1st row lcd monitors brands
Below is the best information and knowledge about 1st row lcd monitors 2 compiled and compiled by the onthihsg.com team, along with other related topics such as:
Summary:Articles about What is 1st row LCD monitors 2? – Dailion First row equals entrance seats. Two multifunction LCD shows refers back to the small LCD show between the tachometer and speedometer and the LCD show above …
Summary:Articles about What Does 1st Row LCD Monitors 2 Mean – Krisetya Tech A liquid crystal display (LCD) monitor is a computer monitor or display that uses LCD technology to show clear images, and is found mostly in …
Match the search results:Cathode Ray Tube (CRT) Monitors. It is a technology used in early monitors. Flat Panel Monitors. These types of monitors are lightweight and take less space. Touch Screen Monitors. These monitors are also known as an input device. LED Monitors. OLED Monitors. DLP Monitors. TFT Monitors. Plasma Scree…
Summary:Articles about what is 1st row lcd monitors – NEXT-CARS Features Sunroof, Bluetooth, Radio data system, Great MPG, 3rd Row, 2 LCD Monitors In The Front, Radio w/Seek-Scan Clock Speed Compensated .
Summary:Articles about Touring 3.6 L CD 1st row LCD monitors – 2040 Cars Purchase used Touring 3.6L CD 1st row LCD monitors: 1 2nd row LCD monitors: 1 A/V remote in Omaha, Nebraska, United States.
Summary:Articles about 2022 Honda Insight Specifications, Details, and Data – Autobytel 1st row LCD monitors: : 2; AM/FM radio: : SiriusXM; Internet access capable: : HondaLink; Primary LCD size: : 8.0″; Radio data system: Satellite radio trial …
Summary:Articles about 2022 Chrysler Pacifica Hybrid – Limited Specifications 1st row LCD monitors: : 2; 2nd row LCD monitors: : 2; AM/FM radio: : SiriusXM 360L; Internet access capable: : 4G LTE Wi-Fi Hot Spot; Primary LCD size …
Summary:Articles about Kia Carnival Features and Specs – Car and Driver Cargo Space/Area Length Behind First Row (inches) … Cargo Space/Area Behind Front Row (cubic feet) … 2 LCD Monitors In The Front.
Summary:Articles about Lexus GX Features and Specs – Car and Driver Cargo Space/Area Length Behind First Row (inches) … Cargo Space/Area Behind Front Row (cubic feet) … 2 LCD Monitors In The Front.
Summary:Articles about 2022 Chevrolet Trailblazer SUV Digital Showroom … 2-speed CVT transmission with overdrive, 4-wheel anti-lock brakes (ABS), side seat mounted airbags, curtain 1st and 2nd row overhead airbags, …
Match the search results:The standard features of the Chevrolet Trailblazer LS include ECOTEC 1.2L I-3 137hp intercooled turbo engine, 2-speed CVT transmission with overdrive, 4-wheel anti-lock brakes (ABS), side seat mounted airbags, curtain 1st and 2nd row overhead airbags, rear side-impact airbag, driver and passenger kn…
Summary:Articles about 2020 Chrysler Pacifica – Interior and Exterior Features 1st Row Soft Seatback. 2 12V DC Power Outlets. 2 12V DC Power Outlets and 1 120V AC Power Outlet. 2 LCD Monitors In The Front. 2 LCD Monitors In The Front …
Summary:Articles about Liquid-crystal display – Wikipedia A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated … use a single glass or plastic panel whereas LCDs use two glass panels; …
Match the search results:Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers’ policies for the acce…
The VX2457-MHD from ViewSonic is a 24-inch eye care monitor with eye protection as a main priority during development. It natively supports a 1920 x 1080 resolution with a 16:9 aspect ratio. It is a flat LCD monitor with a panel type of TN.
When choosing the best monitor for eye strain you must think of that as your primary concern and view the specifications of each potential monitor through that lens. Having in mind that some technologies are better for your eyes than others, check out our best LED monitors review. They come in various sizes. Even some touch screen PC monitorshave features to protect your eyes. For some of the easiest ones on the eyes, check out our
The PB278Q is produced by ASUS. It is a 27-inch monitor and supports a native 2560 by 1440 resolution with a standard 16:9 aspect ratio. It is a flat LED monitor with an IPS panel type. We reviewed more 1440p monitors here.
It has a slower response time of 5 milliseconds but it should serve without issue for all uses besides gaming. You could play games with this monitor casually, but you may notice a delay that might cause eye strain over extended periods. The refresh rate is 75 Hz which is higher than most monitors.
The stand that comes with this monitor is extremely ergonomic. It provides several different functionalities that make it very easy to use and incorporate in any workstation setup. It is capable of swiveling from side to side, tilting forward and backward, and adjust the height up and down. You can even pivot the entire monitor into landscape mode for ease of use when browsing the web or if you are reading a lot of text.
The VX2457-MHD from ViewSonic is a 24-inch eye care monitor with eye protection as a main priority during development. It natively supports a 1920 x 1080 resolution with a 16:9 aspect ratio. It is a flat LCD monitor with a panel type of TN. If you are shopping for a compact size monitors, we have dedicated 24 inch monitor reviews.
Blue light filtering and flicker-free technology are also implemented which should protect your eyes very well over extended use. The primary problems you will experience with this monitor are the narrower viewing angle and lower contrast due to it being a TN monitor.
I can say that this monitor has a narrower viewing angle which can be annoying if it is implemented in a multiple display configuration. With that in mind, it should also be noted that the bezel on this monitor is thick which doesn"t lend it well toward multiple monitor configurations anyway.
The VP28UQG from ASUS has a display size of 28 inches and has a 3840 by 2160 resolution with a 16:9 aspect ratio. It is a 4k monitor created specifically with eye care in mind. It is one of the best computer monitors for elderly people. It is a TN panel LED monitor.
If you are a gamer then you may want to look at response times and refresh rates more, but you should be looking at eye protection first and gaming second. If you are a working professional in graphic design or video editing you may be more concerned with contrast or image quality of the monitors which are best for video editing, or the best monitors for graphic designwe also reviewed. You should also look at things like viewing angle and what kind of eye protection software it is compatible especially even with the best curved monitor you just got which may feel strange to your eyes until you adapt..
The specifications of the monitor will affect how you use different monitors. Not every monitor out there will perform at the absolute peak of performance which means that you will have to find the right one for your purposes.
Contrast, when discussing monitors, is usually about the vibrancy and number of hues of colors that a monitor is capable of showing. The higher the contrast ratio is the darker the blacks and brighter the whites will appear on your screen which consequently means the more shades and hues of colors it will be able to display.
Viewing angle is referring to how you are looking at your screen. If you typically sit directly in front of your screen and look at it head-on then you probably won"t have any issues with any monitor. If, however, you often sit leaned back very far in your chair, as I do, then you may notice that certain monitors will look different and often have problems like shadows appearing where they shouldn"t and colors being washed out which can cause computer eye strain and headaches.
Overall, the main way that panel type will affect your eyes is in how the panel type affects the viewing angle which in turn will affect all of the other qualities. A Twisted Nematic (TN) display has a narrower viewing angle and a lower contrast than an IPS monitor which means that your eyes have to work harder to analyze all of the information on the screen than they would with an In-Plane Switching (IPS) monitor type which generally has greater contrast and a wider viewing angle.
Another thing to consider is flickering. Monitors work by shining light in sequence so quickly that to your eyes it looks very much like a still image, but in truth, it is moving so rapidly that your eyes can"t process it. If a monitor is made without considering this then your eyes may notice the flickering and experience strain or fatigue by trying to process it all even if you don"t notice it yourself.
Unfortunately, the convenience of having all of the information of the human race at your fingertips at all times comes with a cost, especially after long hours of coding or photo editing. This is why I suggest that you read my monitor for photo editing under $300 reviews. In addition, check out ourbest monitor for architectslineup as well asbest computer monitorsfor work in general.
Computer screens are harmful to your eyes and the longer you use them the more damage you are causing to yourself. If you aren’t concerned about your eye health then you may be more interested in saving yourself some money, consider these monitors for a tight budget! When you are out and about, we recommend getting one of the top-rated portable monitorswe reviewed.Most users will likely find this damage to be negligible, they likely won"t even notice it except over very long periods. That said, those users with more sensitive eyes will notice a decline in the quality of their vision, like me even when using top-rated PC monitors. Fortunately, monitor companies know this and there have been advances in technology that should help to mitigate the damage caused by extended computer use. If you are looking for a monitor from a renown brand, check out our best BenQ monitor reviews. In addition, read our computer monitor arm reviewsfor better screen positioning and even less eye strain.You might also consider checking out some quality freesync monitors as well as some of the top of the range HDR monitors we reviewed here.
(AM)OLED monitors are the best for the eyes due to its high contrast level and per-pixel light emitting diodes. The second best option is probably TFT: *VA (e.g. AMVA, PVA) panels with a high contrast ratio and a non-PWM LED backlight. TFT: IPS is acceptable, but only in certain circumstances.
TVs and monitors both have potential to cause eye fatigue, but TVs are more likely to do so. The main difference is that TVs emit blue light, which can be more tiring for the eyes than other colors. If you"re going to be spending a lot of time in front of a screen, it"s a good idea to invest in a monitor with low blue light emissions.
In terms of eye safety, image quality, and power consumption, LED displays far outperform LCDs. The conventional LCDs employ a cold fluorescent cathode display backlight, whereas the LEDs use light-emitting diodes. LED backlighting is significantly more compact and eye-safe than incandescent lighting.
First row equals front seats. Two multifunction LCD displays refers to the small LCD display between the tachometer and speedometer and the LCD display above the radio in the center stack.
Anything you do like that can result in eye strain, so you really should take a break every so often and focus on something in the distance. But there’s nothing particularly harmful about LCDs or any other modern display technology.
It’s a constant debate. AMOLED Displays feature remarkable colors, deep blacks and eye searing contrast ratios. IPS LCD Displays feature more subdued(though some would say more accurate) colors, better off-axis viewing angles and often times a brighter overall picture.
Both LCD and LED make use of Liquid crystal display, but the difference lies in the backlight, which is majorly responsible for the effect on the eyes. The regular LCDs use a cold fluorescent cathode display backlight, and the LED uses Light Emitting diodes. The LED backlighting is smaller and much safer for the eyes.
We"re also here to help. We do a lot of work with all kinds of displays over the years so we know how having the best monitor is an essential component of any PC, especially the best computer setups for work and playing the best PC games, whatever the case may be. Whether you"re looking for the best 5K and 8K monitors for creative work or the best cheap gaming monitor deals for some casual esports, we"ve tried and reviewed just about all of them.
And, below we"ve broken down our top picks of the year – from the best 144Hz 4K monitors to the best monitors for video editing – and compiled them in this handy guide to make your buying decision easier than ever. We"ve also written up a guide for how to pick the best monitor to help you find what you"re looking for, no matter what your need or budget might be.
Now that the best PCs can handle 4K easier than ever before, the best 4K monitors are all over the place. That’s why BenQ released the PD3200U, a massive 32-inch Ultra HD display, as part of its Designer Monitor range. 3D designers particularly love this display, thanks to the factory-calibrated color accuracy and CAD/CAM mode. Marketed to creatives and professionals, BenQ has designed, seemingly by mistake, a panel that gamers will enjoy as well, making it one of the best monitors all-around – so long as they can find the space for it on their desks.
Ultrawide monitors have been around for a while: they’ve constantly made it on folks’ the best monitors list for a few years now, in fact. These wide monitors are lifesavers when it comes to productivity, and they’re only increasing in popularity. The Asus Designo Curve MX38VC, however, takes it to the next level.
We don’t usually run into technology that’s so far ahead of the curve that we’re left dumbfounded, which is why the Dell UltraSharp UP3218K has impressed us even more. Finding one of the best monitors that can reach the raw gorgeousness this one can should be next to impossible. It’s not just the resolution, either.
If you’re looking for a first-rate 1440p monitor with HDR for multimedia and gaming, then the BenQ EX3203R might be the display for you. One of the best monitors this 2022, this one’s noteworthy as it offers a ton of high-end features in a product that is very reasonably priced. Sure, 32 inches might sound like a bit much for a monitor, but the 1800R curvature on this BenQ panel means that it’s easy to use, both for productivity, as well as for immersion in your games and media.
If you"re on a high-end gaming desktop with the best graphics card on the market, then a 4K monitor or even an 8K display might be more of what you"re looking for. 4K monitors are only just now starting to get higher refresh rates like 120Hz and 144Hz, so these are definitely the 4K panels that you need to keep an eye out for.Which monitor brand is most reliable?There are a lot of PC monitor brands out there making everything from cheap, portable office monitors to high-end gaming PC monitors with ultrawide aspect and 1000R curve rating, 1ms pixel response, and blazing fast refresh rates.
If you"re just a typical PC gamer looking for the best image quality, getting a 4K monitor with 144Hz refresh is going to make your games look fantastic. If you"re an esports competitor (or want to be someday), then the only thing that matters is pixel response and refresh rate. Even a 1080p resolution is acceptable so long as it has at least 1ms pixel response or lower. The refresh on 1080p monitors can go as high as 360Hz or even higher with the very latest monitors coming onto the market.
We review monitors based on a number of factors including price, design, and performance. We consider the size of each display, as well as the number and type of ports on each monitor to determine who each display would benefit most. Each monitor is used in a variety of scenarios, so we use it for work, media consumption and gaming to test what it’s best suited to.
Performance is also evaluated by how well the actual screen tech works and its refresh rate. Frames per second are especially important in gaming monitors because you’ll want a high refresh rate during competitive games so you don’t miss a minute of the action.
Chrysler"s good year ended with an excellent fourth quarter that saw net income rise 68 percent from $225 million in 2011 to $378 million. Where are all those extra earnings coming from? Market share, which Chrysler saw increase to 11.4% last year on sales of 1.65 million vehicles. In fact, the Auburn Hills, MI-based automaker out-paced the industry"s market growth of 13 percent last year with sales up 21 percent for the year.
The company also revealed an updated product plan for its Chrysler Group and Fiat brands that looks all the way out to 2016. It"s an updated version of the plan introduced in 2009 shortly after Fiat took control of the American automaker, and includes such new additions as an Alfa Romeo model, likely the 4C, to be introduced in the US this year, as well five more Alfa models by 2016. Likewise, Fiat will be growing by an additional seven models in the coming few years.
Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.
Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.
Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.
The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.
Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.
LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.
The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).
Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.
LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:
Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.
In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.
In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.
On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.
In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.
In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,
In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,
The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.
In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.
Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,
In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.
In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.
Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.
CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.
EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.
WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.
RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.
Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.
Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).
The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),
Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.
A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.
A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.
The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.
Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.
STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.
Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.
High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.
Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.
Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.
In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.
In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.
This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).
Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.
Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.
Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.
Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.
Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.
The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.
In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.
Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.
Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.
Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.
Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.
Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).
No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.
As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.
Limited viewing angle in some older or cheaper monitors, causing color, saturation, contrast and brightness to vary with user position, even within the intended viewing angle.
Uneven backlighting in some monitors (more common in IPS-types and older TNs), causing brightness distortion, especially toward the edges ("backlight bleed").
As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.
Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.
Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.
Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.
The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".
Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.
Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.
Energy Efficiency Success Story: TV Energy Consumption Shrinks as Screen Size and Performance Grow, Finds New CTA Study; Consumer Technology Association; press release 12 July 2017; https://cta.tech/News/Press-Releases/2017/July/Energy-Efficiency-Success-Story-TV-Energy-Consump.aspx Archived November 4, 2017, at the Wayback Machine
LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine
New Cholesteric Colour Filters for Reflective LCDs; C. Doornkamp; R. T. Wegh; J. Lub; SID Symposium Digest of Technical Papers; Volume 32, Issue 1 June 2001; Pages 456–459; http://onlinelibrary.wiley.com/doi/10.1889/1.1831895/full
K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.
Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.
NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.
"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.
"Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.
Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.
An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.
Oleg Artamonov (January 23, 2007). "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis". X-bit labs. Archived from the original on May 16, 2008. Retrieved May 17, 2008.
The best gaming monitor we"ve tested is the Dell Alienware AW3423DW, which is easiest to buy directly through Dell"s website. It"s an excellent ultrawide gaming monitor that doesn"t have the highest resolution or refresh rate compared to other monitors. However, it"s known for its incredible motion handling and remarkable picture quality. It"s a QD-OLED display, so it combines the perfect black levels of OLEDs with the wide range of colors of quantum dot displays. Content looks amazing in dark rooms, and colors look vivid in HDR, but there are issues when using it in a bright room as the black levels raise, so it"s better to game with it in the dark. There are also some text clarity and color fringing problems; however, it doesn"t affect the overall picture quality in games.
The LG 27BK67U-B and the LG 27BL55U-B are 4K monitors with good color that cost less than $400; the 67U-B has a USB hub and USB-C, whereas the 55U-B omits those features and generally costs less. But in our tests both monitors suffered from image retention, leaving behind noticeable afterimages that other budget monitors we tested didn’t have.
We dismissed the ViewSonic VP2768-4K and the BenQ PD2700U for their lack of USB-C connectivity, which is a must-have in $400-and-up monitors these days.
The Acer B326HK and the BenQ PD3200U are sometimes cheaper than the 32-inch monitors we considered, but when we tested them in 2017 and 2019, respectively, we were disappointed by their mediocre contrast and color accuracy. They’re also missing newer features that we consider essential in a high-end monitor, such as a USB-C port.
We dismissed some 32-inch monitors without testing them because they were missing one or more of the features we were looking for. The ViewSonic ColorPro VP3268-4K lacked a USB-C port and didn’t cost much less than monitors that had one, and the BenQ EW3280U omitted a USB hub and had a limited stand that tilted the monitor up and down only.
Most companies have stopped making new 24-inch 4K monitors, but we did test the LG 24UD58-B against the Dell P2415Q in 2019. The LG’s screen was less accurate than the Dell’s by a wide margin. This model also had fewer ports (two HDMI ports and one DisplayPort connection), and its stand tilted the monitor up and down only.
Perhaps you’re in the process of picking out a desktop or notebook PC, or already have a laptop computer but aren’t exactly satisfied with the amount of screen real-estate it provides—either way, it’s time to get the 411 on the expansive world of computer monitors so you can find out what product(s) will fit your exact needs.
Formerly known as video display units (VDUs), the earliest monitors first implemented lights for computer engineers to be able to monitor the power state of their components and know whether their devices were working properly or not. As technology has advanced, computer monitors have come a long way in relation to what they can display and how they go about doing so.
It needs to be noted that monitors have their own vocabulary and jargon that you need to understand in order to make an informed purchase. Fortunately, Newegg Insider has a comprehensive guide for monitor terms you need to know before diving in.
On the surface, screen size may seem to be the only difference between monitors besides brand. Before we get into everything that’s going on behind each display and what your PC may need in order to get the right results, it’s best to introduce the types of monitors as well as the various shapes and sizes they come in.
As will be covered in its own section below, gaming monitors may also include “adaptive syncing” technology that virtually eliminates tearing and stuttering by having the monitor match the refresh-rate of frames being pushed out by your graphics card.
Screen size (diagonal measurement) and aspect ratio (width by height) are essential to understanding the unique resolutions you get with ultrawide-display monitors—and we’ll be covering more of that along with the features that absolutely need to be considered when you’re in the market for a new monitor.
Fairly new to the consumer market, the curved-screen craze that started around 2014 with Samsung and LG TVs has made its way to computer monitors. Just like ultrawide monitors, curved monitor displays have extended left-and-right width that curves in towards the viewer. Since its inception, the main purpose of this feature has been to provide more immersion. Ultimately, these monitors can present a higher sense of depth that traditional flat-panel displays cannot.
In a nutshell, high dynamic-range (HDR) content uses the latest color-range technology to simulate true-to-life colors on screen. First used within the field of photography, HDR tech revolves around improving contrast quality, producing darker blacks and purer whites. HDR monitors work great with both professional visual and high-quality gaming applications. Of course, your specs should be up to par and meet the latest minimum requirements for these applications—and to get truly high-speed gaming, you should try to find an HDR monitor with a low response time.
It’s 2019 and the majority of screens you see out in the wild come with touch functionality – but these functions remain relatively rare in the monitor world. Generally, all monitors come with integrated, physical-hardware controls to adjust screen and picture settings. Some touchscreen monitors step it up by provid