crystalbrite tft lcd quotation

This technology is based on applying an over-voltage to the liquid crystals to motivate them into their orientation faster. This process forces them to a full white (inactive) to black (active) transition first. The crystals can then drop back down to the required intermediate grey level. This is helpful as the rise time of a liquid crystal was always the slowest part (response time = Tr + Tf). This technology does not help improve the ISO black > white transition much since that already received the maximum voltage anyway, but transitions from grey > grey are significantly reduced. The improvements in grey transitions however are helpful in producing a faster panel overall as these changes have always been slower colour changes in TFT panels and it is important that the response time is low across the whole range of transitions (0 – 255). Screens featuring RTC will normally show an improved responsiveness in practice and reduced motion blur and trailing. Manufacturers will usually quote a “grey to grey” (G2G) response time figure on displays using this technology since they are normally the fastest transitions available. Look out for “G2G” quoted in the spec sheets.

There is also a certain risk of video noise being visible on colour masses. Why? When the image is fixed, there is no problem – the pixels don’t change regardless of their values. That’s the advantage of LCD. But imagine a subtle colour shading. When a tracking shot in a movie moves through those subtle colours, the pixels have to change from one value to another, but the colours are really very close. Unfortunately, Overdrive temporarily causes a much greater variation in the value of the pixel and since all the pixels don’t react in the same way – certain ones being faster than others -the result is that the viewer sees accentuated video noise. There may also be some problems with Overdrive being used on TN panels which use dithering. Dithering is normally invisible to the naked eye if the viewer is far enough away, but Overdrive could amplify the visual nuisance stemming from the strong brightness escaping from the panel during the Overdrive period. In real practice accentuated noise and “overdrive trailing” can be a symptom of poorly controlled overdrive methods and can vary from one model to another.

One other thing to note for Overdrive (RTC) enabled monitors is that running a TFT outside of it’s recommended refresh rate (i.e. not at 60Hz) can lead to a deterioration in the performance of this technology and the panel responsiveness is sometimes adversely effected. Read the details here for more information.

Unfortunately, manufacturers have panels which are on one hand, clearly faster across grey transitions than previous technologies, but on the other, have panels which have not improved on the black > white > black change which is the ISO standard for measuring “response time”. They have instead now started to list their panels with a response time quoted as being G2G to show that they have made improvements. If a TFT is listed as a G2G response time, then you can be pretty sure the panel is using some form of ‘Overdrive’. Remember though, the response time, even if it is quoted as G2G, is still only the fastest recorded response time for the panel, and some transitions will still be slower.

Backlight shuttering – blinking the backlight off briefly during the liquid crystal cell transition. Used only in LCD TV’s at this stage. Designed to reduce perceived motion blur caused by the human eye.

Amplified Impulse Technology – This was originally listed in ViewSonic’s documentation as a feature in the electronics of the TFT which dynamically controls the amount of Overdrive being used by the panel. Looking at their current whitepapers suggest it is more linked to their Impulse Driving Method as listed above.

Samsung’s own version of RTC / Overdrive technology. They always like to have their very own version of technologies, and to be fair, they are one of the main panel manufacturers in the TFT market. There is very little information available about the technology apart from that it is designed to boost grey transition response times. At the end of the day, this is basically just another name for overdrive, and as far as we know, works on the same principal. Some models feature an option available through the OSD to disable or control the level of RTA, and this can show some noticeable differences in practice between different states.

BenQ comment that even a 0ms TFT would result in perceived afterglow due to the human eye mixing images and introducing blur. This perceived motion blur effect is in large part due to the human visual system and is something manufacturers are trying to overcome on their hold-type displays. This is the reason behind looking at new technologies other than overdrive to help reduce blurring on these screens. Other manufacturers such as Samsung are exploring technologies including backlight scanning but AU Optronics / BenQ are favouring BFI instead.

MPA is designed to reduce perceived motion blur on LCD displays when viewing moving images. Because of the way LCD screens work, the human eye will always be subject to motion blur, even where response times are extremely low. This is due to image retention in the eye, and so manufacturers have been investigating ways to eliminate or reduce this. One method introduced some time ago by BenQ was their Black Frame Insertion (BFI) technology. The idea in theory for this was to introduce black single frames between every other frame of the normal image, thus supposedly ‘cleaning’ the eye of the image before it, and in theory, reducing perceived motion blur. In practice, from reviews around the internet, it seemed that rather than a true black frame insertion technique, the screens (FP241WZ and FP241WV) instead used a scanning backlight technology, which operated in a similar way to a CRT. By shutting down the CCFL backlight tubes one at a time, in sequence, the screens were artificially helping to clean the retained image from the eye.

This enhancement has only been used in NEC’s LCD24WMGX3 display at the time of writing. Like Samsung’s MPA it is designed to help reduce perceived motion blur and improve images in fast moving scenes like movies and games. NEC have called theirs ‘Motion Picture Mode’ and this feature is accessibly via the OSD, or directly through the ‘MP Mode’ button on the front of the screen. There are four settings for this feature, with off, and then levels 1 to 3.

The technology operates by using a scanning backlight, which sweeps down the screen from top to bottom, turning off each CCFL backlight tube in order. As you increase the mode from 1 to 3, the intensity of the backlight scanning increases, and the manual recommends you increase this level for faster moving content. The technology is designed to reduce motion blur of moving images by cleaning the human eye of retained images. This technology was designed to help overcome some of the ongoing problems with LCD hold-type displays where perceived motion blur and retention of images by the retina will always be a problem.

Motion interpolation is used in various display devices such as HDTV’s and video players, aimed at alleviating the video artefacts introduced by frame-rate conversions in fixed-frame-rate displays such as LCD TVs. Films are recorded at a frame rate of 24 frames per second (fps) and television is typically filmed at 25, 50, 30 or 60 frames per second (the first two being PAL, the other two from NTSC). Normally, when a fixed frame rate display such as an LCD screen is used to display a video source whose frame rate is less than that of the screen, frames are often simply duplicated as necessary until the timing of the video is matched to that of the screen, which introduces a visual artefact known as judder, perceived as “jumpiness” in the picture. Motion interpolation intends to remedy this by generating intermediate frames that make animation more fluid. This principle was taken further to extend the frame rate of displays to more than the standard 50 / 60Hz, giving rise to 100 and 120Hz (and above) technologies.

LG TruMotion –LG introduced their technology designed to improve perceived motion blur on liquid crystal displays. This technology is primarily used in their LCD TV range, although some desktop monitors do exist with this feature. They have enabled a psuedo-120Hz support for these models using TruMotion technology. This was achieved through what has come to be known as “MEMC” – Motion Estimated Motion Compensation. The basic premise of this technique is that the TV’s processor looks at the first and second frames and then estimates or guesses what a frame would look like if there was one in between those 2 frames. This process is repeated between every frame thus creating 120 frames per second or the so-called “120Hz” refresh rate. In fact this is not a true 120Hz as the output from the device is still at 60Hz. The extra “frames” are interpolated and guessed. In practice this technology can help reduce perceived motion blur and allow for smoother moving images. This is why it has been largely used in LCD TV’s to date.

Sony’s X-Black / X-Brite technology was developed first of all for laptop panels, which has meant that once they started to incorporate it into desktop displays, they could make the casing and bezels very small and stylish. They’ve incorporated dual fluorescent lamps (CCFL) to light the displays and to help achieve improved brightness over regular LCD panels. This has helped provide some impressive contrast ratios (at the time of release) too including up to 1000:1, and the added brightness is being marketed as improving movie playback.

Acer’s reflective glossy screen coating is referred to as CrystalBrite and appears on some of the desktop monitors as well as their laptops. The technology offers an ultra-fine, highly polished glossy coating which reportedly allows superior filtering of light and quicker image building. It is marketed as reducing reflection from internal and external light sources, and improve colours and image quality. This includes more vibrant and brighter images via backlight diffusion reduction, as well as superior contrast with minimal ambient light scattering.

NEC introduced this glossy panel coating solution on their very popular (at the time) NEC LCD20WGX2. Again this was a replacement for traditional AG coating and was not to everyone’s taste. It was designed to improve the sharpness and feel of the image which it did well, but there were of course issues with reflections introduced.

This is Eizo’s technology used for uniformity correction. Fluctuations in brightness and chromaticity on different parts of the screen are a common trait of LCD monitors. To counteract this, the monitor incorporates EIZO’s patented digital uniformity equalizer (DUE) technology to ensure a Delta-E difference of 3 or less across the screen when the monitor leaves the factory. And now DUE also counterbalances the influences that a fluctuating ambient temperature may have on colour temperature and brightness to ensure stable image display.

NEC feature their dynamic contrast on some of their models including the NEC LCD20WGX2. Ultimately this technology runs under the same principle as other DCR’s, but under a different name used by NEC.

AUO Picture Enhancer (APE) Technology integrates the input image data management and the dynamic backlight control solution. The intrinsic image processing system circuit can dynamically adjust the contrast, sharpness, hue, colour temperature, and colour saturation to accommodate the particular image. Non-linear image processing can accommodate changes in the dynamics of human perception ideally used to overcome an existing problem with LCD TVs where motion picture tends to lose its accuracy during darker states. This technology provides a vivid and sharp image, retrieves natural colours, and enhances colour saturation, details in grey levels, and contrast ratio. With AUO’s Image Processing Technology, customers can better enjoy details of dark and night scenes on movies.

crystalbrite tft lcd quotation

The Aspire 4730 contains a 14" HD display ideal for carefree multimedia enjoyment and communication on the go. It also boasts an Intel Pentium Dual-Core Processor, Mobile Intel GL40 Express, 14.1" WXGA (1280 x 800) TFT LCD with Acer CrystalBrite Technology, and Integrated Intel Graphics Media Accelerator 4500M.

crystalbrite tft lcd quotation

Intel® Pentium® Dual core Processors T2330 (1.66 GHz, 667 MHz FSB, 2MB L2 Cache), 14.1" WXGA Acer Crystal Brite TFT LCD 120GB SATA HDD 512MB DDR II RAM DVD-Super Multi Double Layer Drive 5 in 1 Card Reader 4-hour battery life Modem / LAN 56K, 10/100/1000Base TBT 802.11a /b/g WLAN Built in Crystal Eye Webcam Free carrying Case

Intel® Core 2 Duo Processors T5500 (1.66GHz, 667 MHz FSB, 2MB L2 Cache), 14.1" WXGA Acer Crystal Brite TFT LCD 160GB SATA HDD 1GB DDR II RAM Up ti 384 MB ATI ® Mobility Radeon ® DVD-Super Multi Double Layer Drive 5 in 1 Card Reader 4-hour battery life Modem / LAN 56K, 10/100/1000Base TBT Bluetooth ® 2.0+EDR 802.11a /b/g WLAN Built in Crystal Eye Webcam Free carrying Case Genuine Windows Vista home Premium

crystalbrite tft lcd quotation

The Blitz ad says $350 but Santa called and challenged him to do better. So now Sam’s is at new price of $345 and an additional $20 case value is included. This is an 8.9" WSVGA Acer CrystalBrite TFT LCD (1024 x 600) with an Intel Atom Processor, 1GB Memory, 120GB Hard Drive and a Crystal Eye Webcam. WOW. That information tells me that Sam’s really put together a great item for our Members! This unit is great for surfing the net, e-mail and is a nice netbook."

crystalbrite tft lcd quotation

Please see the DT028CTFT for reference designs. The schematics between the A and the C are the same with the exception that the A does not have the IPS interface.