tft lcd vs va pricelist
Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.
LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).
Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.
Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.
IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.
Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.
IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.
VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.
This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.
TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.
The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.
A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).
Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.
To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.
Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.
Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).
If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.
On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.
If you"re in the market for a new gaming monitor, you"re going to brush up against three distinct types of displays that all come with their own pros and cons. We"re here to break down exactly what you need to know about TN, IPS, and VA panels and help you make the right choice for your exact gaming needs.
There are three display panel types that cover most gaming monitors (cutting-edge technology like mini-LED and OLED are coming, but we won"t cover that here). TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) all use the same technology at their core--molecules that react according to different voltages to move and produce an image--but their differences and evolutions have made each one good for specific use cases.
TN panels have the worst viewing angles of the three, with colors able to drastically shift from even slight angles off the center of the display. TN also has the worst color coverage, with the inability to show a high color depth and producing noticeable banding due to interpolation. Contrast ratios are also poor, with the overall image looking washed out compared to IPS and VA.
So, if TN is this poor, why is it still on the market? For one, TN panels are incredibly cheap, which is why you"ll often find them in budget gaming monitors that can still deliver a good, if not great, image. TN is also still the fastest panel type on the market, with pixel response times (the time it takes for a pixel to change color) as fast as 1ms. While IPS and VA panels have managed to get there, they often make use of methods that lead to other issues (such as smearing or inverted ghosting), which keeps TN panels relevant for speed.
One big disadvantage across the board with IPS panels are their poor contrast ratios, making them worse options for dark rooms than VA. It can make dark areas in games look more milky grey than black, made worse by the uneven backlighting that can be viewed at different angles (also known as IPS glow). The color reproduction is still the best it can be on an IPS display, but if you mostly play games at night or in a dim room, you might want to consider a VA panel.
Speaking of VA (vertical alignment) panels, there"s a reason the majority of LCD TVs use this panel type. It"s the jack-of-all-trades panel, with better color reproduction than TN panels as well as a much better contrast ratio compared to IPS. VA panels, depending on the overall display specs, can also be cheaper than IPS panels in most cases, occupying a good middle ground between performance and price that is difficult to argue against.
One area where VA truly excels is contrast. It"s a night-and-day difference compared to IPS, with VA panels able to produce far inkier blacks and really accentuate dark areas in games, especially when you"re playing in a dim environment. This is one of the strongest reasons for owning a VA panel, especially if the "IPS glow" really bothers you. You do, however, lose out on the wider viewing angles that IPS offers.
One issue with VA is its response times, like IPS. It can reach 1ms in very specific cases, but this often leads to a lot of smearing or inverse ghosting (where ghost trails behind shifting pixels have colors inverted), which make the gains moot. On average, a VA panel will have worse smearing at the same pixel response times when compared to an IPS panel, primarily down to how the vertical alignment of the molecules in the display function. It"s something you might notice when playing at very high refresh rates and in fast-paced games, but it"s also something that a lot of people don"t have an issue with at all.
If single-player games are mostly what you use your PC for and you"re strictly keeping it for recreational use, then it"s difficult to argue against a VA panel. It"s a considerable step up from TN and will let you enjoy your games with visuals as their designers intended. The deep blacks will let you immerse yourself in moody atmospheres, while the cheaper prices could afford you the ability to get a bigger monitor with a decently high refresh rate.
VA panels also give you a lot of range to stretch your budget, whether you"re just looking for a slightly-above-average display or one to really bring out the best in your hardware. From 1080p to 4K, it"s easy to find a great VA-equipped display that won"t break the bank or go ultra-premium with one of Samsung"s top-of-the-line products. The company"s latest G7 (or Odyssey G9, if you have the space and the money for it) feature outstanding HDR support, incredible contrast, and great color, if you"re willing to invest in their high price points.
If you"re looking for a monitor that can do it all, there"s nothing beating out an IPS panel. Many new monitors feature the more advanced fast IPS panels, which remove many of the compromises you used to have to make with regards to pixel response times and high refresh rates.
IPS panels are also ideal for local multiplayer gaming with their wide viewing angles, but these come at the cost of good contrast ratios and potential backlight bleeding. If you"re only planning to play games in a dark environment, a VA might be better suited to your needs. But if you"re looking for a panel with the fewest compromises, it"s hard to argue against IPS.
We"ve highlighted some of our favorite monitors with each display panel type above, but if you"re looking for more options for well-priced displays, check out our guide to the best cheap gaming monitors on the market right now as well as the best monitors for PS5 and Xbox Series X. If monitors are just too small, we also have recommendations for the best 4K TVs for PS5 and Xbox Series X, some of which can also work well for PC gaming. If you’re looking for some more information on the types of monitors out there, we’ve got a list of the differences between LCD and LED Monitors. Let us know what your favorite displays are in the comments below.
With so many companies in the market churning out newer and newer gaming monitors, shopping for LCD monitors can be confusing. Not only is there a lot of marketing noise out there today, but there are also debates on what panel/monitor type is the best?
When it comes to buying either a TV for home or a monitor for your office or a display for that gaming setup in your basement, things can be distilled down to usage and based on that; you can compare what different panels have to offer and how they will suit you. In this article, we will be having a quick look at the three most commonly used panels – TN, IPS and VA and helping you understand what they have to offer, and what they can be best used for. But first, a basic run on what an LCD is.
The major drawback of the CRT (cathode ray tube) technology was that it occupied quite a significant amount of space. The CRT displays worked on the principle of ‘light emission’ and they consumed a lot of power, which just added up to the size issue. The solution to these problems came in technological research on developing a screen that consumes less power (hence, increasing productivity), and which was smaller. Lit using fluorescent tubes, LCDs (liquid crystal displays) consume less power, are way thinner than the CRTs, and work on the principle of ‘blocking light’ rather than emitting it.
LCDs are made from a passive/active matrix grid made of conductors, the latter called as thin film display (or a TFT). Pixels are mounted on this grid at each intersection (and an active matrix has a transistor located at each pixel intersection). This network structure controls a pixel’s luminance and consuming a little amount of current. This ability leaves us with a choice to switch the current on and off more often on the grid, and this leads to a high ‘refresh rate.’ And a high refresh rate means a ‘smoother’ operation.
Developments in these screen types lead to LED TVs. The main difference between these and the LCDs is that they are lit using Light Emitting Diodes instead of fluorescent tubes. So technically, a LED display is a ‘LED backlit LCD screen.’
This information, however not essential for everyone to know, is a good bit for panel enthusiasts and pro gamers, as having a high refresh rate depends on the panel’s build and it’s resolution. Now, let’s go ahead and have a look at the three most commonly used panels on these LCD monitors – TN, IPS, and VA.
The most common LCDs are based on TN (Twisted Nematic) panel designs. Manufactured on a vast scale and pretty cheap, TN displays can be found in most homes. Primarily made for supporting low response times, TN panels remain to this day, a cheaper option for gamers who want a massive resolution with a low response time and a high refresh rate. Not to say that the IPS panels don’t have these features, but an IPS panel with the same features as a TN (1ms response time, QHD resolution and a 144Hz refresh rate for example) will always be more expensive. However, while the price is good with the TN, the color quality and viewing angles take a toll. They are the drawbacks of a TN panel when compared to other panels out there.
TN displays, (TFT-LCDs for example), work by passing light through two polarized screens, a color filter and liquid crystals that tend to twist and block light in correspondence of the current applied to them. This type of an arrangement leaves a lot in your hands as you can change the amount of current applied to adjust the crystal twists. Hence, you can achieve virtually any color or shade reproduced on the screen. But while precise adjustments are possible with a TN display, there are some drawbacks to this structure.
Every LCD’s pixel is constructed using some red, green and blue sub-pixels. Colors and shades are produced by mixing different brightness levels for these pixels that result in the perception of a particular solid color by the user’s eyes. The problem with TN panels comes from its adoption of a 6-bit per channel model, which outputs 64 shades per color, instead of the 8-bit per channel, 256 shades implementation. Needless to say, color accuracy takes a toll here. And while the TN compensates for this issue with ‘dithering,’ (using alternating colors to produce a certain perceived shade) it is still a poor substitute for 24-bit color reproduction. On top of that, narrow viewing angles don’t help the case, as there is a ‘washout’ produced that puts TN panels at a low level concerning color accuracy.
But if your main concern is not the aesthetics of the performance, but the performance itself, TN LCD screens reign supreme over other panel types because of providing us low response times and high refresh rates on a budget.
Measured in milliseconds, pixel response time or ‘responsiveness’ is the time taken for a pixel to change from one shade (of gray) to another (denoted as grey-to-grey or GTG). The higher the response time, the more blur and smearing you will experience during rapid transitions. While no industry standard exists for measuring precise response times, there is a value specified by the manufacturers on these displays.
TN panel displays have very fast GTG pixel response times that are usually well under the typical 5ms TFT-LCD average. This makes these displays a good choice for competitive gamers who are willing to sacrifice some color accuracy and viewing angles for great performance at a good price.
Today, many variants of the IPS also exist, like Samsung’s popular PLS (plane line switching) panels. These variants are not entirely different from IPS, though there are subtle ‘generational improvements’ like enhancements in viewing angles, brightness and whatnot. LG also has a variation to the IPS, called as the eIPS, which is basically a IPS panel you can get on a budget. However, in real world use, the usage experience varies by a little factor.
VA (Vertical Alignment) panel technology sits between the high speeds of TN and the color richness of IPS panels. Constructed implementing IPS’s 8-bit color depth per channel approach (that has a crystal design capable of reproducing rich colors), VA (and its variants) also retain some of the low latency of TN panels. This results in a display that is ‘almost’ as fast as TN and as colorful as IPS.
Often reaching 5000:1, VN panels have a superior contrast as compared to both IPS and TN screens, and this remains the highlight among other features. These panels reproduce better black levels than TN or IPS. However, there are more issues with VA panels today than there are advantages, and some of these issues can’t be ignored.
First on the list of cons is the color (and contrast) shift that happens when we view media from a wide angle. And while the viewing angles of VA panels are wider than TN, the shift is similar to a TN panel and renders most VA panels ‘not ideal’ for tasks that require a great amount of color accuracy. When it comes to gaming, there’s another issue. VA panels offer rapid light-to-dark pixel transitions. However, darker color shifts aren’t as speedy, and it can lead to blurring during high-performance tasks.
Just like there are variants of IPS, VA panels also have their own. To put it simply, they progressed from 1998 to 2005 (and beyond) from MVA, AMVA to AMVA+. MVA or Multi-domain Vertical Alignment technology first came out in 1998 and provided a 25ms response time with 160-170 degree viewing angles. This was, of course, a lot of value at the time. Today, these panels can be found as AMVA (Advanced MVA) in many displays, and they offer a contrast ratio as high as 5000:1 (which is the best contrast ratio in LCD technology), and QHD (2560 x 1440p) resolution at a wide screen size like 32 inches. So again, a lot of value here as well. After that, we have the AMVA+ which had improved viewing angles on the standard AMVA.
So in a nutshell, while VA panels are much better than average TN panels regarding color reproduction, they are still not good enough if you were to switch to premium TN panels oriented for gaming purposes. And when it comes to IPS panels, they dominate the list but with one disadvantage – price. If we were to talk about performance, high-end IPS panels reign over all else, with response times as low as 1ms, 144Hz refresh rates and supporting resolutions all the way up to 4K and 5K. If, however, you want to talk ‘value for money,’ TN panels give you decent colors and speed at decent rates. And if you have some more money in your pocket after selecting a TN panel of certain specifications, you can look for a VA panel that will offer you some added color quality and viewing angles. It’s all about comparison here, and understanding the fundamentals of these panels is a good starting point.
Twisted nematic or TN panel, vertically aligned or VA panel, and in-plane switching or IPS panel are three broad types of thin-film-transistor liquid crystal display or TFT LCD that have become very popular screen display technologies used in an array of consumer electronic devices.
Among these three variants, IPS is a more recent LCD technology. Furthermore, the advantages of an IPS panel over a TN panel or a VA panel have made it a more popular LCD option used in modern consumer electronic devices such as smartphones and tablet computers.
Depending on the functional scope of a particular device however, a TN panel or a VA panel can have more advantage over an IPS display. This article compares and contrasts these three LCD technologies using six common display characteristics: color reproduction, viewing angle, contrast ratio, pixel response time, power consumption, and cost and price.
Poor color reproduction is one of the disadvantages of twisted nematic LCD. Therefore, one of the advantages of a VA panel and an IPS panel over a TN panel is color accuracy and better image quality due to better color reproduction.
Most VA and IPS panels have an 8-bit RGB color depth compared with the 6-bit RGB color depth of TN panels. Among the three however, IPS panel has the better color reproduction. Several IPS panel variants have featured 16-bit to 24-bit RGB color depth.
The color reproduction advantage of VA panel has made it a popular LCD technology used in high-end computer monitors and large HD television sets. But IPS panels are becoming more popular in smartphones and tablet computers. Because of its superior color reproduction, IPS is also a favorable LCD option for color critical works such as graphic design and video editing.
Strong dependence on viewing angle is another disadvantage of twisted nematic LCD. A user needs to view a TN panel from a straight up 90-degree angle to maximize its visual performance. When viewed from other angles, colors and images on a TN panel will appear duller and darker.
However, a close comparison between a VA panel and a TN panel will reveal that the former has a better viewing angle. But most VA variants suffer from color shifting. This means that uneven brightness levels across a VA screen become noticeable when viewed from a slightly different angle.
Wide viewing angle is an advantage of an IPS panel over TN and VA panels nonetheless. High quality IPS panels produce consistent brightness and contrast levels when viewed from different angles. This is the reason why in-plane switching has become an ideal LCD technology for entertainment devices such as television sets and mid-range to high-end smartphones and tablet computers.
A narrow viewing angle provides some privacy and security however. This can be an advantage of TN panel over an IPS panel. This means that a TN panel can be an ideal LCD option for individuals or organizations that handle sensitive information in the presence of other people.
Low contrast ratio is another disadvantage of twisted nematic LCD technology when compared against vertical alignment and in-plane switching LCD technologies. However, between a VA panel and an IPS panel, the former has a better contrast ratio.
Backlighting can be blocked effectively in a vertical alignment LCD technology, thus producing deeper blacks and a higher contrast ratio compared to in-plane switching LCD technology.
A shorter and better pixel response time is a very notable advantage of TN panel over a VA panel and an IPS panel. Both vertical alignment and in-plane switching LCD technologies inherently suffer from longer pixel response time. However, a comparison between a typical VA panel and a typical IPS panel will reveal that the former has the worse pixel response time.
The response time advantage of TN panel makes it a perfect LCD option for fast-paced gaming and hardcore gamers. Although there are VA and IPS variants that feature reduced pixel response times, these panels are more expensive than TN panels.
TN technology does not require a current to flow during operation. It also uses low operating voltages. These advantages make TN panels popular in low-powered LCDs found in portable and miniscule electronic devices such as digital watches and calculators.
Note that VA panels and IPS panels are largely popular in power-intensive devices such as computer monitors, smartphones and tablet computers, and television sets.
Among the three LCD technologies, twisted nematic LCD technology is easier to implement. This means that twisted nematic panels are inexpensive to manufacture, thereby resulting in low prices for end users.
VA panels are more expensive than TN panels. However, they are relatively inexpensive when compared against IPS panels. This is the reason why VA computer monitors and television sets were very popular before the advent of IPS panels.
Because IPS panels are more expensive among the three LCD technologies, they are usually found in mid-range to high-end consumer electronic products. But the growing popularity of in-plane switching LCD technology is currently driving down the prices of IPS panels. Some IPS units are actually considerably cheaper than high-end VA panels.
The aforementioned comparison among TN panel, VA panel, and IPS panel revealed that there is no LCD type that is better at everything. Each type of LCD technologies has its own advantages and disadvantages.
From the list above, TN panels have remained an ideal LCD option used in minuscule electronic devices such as digital watch and calculator because they are very cheap to manufacture and consumes less power. They also remain a popular computer monitor option because of their affordability and fast response time.
On the other hand, IPS panels have the best color reproduction, color accuracy, and wider viewing angle compared with TN and VA panels. These panels have been featured in mid-range and high-end consumer electronic devices such as laptops, smartphones, and tablet computers. IPS is also an ideal computer output display for color critical tasks.
VA panels are situated between TN panels and IPS panels. They are more expensive than TN but are relatively cheaper than IPS panels. They offer better color reproduction and more decent viewing angle than TN panels although these characteristics are not superior over IPS panels.
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
In this article we give you an insight into the different panel types which are used in the screens of the current televisions. We explain what is behind the abbreviations LCD, VA, IPS, FALD and OLED.
Most TVs available today feature LED-LCD panels. This means that the backlight is created by LEDs and an LCD layer creates colors on the screen. Televisions almost exclusively use VA or IPS LCD displays. Terms such as “QLED” or “NanoCell” refer to additional layers on the screen for more accurate colors.
Normally, each individual pixel consists of three subpixels in the colors red, green and blue. If you mix these three light colors, you get white. In order to create a color other than white, the crystals of the corresponding subpixel must be charged by an electric voltage and change their orientation so that they no longer let the light of their color through. This is where the term LCD (Liquid Crystal Display) comes from.
VA stands for “Vertical Allignment“, which means that the crystals do not transmit light in the vertical orientation. As soon as they are electrically charged, their orientation changes to the horizontal and they let the light of their color through.
In their name-giving vertical orientation, VA panels can very well block the light from the backlight, creating deep blacks. This usually results in a contrast ratio of over 4000:1.
The disadvantage of VA panels is that the picture quality decreases rapidly as the viewing angle increases. If viewed at an angle, the contrast drops considerably and the image looks washed-out quickly.
So IPS-LCD TVs don’t have such deep blacks and typically only a contrast of about 1000:1.The advantage of an IPS panel is that the picture quality remains fairly consistent if viewed at an angle.
The contrast and color intensity as well as the authenticity of the colors are largely retained. IPS panels are somewhat cheaper in production than VA panels, which is why they are used in the majority of entry-level devices.
As mentioned at the beginning, they are actually LED-LCD televisions. Because every LCD TV needs a backlight and this is nowadays generated by LEDs. The LEDs either sit at the edge (usually the lower edge) of the screen (= Edge Lit) or directly behind the screen (= Direct LED).
One of the cheapest current TVs with local dimming would be the LG NANO85, which has a very poor Edge Lit Local Dimming feature. TheSony X90J, for example, has a solid Full Array Local Dimming, with 24 dimming zones and a good algorithm delivers a really high-contrast picture. The best Full Array Local Dimming currently available (under 10.000$) can be found in the Samsung Q90B. For example, the 65-inch variant has 720 individual dimming zones and a very good algorithm.
OLED panels are a completely different technology than LCDs, because OLED panels do not require backlighting. OLED stands for “organic light emitting diode“, which means that all subpixels emit light themselves or not.
OLED televisions are available from more and more manufacturers. That’s why there is now a healthy competition. You get OLED TVs of course from LG, but also from Sony, Hisense or Metz Blue and many more. Even Samsung, who have actually retired from the OLED sector, want to start producing OLED TVs again under the name QD-OLED.
Finally, it should be mentioned that OLED displays are not only extremely thin, but can also be flexible and it is even possible to develop transparent OLED TVs.
It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.
Vertical Alignment (VA): Also referred to as “super vertical alignment” (SVA) and “advanced multi-domain vertical alignment” (AMVA). They all share similar characteristics.
These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.
Choosing a monitor never gets easier. Every year that passes by, new technology redefines the limits of previous technology. It used to be that every monitor on the market was a TN panel. Then, along came IPS with a significantly improved picture quality with a much wider range of color and wider viewing angles. These two competing technologies still dominate the market today. However, there is a third. Vertical alignment, or VA, panels were developed to bridge the gap between TN and IPS in the early days.
VA panels are capable of better viewing angles than TN panels, but not as good IPS. They are also more consistently available in higher refresh rates like 120Hz or 144Hz. In the modern market, the 144Hz refresh rate is not rare or exclusive to panel technology. IPS still tends to shine as a better technology than both TN and VA panels with the best range of color and viewing angles available. However, IPS displays are typically the most expensive of the three.
It used to be that VA panels were easier to get a faster response time on than IPS panels. That has also changed. IPS panels can come with 4 ms response times and 280Hz refresh rates without losing color contrast, gamut, or viewing angles. VA panels can come to similar performance, but with a much slower response time. This makes IPS panels a better option for gaming, while VA may be a better option for office use due to its cheaper price.
It is worth noting that when discussing prices of modern monitors with VA, TN, or IPS panel technology that cost has significantly been reduced. 20” monitors with any panel technology run from as cheap as $50 to around $200. The price is dictated by more than just the panel technology, of course.
Vertical alignment, or VA, panels are a type of liquid crystal display, LCD, technology that uses vertically aligned crystals. This means that the nematic liquid crystals are vertically aligned with respect to the glass substrate. When power is applied, the crystal molecules will tend to organize perpendicular to the electric field and therefore parallel to the substrate surfaces. When the panel is unpowered, the axis of the LC molecules is positioned vertically to the substrate which prevents light from reaching through the screen like window shades.
VA was created after IPS in an attempt to create a mixture of the two technologies. It creates a better contrast ratio and includes the wide viewing angles of IPS LCD display panels. The idea for vertical alignment panels was born in 1971, but the final product wasn’t released until shortly after IPS technology. VA panels are most known for their ability to reach high refresh rates without incurring a heavier cost which is fantastic for budget gamers.
Vertical alignment panels have a bad habit of ghosting images. When a VA panel TV or a monitor is left active for too long on an unchanging image, the image can be burned into the screen. Some users may be familiar with this as movie DVD menus may have accidentally been left on overnight causing a burnt image. This is what’s known as image “ghosting”. Unfortunately, there isn’t a way to prevent this other than ensuring the panel is powered down when not in use.
In-Plane Switching, or IPS, is one of the display technologies for TFT-LCDs, which stands for Thin Film Transistor Liquid Crystal Displays. It was created to provide an alternate solution to twisted nematic display panels. IPS was first developed by Hitachi. They had found a way to change the physical behavior of the liquid crystal layer by moving the liquid crystal molecules in parallel with the thin film transistors. This created much wider viewing angles when compared to traditional TN panel technology.
Since then, LG has developed IPS into the next level with S-IPS, super in-plane switching, and AH-IPS, advanced high-performance in-plane switching. The first version of IPS already offered a much wider color gamut compared to TN display panels, but the extra enhancements from decades of development have brought IPS to the point where TN only outperforms IPS displays when it comes to response time. IPS panels are typically measured at 4 ms response time. TN panels still boast a consistent 1 ms response time. For office work, school projects, home management, and organizational uses, the difference in response time will mean nothing. A user who enjoys PC gaming will notice the difference in racing or competitive Shooters rather quickly.
IPS has wider viewing angles with no shift in color between horizontal and vertical directions. VA panels have poor viewing angles that show picture degradation.
The world of smartphones has been busy for the past few months. There have been numerous revolutionary launches with groundbreaking innovations that have the capacity to change the course of the smartphone industry. But the most important attribute of a smartphone is the display, which has been the focus for all prominent players in the mobile phone industry this year.
Samsung came up with its unique 18:5:9 AMOLED display for the Galaxy S8. LG picked up its old trusted IPS LCD unit for the G6’s display. These display units have been familiar to the usual Indian smartphone buyer. Honor, on the other hand, has just unveiled the new Honor 8 Pro for the Indian market that ships with an LTPS LCD display. This has led to wonder how exactly is this technology different from the existing ones and what benefits does it give Honor to craft its flagship smartphone with. Well, let’s find out.
The LCD technology brought in the era of thin displays to screens, making the smartphone possible in the current world. LCD displays are power efficient and work on the principle of blocking light. The liquid crystal in the display unit uses some kind of a backlight, generally a LED backlight or a reflector, to make the picture visible to the viewer. There are two kinds of LCD units – passive matrix LCD that requires more power and the superior active matrix LCD unit, known to people as Thin Film Transistor (TFT) that draws less power.
The early LCD technology couldn’t maintain the colour for wide angle viewing, which led to the development of the In-Plane Switching (IPS) LCD panel. IPS panel arranges and switches the orientation of the liquid crystal molecules of standard LCD display between the glass substrates. This helps it to enhance viewing angles and improve colour reproduction as well. IPS LCD technology is responsible for accelerating the growth of the smartphone market and is the go-to display technology for prominent manufacturers.
The standard LCD display uses amorphous Silicon as the liquid for the display unit as it can be assembled into complex high-current driver circuits. This though restricts the display resolution and adds to overall device temperatures. Therefore, development of the technology led to replacing the amorphous Silicon with Polycrystalline Silicon, which boosted the screen resolution and maintains low temperatures. The larger and more uniform grains of polysilicon allow faster electron movement, resulting in higher resolution and higher refresh rates. It also was found to be cheaper to manufacture due to lower cost of certain key substrates. Therefore, the Low-Temperature PolySilicon (LTPS) LCD screen helps provide larger pixel densities, lower power consumption that standard LCD and controlled temperature ranges.
The AMOLED display technology is in a completely different league. It doesn’t bother with any liquid mechanism or complex grid structures. The panel uses an array of tiny LEDs placed on TFT modules. These LEDs have an organic construction that directly emits light and minimises its loss by eradicating certain filters. Since LEDs are physically different units, they can be asked to switch on and off as per the requirement of the display to form a picture. This is known as the Active Matrix system. Hence, an Active Matrix Organic Light Emitting Diode (AMOLED) display can produce deeper blacks by switching off individual LED pixels, resulting in high contrast pictures.
The honest answer is that it depends on the requirement of the user. If you want accurate colours from your display while wanting it to retain its vibrancy for a longer period of time, then any of the two LCD screens are the ideal choice. LTPS LCD display can provide higher picture resolution but deteriorates faster than standard IPS LCD display over time.
An AMOLED display will provide high contrast pictures any time but it too has the tendency to deteriorate faster than LCD panels. Therefore, if you are after greater picture quality, choose LTPS LCD or else settle for AMOLED for a vivid contrast picture experience.
Whether it is for professional graphic designing, gaming, or general computing requirements, a high-quality monitor can deliver an engaging viewing experience. Available in a wide range of options, these devices offer you the flexibility to choose the one as needed. You can decide based on their size, screen resolution, panel type, display type, and technology. You can also choose based on their design and mounting, webcam, and additional features. So, whether you are bored of your old monitor or need an upgrade to take advantage of the sophisticated software, you can browse and find the right screen for your requirements. Several brands, such as Dell, Acer, LG, HP, BenQ, and many more offer a myriad of options to choose from.
You can go ahead with a basic monitor if you only need it to get you through the day and help you send emails, post on social networks, surf the web, pay bills, watch films, and so on. For these uses, adequate-size screens with full HD displays are easily available. Heavy games demand displays with high resolution, a good response time, a fast refresh rate, and a wide viewing angle of up to 178 degrees or more. And, if you are a gaming enthusiast, you can search for AMD FreeSync or NVIDIA G-Sync technology for an engrossing gaming experience. Some gamers also search for two gaming monitors or a truly widescreen display to enjoy an enhanced view. For photographers, graphic designers, animators, coders, and other multimedia specialists, widescreen displays with Full HD or Quad HD resolution can be suitable. The IPS panel and other display technologies provide wide viewing angles and excellent colour accuracy. You will also need to think about response time, mounts, stands, and so on for an improved viewing experience. If you want to buy this device for work, such as working on spreadsheets or collaborating with coworkers, an LED or IPS display with Full HD resolution will be ideal.
If you want to enjoy high-quality pictures, you need a display with up to 1920x1080p Full HD display and more. But, a QHD or up to 4K variant will deliver more sharp and clear images. As far as the size is concerned, up to 81.28 cm (32) devices are enough for viewing from average desktop distances. You can find up to 81.28 cm (32) 4K gaming or general use displays. The refresh rate, which is measured in hertz, indicates how many times your display updates with new information every second (Hz). A large number delivers smooth images. Gamers desire a display with a refresh rate of at least 75 Hz as well as the shortest response time possible. But, if you are not a gamer, a refresh rate of 60 Hz should suffice. Curved displays are less eye-straining and have a large field of view. And, these displays are often wide, which indicates high performance. So, you can buy monitors online and enhance your overall viewing experience.
When you’re looking into buying a VA panel vs IPS TV, there are many things to consider. Narrow viewing angles, color performance, refresh rates, and more all come into play. Your budget will also be a huge determining factor. You should take all this into consideration when purchasing the best TV.
The VA panel is a much better choice if you’re viewing at an extreme angle, you like to watch your favorite TV in a dark room, or you just want something with fantastic color quality.
Pitting a VA panel vs. IPS TV against one another means looking into how they measure up in a few categories. The type of LCD panel that is right for you will be determined by both lifestyle and budget. Those are the most important factors to most consumers.
There are a few differences between a VA panel and an IPS panel. We’ll go over what sets them apart so you can better understand the display technology behind them.
A few different factors go into deciding your viewing experience after installing your TV. One of them is the viewing angle, which refers to how much of an angle you can watch TV at before there’s a drop in picture quality. A VA panel will give you much wider viewing angles than an IPS will. This isn’t a dealbreaker, but the limited viewing angles offered by IPS panels should be kept in mind while shopping. The wide viewing angles make the VA panel a clear winner in this category. Remember to keep viewing angles in mind when you are shopping for the top curved TVs as well.
Having an impressive contrast ratio makes a world of difference to your viewing experience. Color accuracy refers to how well panel TVs can reflect the true color on their screens. A superior contrast ratio means that you’ll be able to see details far better, and white will show through far better. TVs with the lowest contrast ratio will show white as light shades of gray. The excellent contrast ratio of a VA panel makes it a superior choice. This can be a key factor when deciding between an outdoor TV vs indoor Tv as well.
Essentially, we’re talking about the ability to display perfect blacks even in a dark room. Black colors can be complex for LCD screens to express adequately when in dim lighting. Having screen uniformity means displaying the same deep blacks across the entire display. A VA panel is the clear winner here, with superior blacks that hold up even in low lighting. An IPS panel just can’t give the same black uniformity, going either blue or gray towards the center of the screen. Additionally, you can learn more about the differences between TV backlight vs brightness.
The most significant difference is price, which means that your budget will determine which is better. VA panels have an easier time with black uniformity, which refers to their ability to display deeper blacks even in dim lighting. They also have better viewing angles. However, they’re also much pricier. On the other hand, an IPS isn’t a wrong choice and will still give a quality viewing experience. When shopping for aUHD or SUHD TV, knowing the key differences between the two panels will help you make a better choice. While there may not be the best TV brand for every type of screen, knowing the differences between the types can help make sure you understand the benefits of what you are paying for.