raspberry pi 7 touchscreen lcd display quotation
All the accessories listed below tier pricing need to pay.We won"t deliver until you select. Power adaptor should be 5V/2000mA in output and center pin for positive voltage and the outer shield for negative voltage .The temperature for controller RTD2660 would increase during working.That"s normal phenomenon,not quality problem.
ER-TFTV070A1-5 is 800x480 dots 7" color tft lcd module display with small HDMI signal driver board and superior display quality,super wide view angle. It"s optional for optional 4-wire resistive touch panel with USB driver board and cable, optional capacitive touch panel with USB controller board and cable, optional remote control,It can be used in any embedded systems,car,industrial device,security and hand-held equipment which requires display in high quality and colorful video.It"s also ideal for Raspberry PI by HDMI.
The Raspberry Pi Foundation wanted to make sure you have the perfect display screen. And here it is. Offering a number of possibilities, you can use the Raspberry Pi 7” touchscreen as a visual display screen or a simple input device. Easy to set up, you’ll be creating IoT projects in no time all thanks to the 800 x 480 pixel resolution, 24-bit RGB colour and 60 fps. All of this with no electronic interference – grab your Raspberry Pi 7″ touch screen today.
The 7” Touch screen Monitor for Raspberry Pi gives users the ability to create all-in-one, integrated projects such as tablets, infotainment systems and embedded projects. The 800 x 480 display connects via an adapter board which handles power and signal conversion. Only two connections to the Pi are required; power from the Pi’s GPIO port and a ribbon cable that connects to the DSI port present on all Raspberry Pi Boards.
I"m using it to run a lighting and irrigation system for my house. The color graphical interface allows me to use BMP images of my house and yard for control screens, and its built into an enclosure set into the wall for a slick professional look. I even put an access from the backside of the wall for wiring it without having to remove the Pi or the touchscreen.
This was easy to install and it looks good. The Touchscreen is responsive and clear, but you might want to use a stylus. The only issue i had is finding a case for it. You"ll want to get one right away, unless you have a 3D printer to make one yourself. The screen is really thin, so I didn"t want to carry it around without some protection. Overall, it"s a great touchscreen, especially for the price, and I like that it is Raspi-branded.
I purchased 5 touchscreen. Two before and three in January. Touch and display quality is superb. After two-three month of use (no rough use; handled with care), display LCD and front touchpanel (black bezel) break apart. They both are connected using a thin double sided tape. I was planning to use in industrial environment but after such issue, I dropped my plan to use it in industrial environment.
Five of two displays are not in good condition. First display"s touch-panel and display LCD was break apart after two-three month. The second among five displays had another issue. Display LCD was mounted slightly right side of the touchpanel. Once you power-up display, it is easily be seen that LCD panel was a bit off-side. The other display"s screen guard having so many scratches on them which seems mishandling.
I got a couple of these for several RPi projects that Im developing and they are working amazingly well for the application. If these fit your application needs I wouldn"t hesitate to recommend them.
This screen worked right out of the box! Touch worked great with my new pi 3! However aside how fragile the (non functional) edges are, the only real issue I see is upon shutdown of the pi... The screen goes through a series of screen washes/whiteouts and never really shuts off.. I have to pull power to get it to turn off.. I"ve even tried usb/provided jumper wires.. And both results in the same thing. Not sure if this an issue per se, but it is bothersome.. I can just turn the unit off, I need to unplug it too..
I am using Raspberry Pi 3. The display came up with no problems. I am just waiting for the Smarti Pi Touch enclosure (pre-ordered after the Kickstarter project closed) before continuing to work with it.
The only question(s) that I have are regarding what sort of additional processor power is inside the screen, and whether powering it from the micro-usb connection whilst also bridged from the RPi3 is an issue (it hasn"t hurt anything, yet!).
I WAS DISAPOINTED THAT THE UNIT DISPLAYS EVERYTHING UPSIDE DOWN. I HAD TO USE THE LCD_ROTATE=2 COMMAND IN CONFIG.TXT TO FIX IT. THE INITIAL BOOT IS STILL UPSIDE DOWN BUT I GUESS AFTER IT READ THE CONFIG.TXT, IT FLIPS. SHOULDN"T IT COME STANDARD RIGHT SIDE UP?
The must annoying feature is the bright white screen when it loses signal as the OS shuts down. The touch input is inconsistent as input. I was using the I2C for a device was not able to get it going on the alternate I2C, but fortunately the required clock and data are on the DSI cable ... wasted hours finding that out. An OLED display, higher res, and lower current draw would be really nice in the next version.
I forgot to check that this LCD touchscreen don"t have a case. Much better that you have a notification (e.g. recommending the user to purchase also a case) when purchasing this kind of product. But thank you for this product, I will purchase again soon.
The only minor drawback that everyone should be aware (which is to be expected, honestly) is that the display draws quite a noticeable amount of current. The SmartiPi case comes with an splitter USB cable for the power source, but if you expect to use that, be prepared with a (very) beefy power supply, else you"ll get the thunder icon on the screen all the time and a very reduced performance (Just discovered that the RPi3 reduces its own clock when power is low).
I currently power this with a separate 1.5Amp supply for the screen and a 2Amp supply for the RPi3 and everything works just nice. This totals to a whopping 3.5A, which may be overkill, but keep that in mind as a reference.
I am impressed with this screen, I also got the mating case (SmartPi Touch) and it assembled nicely. With the separate case, the included jumpers and cable are not needed. The PCB was already attached with the standoffs. The packaging was super! The screen is slightly larger than 7 inches. I measured it as 7 5/8" wide X 4 3/8 high with a diagonal measurement of 8 9/16.
This official Raspberry Pi 7" touchscreens now come with the display controller already connected and mounted to the back of the display. You still need to be careful pulling forward the small black tab ends that connect a ribbon cable to the RPi.
I bought the companion enclosure as well. This Touchscreen works exactly as described. I am very pleased with the display. I ended up using a mouse anyway as the icons (while clear are very tiny) and selection areas are a bit small for fat fingers.
I connected it to a Raspberry Pi 3 B running Stretch and it seems to be working perfectly. I had been previously driving a VGA monitor from HDMI through an adapter. The RPI 7" screen started up just fine without changing or installing anything with the OS.
I connected it to a Raspberry Pi 3 B running Stretch and it seems to be working perfectly. I had been previously driving a VGA monitor from HDMI through an adapter. The RPI 7" screen started up just fine without changing or installing anything with the OS.
Based on other comments here and looking at one of these at a maker space, I bought the smartipi touch case for this; it"s strongly constructed and works great. Only issue was that I"m using this with a model 3 B+, and that takes a different door on the back than comes with the case (this is being fixed by the smartipi folks, but I don"t know the logistics of getting their new cases into Sparkfun)
I have tried other touch screens for the Raspberry Pi. They had complicated assembly and were very difficult to get them to work. This unit was easy to install and get working, is very nice looking. I am very Happy with it.
Right out of the box it worked. Didn"t even have to do anything to the RPi (in fact, both were taken out of the box at the same time, connected, and worked on the first power up). Screen quality is good for price. Also ordered the "SmartPi Touch" case which holds everything together very nicely.
Ordered it, a Raspberry Pi 3 B+, and a power supply. (Had a mouse, keyboard, and uSD on hand.). It came a couple of days ago, and I put together yesterday. Had noticed in the documentation that there"s a micro USB power input, and a standard USB output. In the configuration where the power supply is plugged directly into the Pi and the LCD interface is powered via a USB cable plugged into one of the Pi"s USB ports to the LCD"s micro USB, the LCD won"t light up at all. When the power supply is plugged into the LCD controller board and the USB cable connects power to the Pi, I get "low voltage" warnings (yellow "lightning bold"). When I use the provided F/F jumpers, it works fine, but this will cause problems plugging in other "hats", as well as clearance problems. (In my application, separate power supplies would be a BIG PROBLEM.) BTW, I checked with two different USB cables, and got the same problems as well as when I tried an Adafruit 5.25V power supply. (I was about to try a second RPi3B+ when the original one stopped booting. Fortunately I had another that I"d been using as a "pass-around" sample at talks, and fortunately when I tried it, it still worked, so now the "dead" one will be passed around!) Also, it could prove really useful to know what size those mounting screws are in case they get lost! Ace Hardware recently opened a new store about half a mile from my house!
The screen is portable enough to take with you and the Pi will use it with no configuration change when it"s powered up. Used it to set up several Raspberry Pis in a remote lab. Touch screen is nice but bring along a keyboard if you have to do any setup work. One thing to make it better, replace the jumper wires with a ribbon cable connected to 1x5 and 2x2 pin headers.
I have a Raspberry Pi in each room of my home and they run a Kiosk interface for home automation, cameras and more. I"ve tried some cheaper ones and none have survived. (I"m hard on equipment) I haven"t managed to break one of these yet.
Got a PI3+, 7" touchscreen and SmartPI case for manufacture test. I put these together and booted the latest Raspbian. The LCD and touchscreen connect to the display connector using a short FPC cable. The display booted and the touch screen just worked out of the box. There were some nice but not well documented improvements. They provide a Y USB cable to power both the PI and the LCD. This is a cleaner solution than the jumper wires they provide.I"m not a big fan of using lego blocks in a industrial environment but the case went together easily and does a decent job of protecting the display and the PI. Some reported a inverted display issue but that seems to have been resolved.
A truly plug-and-play display for the Raspberry Pi. Does not steal any additional extension connector pins if you power it with a USB power supply and leaves the I2C1 interface available for other devices.
Big enough for somewhat squinting actual Raspberry PI development and computer work, but really shines for touch screen optimized large button control panels.
You can just install a Pi3 or 4 on the back, but with a 4 you really need some additional airflow. The SmartiPi Touch 2 enclosure works better. https://www.sparkfun.com/products/16302
It works fine, no glitches, no problems, no hair pulling moments. Once electrically connected to my RPi 3B+ it"s good to go. I run it with the "lite" version of the Raspberry Pi OS with only xorg drivers installed, no full desktop or windows manager, as part of an in-the-field project with a HQ camera attached. My only complaint is the ribbon cable could stand to be about 6 inches longer.
It works great, the colors are beautiful, and finger touch works fine. What I like most is that the Raspberry Pi GPIO pins are all still available - except for one +5v pin and one Ground pin. Both are redundant (i.e. others are available). So, this is not an issue at all. I also like that data connects to the Pi via the IPS ribbon cable. Another thing I like is that power connects to the Pi via two jumper wires. The Pi is fussy about its power supply voltage. So, the jumper wires are better because they are heavier gouge than a small PCB trace.
I connect a Pi v4 and put the whole thing in the SmartPI Touch 2 case from Sparkfun and now it looks pretty professional. Make sure you use a good power supply.
Where is the documentation? This thing is so poorly documented it"s almost a joke. The whole point of the RPi ecosystem is to enable Makers and learning about electronics, so why isn"t this fully documented?
I used this to build a portable utility/testing device for my company. It works fantastic with the SmartiPi Touch Pro Case on Amazon. The touchscreen functions great, only thing is you can"t register mousedown and mouseup events in Chromium (only click). Other than that it"s great!
Rather than plug your Raspberry Pi into a TV, or connect via SSH (or remote desktop connections via VNC or RDP), you might have opted to purchase a Raspberry Pi touchscreen display.
Straightforward to set up, the touchscreen display has so many possibilities. But if you"ve left yours gathering dust in a drawer, there"s no way you"re going to experience the full benefits of such a useful piece of kit.
The alternative is to get it out of the drawer, hook your touchscreen display to your Raspberry Pi, and reformat the microSD card. It"s time to work on a new project -- one of these ideas should pique your interest.
Let"s start with perhaps the most obvious option. The official Raspberry Pi touchscreen display is seven inches diagonal, making it an ideal size for a photo frame. For the best results, you"ll need a wireless connection (Ethernet cables look unsightly on a mantelpiece) as well as a Raspberry Pi-compatible battery pack.
Several options are available to create a Raspberry Pi photo frame, mostly using Python code. You might opt to script your own, pulling images from a pre-populated directory. Alternatively, take a look at our guide to making your own photo frame with beautiful images and inspiring quotes. It pulls content from two Reddit channels -- images from /r/EarthPorn and quotes from /r/ShowerThoughts -- and mixes them together.
Rather than wait for the 24th century, why not bring the slick user interface found in Star Trek: The Next Generation to your Raspberry Pi today? While you won"t be able to drive a dilithium crystal powered warp drive with it, you can certainly control your smart home.
In the example above, Belkin WeMo switches and a Nest thermostat are manipulated via the Raspberry Pi, touchscreen display, and the InControlHA system with Wemo and Nest plugins. ST:TNG magic comes from an implementation of the Library Computer Access and Retrieval System (LCARS) seen in 1980s/1990s Star Trek. Coder Toby Kurien has developed an LCARS user interface for the Pi that has uses beyond home automation.
Building a carputer has long been the holy grail of technology DIYers, and the Raspberry Pi makes it far more achievable than ever before. But for the carputer to really take shape, it needs a display -- and what better than a touchscreen interface?
Setting up a Raspberry Pi carputer also requires a user interface, suitable power supply, as well as working connections to any additional hardware you employ. (This might include a mobile dongle and GPS for satnav, for instance.)
Now here is a unique use for the Pi and its touchscreen display. A compact, bench-based tool for controlling hardware on your bench (or kitchen or desk), this is a build with several purposes. It"s designed to help you get your home automation projects off the ground, but also includes support for a webcam to help you record your progress.
The idea here is simple. With just a Raspberry Pi, a webcam, and a touchscreen display -- plus a thermal printer -- you can build a versatile photo booth!
Various projects of this kind have sprung up. While the versions displayed above uses a thermal printer outputting a low-res image, you might prefer to employ a standard color photo printer. The wait will be longer, but the results better!
Projects along these lines can also benefit from better use of the touchscreen. Perhaps you could improve on this, and introduce some interesting photo effects that can be tweaked via the touchscreen prior to printing?
How about a smart mirror for your Raspberry Pi touchscreen display project? This is basically a mirror that not only shows your reflection, but also useful information. For instance, latest news and weather updates.
Naturally, a larger display would deliver the best results, but if you"re looking to get started with a smart mirror project, or develop your own from scratch, a Raspberry Pi combined with a touchscreen display is an excellent place to start.
Many existing projects are underway, and we took the time to compile six of them into a single list for your perusal. Use this as inspiration, a starting point, or just use someone else"s code to build your own information-serving smart mirror.
Want to pump some banging "toons" out of your Raspberry Pi? We"ve looked at some internet radio projects in the past, but adding in a touchscreen display changes things considerably. For a start, it"s a lot easier to find the station you want to listen to!
This example uses a much smaller Adafruit touchscreen display for the Raspberry Pi. You can get suitable results from any compatible touchscreen, however.
Alternatively, you might prefer the option to integrate your Raspberry Pi with your home audio setup. The build outlined below uses RuneAudio, a Bluetooth speaker, and your preferred audio HAT or shield.
Requiring the ProtoCentral HealthyPi HAT (a HAT is an expansion board for the Raspberry Pi) and the Windows-only Atmel software, this project results in a portable device to measure yours (or a patient"s) health.
With probes and electrodes attached, you"ll be able to observe and record thanks to visualization software on the Pi. Whether this is a system that can be adopted by the medical profession remains to be seen. We suspect it could turn out to be very useful in developing nations, or in the heart of infectious outbreaks.
We were impressed by this project over at Hackster.io, but note that there are many alternatives. Often these rely on compact LCD displays rather than the touchscreen solution.
Many home automation systems have been developed for, or ported to, the Raspberry Pi -- enough for their own list. Not all of these feature a touchscreen display, however.
One that does is the Makezine project below, that hooks up a Raspberry Pi running OpenHAB, an open source home automation system that can interface with hundreds of smart home products. Our own guide shows how you can use it to control some smart lighting. OpenHAB comes with several user interfaces. However, if they"re not your cup of tea, an LCARS UI theme is available.
Another great build, and the one we"re finishing on, is a Raspberry Pi-powered tablet computer. The idea is simple: place the Pi, the touchscreen display, and a rechargeable battery pack into a suitable case (more than likely 3D printed). You might opt to change the operating system; Raspbian Jessie with PIXEL (nor the previous desktop) isn"t really suitable as a touch-friendly interface. Happily, there are versions of Android available for the Raspberry Pi.
The touch screen display gives users the ability to create all-in-one, integrated projects such as tablets, infotainment systems, and embedded projects!
Featuring a resolution of 800x480 pixels, 10 points capacitive touch as well as a low price point, the display promises a lot. Let"s look at the features that this touch screen offered.
The 800x480 display connects via an adapter board that handles power and signal conversion. Only two connections to the Pi are required; power from the Pi’s GPIO port and a ribbon cable that connects to the DSI port present on all Raspberry Pi’s. Touchscreen drivers with support for 10-finger touch and an on-screen keyboard will be integrated into the latest Raspbian OS for full functionality without a physical keyboard or mouse.
Make your own Internet of Things devices including a visual display. Simply connect your Raspberry Pi, develop a Python script to interact with the display, and you’re ready to create your own home automation devices with touch screen capability.
A range of educational software and programs available on the Raspberry Pi will be touch-enabled, making learning and programming easier on the Raspberry Pi.
A SmartiPi Case is also included in the package. It is a freestanding Raspberry Pi case designed to house your Raspberry Pi 7 LCD touch screen along with your Raspberry Pi board neatly behind it. Nobody likes the mess right? This case will help you handle the mess by putting your RPi board and a 7-inch touch screen together.
We love this casing - The SmartiPi Touch Case, and it is now version 2 which is upgraded to be compatible with the Raspberry Pi 2, 3, and 3B+ and the latest Raspberry Pi 4 Model B.
The SmartiPi Touch is a case and stands for the Official Raspberry Pi touch display. The display is secured into the case with four screws. A Raspberry Pi 3, 3B+, 2, A+, or the Raspberry Pi 4 Model B is then enclosed in the compartment on the back of the case. A simple door covers the RPi when it is in the compartment. The ribbon cable that comes with the display connects to the Raspberry Pi DSI port. The stand has a pivot that allows you to adjust the angle of the screen.
The SmartiPi Touch 2 is a case for the Official Raspberry Pi Display, Raspberry Pi (3B, 3B+ and 4B), and Raspberry Pi camera. New features include an integrated camera mount, three interchangeable faceplate options, and a cooling fan.
Here is a project that demonstrates the use of this touch screen for TelegramBot (In Bahasa Malaysia):Note:Everything shown below is included EXCEPT the Raspberry Pi board and Raspberry Pi camera.
The included ribbon cables are attached to the Official Pi display and the Official Pi camera. The longer cable attached to the camera is routed under the display control board.
The Raspberry Pi is then assembled into the back and the ribbon cables attached as shown. The fan can be attached to the 5v GPIO pin (7500 RPM) or 3.3v GPIO pin (4800 RPM)
Two different back door versions are included with the kit. One door features a punch-out that can be removed to expose the GPIO pins. The other door allows the installation of a cooling fan. Neither door works with HAT boards.
To use HAT boards the door must be removed. Standard HAT standoffs can then be screwed onto the Pi mounting studs. The optional back cover accessory can be purchased separately to cover the HAT board.
A TFT touch screen combines the fundamental elements of a raspberry pi touch screen with the advanced imagery TFT technology. These are the variants of raspberry pi touch screen displays that most consumers see and use on a daily basis. While TFT displays use more energy than standard monochrome LCD displays, many models provide brighter and more detailed visuals than conventional screens.
Explore the extensive selection of wholesale raspberry pi touch screen LCD displays, TFT, and HMI that can be used across a range of industries, including domestic, medical, industrial, automotive, and many others. You can choose from a number of standard industry sizes and find the raspber p i touch screen that are applicable to your required use. If you would like options that allow a smaller environmental footprint due to low power consumption, you can browse the Chip-on-Glass (COG) LCDs. COGs are designed without PCBs so have a slimmer profile.
Alibaba.com features a broad collection of smart and advanced raspberry pi touch screen equipped with bright, capacitive screens for the most affordable prices. These raspberry pi touch screen are made implying the latest technologies for a better, enhanced, and smart viewing experience. These products are of optimal quality and are sustainable so that they can last for a long time. Buy these raspberry pi touch screen from the leading wholesalers and suppliers at discounted prices and fabulous deals. The smart and capacitive raspberry pi touch screen offered on the site are applicable for all types of ads displaying, mobile screens, LCD monitors, and many more. You can use them both for commercial as well as residential purposes. These marvellous raspberry pi touch screen are provided with bright and strong backlights available in distinct colors for a wonderful screen viewing experience. These raspberry pi touch screen are.
Both the display driver board and the Pi need power- you can bridge them using the red and black jump wires supplied from the 5v and GND on the display driver board to the 5V and GND on the Pi ( find them here: http://pi.gadgetoid.com/pinout ) then plug the power into the display board.
If your touchscreen or display doesn’t work, triple check the FPC connectors - I’ve tested a lot of “not working” LCDs to find them working perfectly. In all cases the cables should be pushed in firmly and the clips secured fully- the larger FPC for the display ribbon takes quite a bit of force. I’ve posted a guide to the FPC connectors here: http://forums.pimoroni.com/t/raspberry-pi-official-7-touchscreen-assembly/1132
If you’ve got any reservations about connecting wires to your Pi’s GPIO, I recommend our split dial microB USB power cable: https://shop.pimoroni.com/products/split-microb-usb-power-cable
Make sure you update your Pi first, you’ll need the latest software and the Raspbian OS in order to drive the screen. A full reinstall of Raspbian Jessie works best, you can find it here: https://www.raspberrypi.org/downloads/raspbian/
Follow the linked Installation Guide, and make sure you go into Menu -> Preferences -> Raspberry Pi Configuration and expand your filesystem when you first boot up your Pi.
There’s no better place to learn everything you might need to know about the screen than the Raspberry Pi blog post which you can find here: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/
The touchscreen works over the DSI connector, so no extra connections are needed. It’s connected to the driver board via the smaller ribbon cable- don’t forget it!
This is unfortunately a side-effect of many developers assuming a minimum screen resolution of 1024x768 pixels. You can usually reveal hidden buttons and fields by;
Yes and no. As explained in the official Pi blog on the subject, only applications which know how to output over HDMI can be used. An example is given for OMXPlayer: https://www.raspberrypi.org/blog/the-eagerly-awaited-raspberry-pi-display/
It is possible to use both display outputs at the same time, but it does require software to choose the right display. Omxplayer is one application that has been modified to enable secondary display output.
Please note, you may need to increase the amount of memory allocated to the GPU to 128MB if the videos are 1080P, adjust the gpu_mem value in config.txt for this. The Raspberry Pi headline figures are 1080P30 decode, so if you are using two 1080P clips it may not play correctly depending on the complexity of the videos.
Currently you can’t run a dual display X desktop, and we don’t know when or if this will be possible. If you know how to make it happen, you can chime in on this thread: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120541
Note: An update has been pushed to Raspbian to flip the screen ( rotate it by 180 degrees ) for a better desktop viewing angle. This makes it upside-down in our stand and the official Pi stand, so you’ll need to change a setting to flip it back.
With the software updated it’s actually reasonably straight-forward to get the touchscreen working with a Model A or B Raspberry Pi. First you must make two additional connections between your Pi’s GPIO and the touchscreen: these are the SDA ( http://pinout.xyz/pinout/pin3_gpio2 ) and SCL ( http://pinout.xyz/pinout/pin5_gpio3 ) lines ( which you can connect using the supplied green and yellow wires ).
Note: This will give your i2c over to the Pi for running the LCD/Touchscreen and you wont be able to use any other i2c devices or add-on boards which require i2c.
If you absolutely need an extra 10 degrees of vertical viewing you can fit a Pibow Coupe to the back of the LCD screen and remove the legs. This lets it rest slightly further back while still remaining stable enough for everyday use. It also fits pretty neatly into a bag, too.
If you get a black screen, it likely means your DSI cable ( the one between the Pi and the driver board ) isn’t seated correctly or is… backwards ( I’m not even sure this is a real thing! ). We’ve had some success reversing the cable in this case- switching which end plugs into which part.
I’ve tried a number of USB cables from the USB port on the LCD driver board to the power input of my Pi and have invariably seen the little rainbow square indicating undervoltage in the top right hand corner of the LCD. (Note: This has seen been updated to a lightning bolt indicating the same)
I have put together a prototype split cable, and we’re looking into sourcing microUSB cable splitters to use in conjunction with the official Pi power supply as the most reliable solution.
Chris_c on the official Pi forums has discovered how to enable right-click with a simple configuration change. This allows you to press and hold on the touchscreen to trigger a right click.
As Clive demonstrates below, you can make a much more compact setup by flipping your Pi and mounting it with the ports facing towards the back of the LCD.
A standard GPIO ribbon cable will not fit between the two metal risers, so it’s impossible to route a Black HAT Hack3r or Cobbler out from the display in this position, but there might be cables out there that fit.
Gasp! Okay, I can see why you’d want to do this! I couldn’t put it better than the great step-by-step forum post here: https://www.raspberrypi.org/forums/viewtopic.php?f=108&t=120793
You can find a technical drawing with dimensions of the display and mount hole locations here: https://github.com/raspberrypi/documentation/tree/master/hardware/display
Make sure you mount your screen by screwing, gently, into the mounting holes either side of the metal frame, or for the driver board. Don’t attempt to mount the screen by the glass front. The tape bonding the glass to the rest of the screen isn’t designed to carry the weight of the screen, your Pi and whatever else might be connected.
The Compute Module IO board (for CM and CM3) includes a connector for the screen, see: https://www.raspberrypi.org/documentation/hardware/computemodule/cmio-display.md
The official 7” Touchscreen Monitor for Raspberry Pi gives users the ability to create all-in-one, integrated projects such as tablets, infotainment systems and embedded projects. The 800 x 480 display connects via an adapter board which handles power and signal conversion. Only two connections to the Pi are required; power from the Pi’s GPIO port and a ribbon cable that connects to the DSI port present on all Raspberry Pi’s. Touchscreen drivers with support for 10-finger touch and an on-screen keyboard will be integrated into the latest Raspbian OS for full functionality without a physical keyboard or mouse.Kit Contents:- 7” Touchscreen Display- Adapter Board- DSI Ribbon cable- 4 x stand-offs and screws (used to mount the adapter board and Raspberry Pi board to the back of the display-4 x jumper wires (used to connect the power from the Adapter Board and the GPIO pins on the Pi so the 2Amp power is shared across both units)Perspex layer frame in your choice of colour!* Compatible with Raspberry Pi 3 and Pi 4 only. Not compatible with Pi 400. *
—————————————————————————————————————————————————————————————————————* Connect the computer H DMI output signal to the LCD H DMI interface by using the H DMI cable