCD in a basement - which is what I nearly always end up building in order to protect my gear from meteorites - would be a massive boon.
Also, displaying multiple camera images on LCDs means that a ship could have a decent bridge buried deep inside it and still have good visibility of the surrounding space, without needing to cycle through cameras while sitting in a control seat.
The mod is smart about it and makes it so that the LCD can "share" frames instead. So it can update at 30 fps but it doubles the GPU Render Load, or all the way down to 1fps which divides evenly amongst other LCDs. So if you had the setting at 30fps they"d each run at 15fps, which would divide further as you added more.
The mod is smart about it and makes it so that the LCD can "share" frames instead. So it can update at 30 fps but it doubles the GPU Render Load, or all the way down to 1fps which divides evenly amongst other LCDs. So if you had the setting at 30fps they"d each run at 15fps, which would divide further as you added more.
The Mods we had, are more or less a collection of workarounds to make this feature somewhat functioning, but someone with unrestricted access to the source code, should be able to implement, at least the frame work, for such a function, without all too heavy performance impacts. Furthermore we are in an age, of ridiculously powerfull GPU like the Nvidia 30 Series and Space Engineers never was a casual game, requirement wise. And for those with a too weak system, we could make a tab in the world settings to disable this feature.
The Mods we had, are more or less a collection of workarounds to make this feature somewhat functioning, but someone with unrestricted access to the source code, should be able to implement, at least the frame work, for such a function, without all too heavy performance impacts. Furthermore we are in an age, of ridiculously powerfull GPU like the Nvidia 30 Series and Space Engineers never was a casual game, requirement wise. And for those with a too weak system, we could make a tab in the world settings to disable this feature.
i would make lcd refresh rate based on distance to closest player, that is looking at that lcd - so game would crank up lcd fps only when someone is actually looking at it and "freeze" display when nobody is around or looking on something else ....
i would make lcd refresh rate based on distance to closest player, that is looking at that lcd - so game would crank up lcd fps only when someone is actually looking at it and "freeze" display when nobody is around or looking on something else ....
If a remote camera LCD isn"t in visible range to a player, then don"t gather render data from the camera nor render the camera onto the LCD. I do not believe this is something that a modder could do, since it would require access to a player"s rendering data and being able to detect if any remote camera LCDs are within what"s being rendered.
Any camera feeds are sampled at a lower resolution and also rendered to LCDs at a lower resolution than when a player views through the camera directly. With a lower resolution on both sampling and rendering I would expect GPU stress to be lower as well.
Nested camera LCDs (any LCD"s rendering a camera that are THEN viewed by a later camera and rendered to a later LCD) would be only rendered at 1fps and only when the player is looking at the later LCD, otherwise it is not rendered. Or just don"t render nested camera LCDs at all, though that might confuse some players if done without explanation.
If a remote camera LCD isn"t in visible range to a player, then don"t gather render data from the camera nor render the camera onto the LCD. I do not believe this is something that a modder could do, since it would require access to a player"s rendering data and being able to detect if any remote camera LCDs are within what"s being rendered.
Any camera feeds are sampled at a lower resolution and also rendered to LCDs at a lower resolution than when a player views through the camera directly. With a lower resolution on both sampling and rendering I would expect GPU stress to be lower as well.
Nested camera LCDs (any LCD"s rendering a camera that are THEN viewed by a later camera and rendered to a later LCD) would be only rendered at 1fps and only when the player is looking at the later LCD, otherwise it is not rendered. Or just don"t render nested camera LCDs at all, though that might confuse some players if done without explanation.
Many games implement in-view screens of the game world. This isn"t new and not impossible just something Keen chose not to implement with their time. Other priorities. The LCD displays in the game and the cameras seem like a perfect match.
Many games implement in-view screens of the game world. This isn"t new and not impossible just something Keen chose not to implement with their time. Other priorities. The LCD displays in the game and the cameras seem like a perfect match.
I tested this plugin, and it works, but for me, it tends to generate some visual light bugs, as well as having a huge performance penalty. I think if the devs would add this feature straight into the game code itself, it can be much better controlled in terms of possible bugs and as previously mentioned a player could select render resolution and frame rate themselves to suit their needs as well as reduce the performance penalty depending on their specific GPU computing power.
I tested this plugin, and it works, but for me, it tends to generate some visual light bugs, as well as having a huge performance penalty. I think if the devs would add this feature straight into the game code itself, it can be much better controlled in terms of possible bugs and as previously mentioned a player could select render resolution and frame rate themselves to suit their needs as well as reduce the performance penalty depending on their specific GPU computing power.
The troll face says it all. PC gamers also have low end hardware. There is a bit of psychology at work here though. If your PC can"t handle the camera-to-LCD feature you may chose to turn it off for now, maybe consider a GPU or RAM upgrade or just accept it for now. For cool screenshots you can always turn it back on temporarily. You feel like it"s all in your hands. On a console on the other hand, graphics and complexity are often locked down, like the number of planets or asteroids. You can"t upgrade a hardware component or decide for yourself if camera-to-LCD is worth the performance hit. Others decide what your console can handle. You begin to feel disenfranchised compared to a PC gamer with comparable hardware.
The troll face says it all. PC gamers also have low end hardware. There is a bit of psychology at work here though. If your PC can"t handle the camera-to-LCD feature you may chose to turn it off for now, maybe consider a GPU or RAM upgrade or just accept it for now. For cool screenshots you can always turn it back on temporarily. You feel like it"s all in your hands. On a console on the other hand, graphics and complexity are often locked down, like the number of planets or asteroids. You can"t upgrade a hardware component or decide for yourself if camera-to-LCD is worth the performance hit. Others decide what your console can handle. You begin to feel disenfranchised compared to a PC gamer with comparable hardware.
As can be seen in this YouTube Video (https://www.youtube.com/watch?v=cWpFZbjtSQg) implementing a camera feed to the LCD screens shouldn"t be thatdifficult. Now one difference would be the need to dynamically alter the position of the projection but even as an inexperienced programmer that is not an issue. If the devs have some competence (which I would assume given they developed this game) it should not be a problem to implement at all, except of course the issue with consoles other users mentioned. Drawing a second camera is expensive for the render engine but if not done at full resolution, unless the player is accessing the camera directly, I fail to see any issues except poor performance on low end pc"s and console, which imo is already the case so that would be a drop of water in an ocean.
As can be seen in this YouTube Video (https://www.youtube.com/watch?v=cWpFZbjtSQg) implementing a camera feed to the LCD screens shouldn"t be thatdifficult. Now one difference would be the need to dynamically alter the position of the projection but even as an inexperienced programmer that is not an issue. If the devs have some competence (which I would assume given they developed this game) it should not be a problem to implement at all, except of course the issue with consoles other users mentioned. Drawing a second camera is expensive for the render engine but if not done at full resolution, unless the player is accessing the camera directly, I fail to see any issues except poor performance on low end pc"s and console, which imo is already the case so that would be a drop of water in an ocean.
Punctuation is sometimes seen as spaces. Our systems see some punctuation as spaces, which impacts quoted searches. For example, a search for [“don’t doesn’t”] tells our systems to find content that contains all these letters in this order:
Using quotes can definitely be a great tool for power users. We generally recommend first doing any search in natural language without resorting to operators like quotation marks. Years ago, many people used operators because search engines sometimes needed additional guidance. Things have advanced since then, so operators are often no longer necessary.
The various LCD Panel blocks are a great way to add a human touch to a ship or base by displaying useful images or text. For LCD configuration and usage, see LCD Surface Options.
Note: Some functional blocks, such as Cockpits, Programmable Blocks, Custom Turret Controllers, and Button Panels, have customizable LCD surfaces built in that work the same way as LCD Panel blocks, which are also discussed in detail under LCD Surface Options.
LCD Panels need to be built on a powered grid to work. Without power, they display an "Offline" text. While powered without having a text, image, or script set up, they display "Online".
LCD Panel blocks come in a variety of sizes from tiny to huge (see list below) and are available for large and small grid sizes. Note that LCD Panel blocks all have connections on their backs, and very few also on a second side.
All LCD Panels and LCD surfaces work with the same principle: They are capable of displaying dynamic scripts, or few inbuilt static images accompanied by editable text. Access the ship"s Control Panel Screen to configure LCD Panels or LCD surfaces; or face the LCD Panel block and press "K".
A Text Panel, despite its name, can also display images. On large grid, it is rectangular and does not fully cover the side of a 1x1x1 block. On small grid it is 1x1x1, the smallest possible LCD block in game.
On large grid, you choose the Text Panel when you need something that has rectangular dimensions that make it look like a wall-mounted TV or computer screen. If you want to display images, this one works best with the built-in posters whose names end in "H" or "V" (for horizontal or vertical rotation). On Small grid, you place these tiny display surfaces so you can see them well while seated in a cockpit or control seat, to create a custom display array of flight and status information around you.
Corner LCDs are much smaller display panels that typically hold a few lines of text. They don"t cover the block you place them on and are best suited as signage for doors, passages, or containers. They are less suitable for displaying images, even though it"s possible. If you enable the "Keep aspect ratio" option, the image will take up less than a third of the available space.
These huge Sci-Fi LCD Panels come in sizes of 5x5, 5x3, and 3x3 blocks, and can be built on large grids only. These panels are only available to build if you purchase the "Sparks of the Future" pack DLC.
They work the same as all other LCD Panels, the only difference is that they are very large. In the scenario that comes with the free "Sparks of the Future" update, they are used prominently as advertisement boards on an asteroid station.
This LCD panel can be built on large and small grids. The transparent LCD is basically a 1x1x1 framed window that displays images and text. It is part of the paid "Decorative Blocks Pack #2" DLC.
What is special about them is that if you set the background color to black, this panel becomes a transparent window with a built-in display. In contrast to other LCD Panels it has no solid backside, which makes it ideal to construct transparent cockpit HUDs, or simply as cosmetic decoration.
While configuring an LCD Panel, the GUI covers up the display in-world and you can"t see how the text or images comes out. In the UI Options, you can lower the UI Background opacity to be translucent, so you can watch what you are doing more easily.
CME portable/temporary work lights, rugged power supplies, solar electric generators, and STEM-related solar electric training devices are available on the GSA Advantage government website - if this applies to you, click the image to find out more.
The term engineering is derived from the word engineer, which itself dates back to the 14th century when an engine"er (literally, one who builds or operates a i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.
The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning "innate quality, especially mental power, hence a clever invention."
The pyramids in ancient Egypt, ziggurats of Mesopotamia, the Acropolis and Parthenon in Greece, the Roman aqueducts, Via Appia and Colosseum, Teotihuacán, and the Brihadeeswarar Temple of Thanjavur, among many others, stand as a testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon and the Pharos of Alexandria, were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World.
The earliest civil engineer known by name is Imhotep.Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.water-powered machines, the water wheel and watermill, first appeared in the Persian Empire, in what are now Iraq and Iran, by the early 4th century BC.
Kush developed the Sakia during the 4th century BC, which relied on animal power instead of human energy.Hafirs were developed as a type of reservoir in Kush to store and contain water as well as boost irrigation.Sappers were employed to build causeways during military campaigns.speos during the Bronze Age between 3700 and 3250 BC.Bloomeries and blast furnaces were also created during the 7th centuries BC in Kush.
The earliest practical wind-powered machines, the windmill and wind pump, first appeared in the Muslim world during the Islamic Golden Age, in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD.steam-powered machine was a steam jack driven by a steam turbine, described in 1551 by Taqi al-Din Muhammad ibn Ma"ruf in Ottoman Egypt.
The earliest programmable machines were developed in the Muslim world. A music sequencer, a programmable musical instrument, was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their automata/robots. He described four automaton musicians, including drummers operated by a programmable drum machine, where they could be made to play different rhythms and different drum patterns.castle clock, a hydropowered mechanical astronomical clock invented by Al-Jazari, was the first programmable analog computer.
The application of the steam engine allowed coke to be substituted for charcoal in iron making, lowering the cost of iron, which provided engineers with a new material for building bridges. This bridge was made of cast iron, which was soon displaced by less brittle wrought iron as a structural material
The application of steam-powered cast iron blowing cylinders for providing pressurized air for blast furnaces lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam-powered blast allowed for the use of more lime in blast furnaces, which enabled the transition from charcoal to coke.horse railways and iron bridges practical. The puddling process, patented by Henry Cort in 1784 produced large scale quantities of wrought iron. Hot blast, patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine, the power to weight ratio of steam engines made practical steamboats and locomotives possible.Bessemer process and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century.
The foundations of electrical engineering in the 1800s included the experiments of Alessandro Volta, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell"s equations) and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.Chemical engineering developed in the late nineteenth century.
Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.
Mechanical engineering is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace/aircraft products, weapon systems, transportation products, engines, compressors, powertrains, kinematic chains, vacuum technology, vibration isolation equipment, manufacturing, robotics, turbines, audio equipments, and mechatronics.
Computer engineering (CE) is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop computer hardware and software. Computer engineers usually have training in electronic engineering (or electrical engineering), software design, and hardware-software integration instead of only software engineering or electronic engineering.
Geological engineering is associated with anything constructed on or within the Earth. This discipline applies geological sciences and engineering principles to direct or support the work of other disciplines such as civil engineering, environmental engineering, and mining engineering. Geological engineers are involved with impact studies for facilities and operations that affect surface and subsurface environments, such as rock excavations (e.g. tunnels), building foundation consolidation, slope and fill stabilization, landslide risk assessment, groundwater monitoring, groundwater remediation, mining excavations, and natural resource exploration.
Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized.
In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. Engineers need proficient knowledge of relevant sciences for their design projects. As a result, many engineers continue to learn new material throughout their careers.
If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build a technically successful product, rather, it must also meet further requirements.
Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productivity, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.
Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a particular problem. Creating an appropriate mathematical model of a problem often allows them to analyze it (sometimes definitively), and to test potential solutions.
Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected but only in so far as the testing has been representative of use in service. For products, such as aircraft, that are used differently by different users failures and unexpected shortcomings (and necessary design changes) can be expected throughout the operational life of the product.
Engineers take on the responsibility of producing designs that will perform as well as expected and, except those employed in specific areas of the arms industry, will not harm people. Engineers typically include a factor of safety in their designs to reduce the risk of unexpected failure.
A computer simulation of high velocity air flow around a Space Shuttle orbiter during re-entry. Solutions to the flow require modelling of the combined effects of fluid flow and the heat equations.
One of the most widely used design tools in the profession is computer-aided design (CAD) software. It enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with digital mockup (DMU) and CAE software such as finite element method analysis or analytic element method allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes.
There are also many tools to support specific engineering tasks such as computer-aided manufacturing (CAM) software to generate CNC machining instructions; manufacturing process management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and Architecture, engineering and construction (AEC) software for civil engineering.
All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind:
Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. This problem is very prominent in the UK where engineering has a poor image and low status.most engineering companies compared to other European countries, together with the United States.
Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The National Society of Professional Engineers code of ethics states:
Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.
Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology, engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely "engineering scientists".
There is a "real and important" difference between engineering and physics as similar to any science field has to do with technology.engineering physics and applied physics are titled as Technology officer, R&D Engineers and System Engineers.
Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry, biology and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born.
Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution.
The Art Institute of Chicago, for instance, held an exhibition about the art of NASA"s aerospace design.Robert Maillart"s bridge design is perceived by some to have been deliberately artistic.University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.
Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.
Origin: 1250–1300; ME engin < AF, OF < L ingenium nature, innate quality, esp. mental power, hence a clever invention, equiv. to in- + -genium, equiv. to gen- begetting; Source: Random House Unabridged Dictionary, Random House, Inc. 2006.
Shepherd, William (2011). Electricity Generation Using Wind Power (1 ed.). Singapore: World Scientific Publishing Co. Pte. Ltd. p. 4. ISBN 978-981-4304-13-9.
Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam, Industry and Invention. University of Chicago Press. ISBN 978-0-226-72634-2.
Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
Journal of the British Nuclear Energy Society: Volume 1 British Nuclear Energy Society – 1962 – Snippet view Archived September 21, 2015, at the Wayback Machine Quote: In most universities it should be possible to cover the main branches of engineering, i.e. civil, mechanical, electrical and chemical engineering in this way. More specialized fields of engineering application, of which nuclear power is ...
American Society for Engineering Education (1970). Engineering education. Vol. 60. American Society for Engineering Education. p. 467. Archived from the original on April 16, 2021. Retrieved June 27, 2015. The great engineer Theodore von Karman once said, "Scientists study the world as it is, engineers create the world that never has been." Today, more than ever, the engineer must create a world that never has been ...
Vincenti, Walter G. (1993). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. Johns Hopkins University Press. ISBN 978-0-8018-3974-0.
"Code of Ethics | National Society of Professional Engineers". www.nspe.org. Archived from the original on February 18, 2020. Retrieved September 10, 2019.
TAIYO YUDEN EIA 0201 0.1uF AEC-Q200 MLCC MAASJ063SD7104MFCA01 features a 6.3 voltage rating in a small package size for reduction in board space requirements. This 0.1 µF MLCC is manufactured with TAIYO YUDEN’s raw materials and microfabrication technology providing high reliability for automotive powertrain & safety.
Alpha Wire’s ThermoThin maintains high performance across a wide temperature range and is suited for applications where space is at a premium. Its ECA fluoropolymer insulation contributes to a smaller size while providing excellent dielectric properties and chemical resistance.
Weller’s WXsmart is a centralized control unit for workbenches, controlling multiple devices at the same time. The WXsmart features total connectivity by Wi-Fi, LAN, USB, or RS-232 interface and fully supports Smart Soldering 4.0 with intelligent tips and tools saving cost, time, and space.
RECOM Power"s R05C05TE05S and R05CTE05S series are in a 10.35 mm x 7.5 mm x 2.5 mm package with a 4.5 V to 5.5 V input range and semi-regulated 5 V input. They are a great option for IoT, IIoT, sensors, current sensing, gate drivers, and COM port isolation.
YAGEO"s PU series features resistance from 0.2 mΩ - 5 mΩ, with high power (10 W), high precision (1%), a low TCR (75 ppm/°C), low thermal EMF, excellent heat dissipation and a capability to sense minimal current.
HARTING"s Han HPR compact series is a broad portfolio of exceptionally rugged hoods and housings that provide unparallel protection for any connection power, signal, and data.
XP Power"s LCS Series offers input of 85-264 VAC full power to +50°C. Features Class B conducted and radiated emissions for easy and low-cost system integration along with an integrated connector cover to enhance safety once installed. Well-suited for ITE, household and industrial applications.
Desert Storm also did something else: it rearranged and updated American warfighting strategies in a way that maximized new technologies and spawned new tactics and doctrines. It showed the importance of space and stealth, of using a truly multi-domain strategy and using a “Total Force” doctrine.
Desert Storm is recognized as the first true “space war,” one that used GPS, precision-guided weapons and satellite communication. Those technologies and tools were central – and essential – to the success of the effort rather than cobbled on as an accessory.
“The seeds of an independent Space Force were absolutely sown during Desert Storm. Up until Desert Storm, most people thought of space as an add-on,” said Air Force