cool things to do with lcd displays price
Well, not only can you save a piece of old technology from the scrapheap, but you also can repurpose a mundane blank screen into a range of intriguing projects.
Not only can you now spend a rainy afternoon or two taking apart your busted LCD screen, you’ll get that insider’s view of all the interesting circuitry that goes into these electronic devices that are a part of everyday life.
If you are an artist or photographer, you will be well aware of the importance and expense of lighting. But what if we told you that you could make a powerful, portable DIY light panel from an old LCD screen?
This amazing LCD screen hack produces a high-quality panel light that radiates daylight quality light. An equivalent panel light can cost well over a hundred dollars!
We have to admit we were skeptical about this LCD screen project, but the walk-through provided by the BrunaLab team in Florida was convincing. These scientists were more than qualified to take apart an old Panasonic screen to make a StarTrek-worthy infinity table.
This tutorial is a little more than purchasing some IKEA table legs to screw into the screen to make a coffee table (the original hack). Emilio Bruna decided to take his project in a high art direction to produce an infinity lighting effect with blue LEDs.
Again with a little electronic know-how, wiring and battery-powered LED lights an infinity TV coffee table was born. The turnaround of this project was within a day which makes it doable on a weekend that you have free.
We love the futuristic results of the LCD recycling project and the low costs. Emilio Bruna’s project came in at $73 all in, with a wacky blue lighting pattern that kept his kids glued to the coffee table screen!
If you are a tech and electronics enthusiast, you will be aware of the Raspberry Pi revolution. These remarkable single-board computers have the processing power to be put to work in a wide range of projects, including partnering with your broken LCD screen to make your high-end digitized smart mirror!
There are loads of tutorials for this LCD screen mirror which vary in cost, complexity, and overall swagger. The majority of them, place the LCD screen behind a two-way mirror and rely on the WiFi-enabled Raspberry Pi3.
The basics of this build include combining an old OHP projector and laying a stripped-down LCD on the glass of the projector. The OHP does all the hard work of projecting your movie or game.
The like the old school OHPs the visual effect of this projector will be strongest in very low light as the claim to High Definition projection may be a little too enthusiastic.
Also, the LCD does age quite quickly in this arrangement as the light passing through the denuded screen damages the LCD. However, you can definitely gather the family round for a decent movie night or two before it all falls apart!
Raspberry Pi comes to the rescue again as the perfect partner for repurposing your own screen. After all the Raspberry Pi is a computer with no screen to call its own.
This hack is very similar to the smart mirror and uses the slightly more powerful Raspberry Pi 4 which has the comparable processing power to a regular computer.
This project totally blew us away. How cool is a transparent screen that you can see through while you stream films or play games?! Though this project is not for amateurs it is possible to requisition a discarded LCD TV and create a see-through screen.
To achieve this, you will need an expert takedown of the TV, sepearating every single layer of the screen and building up a custom design and housing.
A broken LCD screen is a potential hazard to your health and the environment so it is important that you handle the screen safely to prevent injury or harm.
Though the screen has liquid crystal, the amount contained within a busted screen is small and unlikely to cause a hazardous spill because it is viscous.
However, there are certain substances to be careful off including N-(4-Methoxybenzylidene)-4-butylaniline (MBBA), a compound that is often used as liquid crystal is hightly irritant and can cause blood poisoning if ingested.
It is best to wear gloves, goggles, and a dust mask when taking apart electronics as you cannot be sure what you will encounter. Be careful handling circuit boards as capacitors can have retained enough power to give you a nasty shock!
Unused electronics are the bane of the modern life. Perfectly functional gadgets sit quietly in a corner of the store room, doing nothing. If you"re wondering what to do with old computer monitors, here are a few easy ideas to repurpose unused screens.
In this guide, it doesn"t matter if your old monitor is still working or not. Even if it isn"t, you can use its parts to make a great new gadget. From turning it into a super-tiny computer or dashboard to refashioning into a smart mirror, here are some of the most productive ways to repurpose a computer monitor.
The Raspberry Pi 4 is an incredible device. While it has a wide range of uses, at its core, it is a tiny, low-cost, full-fledged computer. And that means your old monitor can be turned into a PC for less than $60.
Perhaps the best thing to do with an old flat-screen monitor is a DIY DAKboard. The DAKboard is a LCD wall display that shows the current time, weather forecast, calendar events, stock quotes, fitness data, and news headlines. It"s all displayed on a soothing photo. You could buy an official DAKboard, but the makers themselves have shown how to build your own wall display with a Raspberry Pi. when you can build one for far less money and a little geeky fun, the choice is obvious.
Attach your old monitor to a Pi and it can be put in your kitchen as a recipe and video source. Make a Pi-based retro video game console as a treat for your kid (or the kid in you).
Sometimes, you"re working on something private in an open office, or browsing certain *cough* sites *cough* at home. You can"t have your colleagues or kids see what"s on the screen. To keep snooping eyes at bay, make a "your-eyes-only" monitor from an old one.
To anyone else, it is going to look like a blank white monitor with nothing on it. But wearing a special pair of spectacles, you"ll be able to see things on it like a regular monitor. It"s magic! It"s a tough process, but dimovi"s guide at Instructables is thorough and precise.
Basically, you will be cutting out the polarizing film of the old LCD monitor. This film will then be put on a simple pair of glasses. Now your screen appears white, but the glasses can "see" the content. It"s one of the best ways to keep prying eyes out of your PC.
The reason you should use an old computer monitor is that things can go wrong. You will be disassembling and then reassembling the monitor, along with cutting out the anti-glare and polarizing films. You"ll also need to separate the polarizing film from the anti-glare one.
If you have a broken old LCD monitor, it can be re-purposed into a usable mirror; but if you have a working old LCD monitor, adding a Raspberry Pi can turn it into a smart magic mirror!
You can choose from different Raspberry Pi smart magic mirror projects, but for our money, go with the MagicMirror². It"s the original, most popular, and perhaps now the easiest way to build a smart mirror. It comes with a clock, calendar, weather forecast, and news feed.
If you"re on a tight budget for a first-time DIY project, consider the $100 smart mirror. It"s not the best version of turning an LCD monitor into a smart mirror, but you"ll get the basic features and not spend a bomb.
If you have the space available, the best thing you can do with an extra monitor is to boost your productivity with a dual-monitor setup. A second monitor has many potential purposes, such as extended screen space, a dashboard for your social media or news updates, or a dedicated video conferencing screen.
All desktop operating systems support the ability to use dual monitors. It"s pretty easy to setup dual monitors on Windows, and you can then customize how you use the two spaces. To connect two monitors, you will likely need a graphics card with multiple HDMI ports, or use an HDMI and a VGA port on desktops.
Make it a dedicated screen for Nintendo Wii:The Nintendo Wii can connect to a VGA monitor, so if you don"t have a Wii, buy one. In fact, buy a used one, they"re pretty cheap on Craigslist.
Like any gadget, monitors have a limited shelf life. If you"re looking to upgrade, you now have a few ideas of what to do with your old monitor. And that age should influence which project you chose. For example, given the effort involved in building a smart mirror, don"t go with a screen that"s already shown signs of trouble. The Raspberry Pi-based projects are usually the easiest to keep changing.
In fact, if you have an old monitor and old PC parts, you can repurpose the whole PC. You can turn it into a home security system, a home server or media center, or try other unique creative projects.
According to researchersDr. L.D. Rosenblum, Dr. Harold Stolovitch and Dr. Erica Keeps, here is the breakdown of how our five sense processes information:
Clearly, human beings are highly visual in nature, and this is a fact that is particularly important when you’re running a physical store. One of the main reasons why people decide to shop offline is to see merchandise in person, and this is all the more reason to design winning retail displays.
The best way to make a lasting impression is to immerse your customers in a particular environment or setting. Check out the example below. The displays themselves are simple, and the retailer only makes use of a few simple racks and fixtures.
But because all the other elements of the store (i.e., the color of the walls, the cold-weather items, and the text “it’s cold outside”) follow a unifying theme, the overall effect is quite powerful. It engulfs customers into the “cool” theme of the store, creating an immersive experience.
Keep this example in mind for your next display. Recognize that you don’t necessarily have to build something fancy. If you have a strong theme and ensure that all the components of your shop are in line with the story you want to tell, you can create a compelling and immersive experience using just a few simple products and fixtures.
In a survey by Ripen eCommerce, they found that the top reason people shop in brick and mortar stores instead of ecommerce is that physical retail enables shoppers to touch and feel items in person.
The key takeaway here? Create displays that encourage people to touch and feel for you products. If your items are sitting on a shelf or a table while still inside their respective boxes, you could be missing the chance to connect with your customers.
So, take your products out of their packaging and get shoppers to really experience your merchandise. Ulta Beauty, for example, does this with their hairdryers. While other stores keep the products in their boxes, Ulta has their hairdryers out for people to touch and feel them.
Need an easy and affordable way to breathe life into your visual merchandising? Use plants. Doing so doesn’t just make your displays more attractive, they can also create healthier and more pleasant shopping experiences.
In an interview with Retail Focus, Joey-Michelle Hutchinson, associate vice president at CallisonRTKL, said that having more greeneries in retail environments “makes them feel more inviting, which in turn decreases customer stress levels and increases their dwell time.”
Having more “green” displays clearly has some benefits, so consider incorporating plants into your designs.For inspiration, look no further than homeware retailer Harper & Grey House. Plants are a staple in their displays and the greens do a tremendous job in accentuating their merchandise.
Cross-merchandising is a subtle but effective way toincrease basket sizes and average order values. The practice promotes product discovery and entices shoppers to look at items that complement what they’re already buying.
There are a number of ways to implement cross-merchanding. One is to merchandise items that go together. You could, for example, create a display with a blouse, jacket, and matching purse.
Another idea? Display gift cards next to relevant products. Have a look at what Target is doing. The retailer has some baby-centric gift cards next to some toys in the store’s baby section to remind shoppers about their gift cards.
Speaking of little ones, have you considered creating kid-friendly displays? The practice can be quite effective particularly if you cater to Gen X and Millennial consumers.
Even the most creative displays will fall flat when they’re not well-lit. So invest, in the equipment to make sure that your products are displays in the best possible light.
Is your store on the small side? Consider using portable displays so you can make better use of your space. Such displays are easier to move so you can quickly re-merchandise your shop or make room for other things if necessary.
Portable displays can also help in keeping your visual merchandising focused and on-point. Since you have limited space, you’re forced to only display the most important and most high-impact products.
The following cookware display at Crate & Barrel does exactly that. The top part of the display has images of the items for sale along with a quick description of what each product is and what it does.
Colors can make or break your retail displays, which is why it’s essential to select the right color scheme. A big part of this will be driven by the colors of your products. If most of your items are come in pastel shades for instance, then those colors will be quite common in your displays.
That being said, how those products are displayed together matters a great deal. There are various ways to mix and match colors, so have a think about how you’ll do it in your displays.
The folks at Live By The Sword salon did an amazing job merchandising their shelf of Amika products, which come in a variety of colors.By really leaning into the colorful nature of Amika’s items, they were able to set up a vibrant display that pops.
Take this example from The LifeStyled Company. The team created a display featuring Babe Australia’s products, most of which come with predominantly white boxes and labels.
Timely displays are sure to grab the attention of your customers. Keep a close eye on your retail calendar and make sure that your visual merchandising coincides with relevant shopping events and seasons.
For instance, during last year’s back-to-school season, Target dedicated an entire corner to school supplies and relevant merchandise. The area of the store was filled with large, back-to-school displays that were impossible to miss.
If you’re running multiple stores, make sure your displays reflect the tastes and preferences of each location. Pay attention to local trends and popular products in the area and ensure they’re front and center in your displays.
You can shed light on these insights using your POS reporting and retail analytics. Identify the top categories or items in different cities and use the data to inform your merchandising decisions.
It also helps to call out the name of each town or city. For instance, the homeware retail chain Home Goods has a sign that reads, “Happy to Be in Cerritos” in its Cerritos branch.
Got a bunch of quotable quotes up your sleeve? See if you can incorporate them into your retail displays. When done right, a bit of text can complement your products and encourage shoppers to take a closer look.
And as a bonus, walls or displays with quotable quotes are a magnet for Instagram users. With the right display, you’re bound to gain a bunch of social shares and tags along the way.
If you’re looking for ways to showcase your full product lines without cramming your shelves and racks with too much merchandise, then see if you can use technology to “extend” your displays.
Case in point: when the online retailerShowpolaunched their pop-up store in Los Angeles, they chose to display a small selection of products in the shop.
Showpo even took things a step further and used another table to capture customers’ details in-store. To encourage people to provide their email, they threw a 15% discount that can be redeemed online.
In retail, space conveys value. The more space there is in a store or display, the higher the perceived value of the merchandise. This why many luxury retailers display items in standalone cases while discount stores overstuff their shelves with merchandise.
The right amount of space to use in your store depends on how you want to be perceived. But one thing is clear: if don’t want people to think that your products are cheap, then you’ll want to use fewer items in your display.
Take a look at this window fromSaks Fifth Avenue. The display features a single mannequin and table on which there’s just one pair of shoes. Aside from the paintings on the right, there aren’t a lot of details to distract people from the products.
Upcycling — the practice of using old or discarded materials to create something new — can help you build out-of-the-box retail displays. In the example below, we can see that the retailer used old chairs to create racks on which to hang their merchandise.
Now, don’t get us wrong: traditional racks and fixtures are still essential. But hopefully, this example encourages you to reimagine the use of old items. You never know — that old chair, box, or frame could be just the thing that would get your display to stand out.
If you’re celebrating a special holiday or occasion in your store, use your shop displays to show your festive side. Materials like balloons, tassels, garlands and other party supplies could help your displays pop.
With retail being more competitive than ever, there’s just no room for uninspired and mediocre retail displays. Now, more than ever, you need to constantly cook up in-store visuals can stop people in their tracks and encourage them to buy, share, and come back.
And remember that no matter what kind of display you have, it won’t be effective if it doesn’t showcase merchandise that your customers want to buy. That’s why it’s important to make data-backed decisions when it comes to merchandising. Use your POS or inventory management system to generate sales and product reports that will inform your decisions around what items to show off in your store.
Francesca Nicasio is Vend"s Retail Expert and Content Strategist. She writes about trends, tips, and other cool things that enable retailers to increase sales, serve customers better, and be more awesome overall. She"s also the author of Retail Survival of the Fittest, a free eBook to help retailers future-proof their stores. Connect with her on LinkedIn, Twitter, or Google+.
A video wall is not a one-size-fits-all solution. There are many options to choose from when designing a commercial building video wall display: the size and shape of the digital canvas, what type of content will be displayed and the purpose of the video wall. Operationally, you may focus on desired reliability, maintenance and serviceability of the equipment. Hardware and technology decisions ensure the video wall will deliver both the desired viewing and ownership experience.
One of these choices is deciding between an LCD display or an LED video wall. Continue reading to find out more about the basics, as well as the advantages and disadvantages of each solution.
Most people are familiar with LCD technology, which stands for Liquid Crystal Display. These types of displays have a massive presence in this world, used in living rooms to watch movies, fast-food restaurants to showcase menus, airports to show flight schedules, and everything in between. LCD technology was developed in the 1960s and has been used worldwide as a standard for roughly 20 years. It is a tried-and-true technology that has stood the test of time and will be around for the foreseeable future.
On an LCD screen, the panel is illuminated by a light source and works through reflection or transmission of light. Overall, LCD displays have better viewing angles and less glare than LED screens. This technology was designed to be energy efficient and tends to be lighter in weight.
An LCD video wall is made up of multiple LCD panel monitors mounted on a surface to create a digital canvas, which then work together to create a unified experience. They operate 24/7 at a high brightness and have thin bezels that help create a seamless look when the displays are placed next to one another.
Bezel thickness and the brightness rating are among key attributes to consider for an LCD video wall display. Here is what each of these means and why.
Bezel:Bezel thicknesses for video wall displays are measured in “bezel-to-bezel” thickness.This is the thickness of the bezel when two displays are placed next to one another. Displays can be either large bezel or thin bezel.
Nits:Brightness is measured in Nits. A higher Nit value means the display will be brighter. A brighter display is necessary in a room that sees plenty of direct sunlight, or if the intent is to draw in visitors from far away. With LCD video walls, the price of the hardware goes up as the display size and brightness increase, and the bezel width decreases.
The next item to consider is the type of content that will be displayed on your video wall. LCD displays have high resolution screens — modern 4K displays have over 8 million pixels! This means that the content being displayed is highly detailed and crystal-clear. A viewer could stand less than 1 foot away from the screen and be able to see exactly what is being shown on the screen.
Like previously mentioned with LCD video walls, an important consideration in the decision-making process is the type of content that will be displayed on the video wall. LED video walls suffer from image degradation and pixilation from up close, so fine details will be lost, and text will be illegible. If detail from up close is important, LCD displays are much better suited for that situation.Content examples that are well-suited for an LCD video wall:
Video walls add exciting drama and premium value to showcase spaces. It is an investment that adds a perfect eye-catching solution for a busy lobby, conference room, or any other space.
Video walls are relatively new. But LCD technology has had decades of mainstream adoption, and with that comes both familiarity and lower costs. If those are important to you, then an LCD video wall is likely the right choice.
LED video walls are similar to LCD video walls, but the digital canvas is built using LED panels. Individual LED panels can be anywhere from 12”x12” to 36”x18”, which is much smaller than LCD displays. LED panels have a larger presence in this world than most might think—they are found indoors and outdoors at stadiums, arenas, concert venues, airports, and in use as large digital advertisements in iconic places such as Times Square.
The module is a small rectangular board that contains all the individual LEDs (light-emitting diodes).Unlike LCD, there is no glass or color filter on the LED video wall panels. The individual diodes that are placed on the modules produce both color and light.
One of the most impressive features of LED panels is that they can be combined to create almost any shape, without a bezel interrupting the digital canvas. LED video wall panels can be placed on curved surfaces, 90-degree edges, and other non-standard surfaces. The smaller size of the panels in relation to LCD video wall displays means they can fill more space on a surface—they aren’t limited to standard 46” and 55” sizes as are LCD video wall displays.
The most important factor to consider when scoping LED panels for a video wall is what is referred to as “pixel pitch.” The pixel pitch is effectively the distance between each pixel on the LED panel—a pixel pitch of 6mm means each pixel is spaced 6 millimeters away from the adjacent pixel. The smaller the pixel pitch, the smaller the distance is between each pixel, which means there are more pixels per square inch on the digital canvas.
Multiply the pixel pitch by 10 for the idealviewing experience –For example, a pixel pitch of 4mm would require a viewer to be 12 feet away to decipher any details in the video wall, and 40 feet away for the best viewing experience.
Pixel pitch factors into viewing distance. When the pixels are close together, the image is more detailed and can be viewed comfortably by others from a close distance. But when the pixels are spaced further apart, a viewer needs to stand further away to view the image clearly.
Lastly, pixel pitch impacts the price of the LED video wall more than any other factor. For example, a 2mm pixel pitch LED video wall costs significantly more than its 10mm pixel pitch counterpart.
As is the case with an LCD video wall, an LED video wall will add exciting drama and premium value to showcase spaces. LED panel displays don’t enjoy the benefit of decades of mainstream adoption as do their LCD counterparts. However, the technology curve is increasing their availability and lowering their costs. At this time, an LED video wall will have higher upfront costs compared to an LCD video wall. If cost is the main concern, then an LED video wall system will not likely fit into your budget
An LED video wall would be well-suited and cost-justified if the intent of the video wall is to provide an immersive viewing experience from a further distance. This could be content with lots of movement, animation, imagery, and bright colors to draw viewers into your space or provide a unique experience.
Aside from LED video wall cost, there are other factors to consider which could make an LED video wall system the frontrunner for your project. Here are the advantages and disadvantages to consider:
Limitless shapes and sizes:the smaller size of LED panels allows them to be combined to create unique canvases, including curved, 90-degree edge, and other combinations not possible with LCD displays
Easy maintenance and service; high reliability:LED module replacement takes seconds with little effort; LED panels are rated with a lifetime of 80,000-100,000 hours, depending on the product
Video wall systems come in all shapes and sizes. The components used to create the video wall experience vary widely. Consider variables other than video wall cost when scoping out both the content and the hardware. Because these parts and pieces could make or break the captive viewing experience you’re hoping to achieve, or worse, defeat the entire purpose of that video wall.
So if you’re looking to buy a video wall in the next year, talk to us about your plans. We’ll discuss your goals and options to determine what digital video wall package and digital directory elements are right for you. Contact us today to get a free video wall consultation.
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
Take this category with a grain of salt. Both TV types are very bright and can look good in even a sunny room, let alone more moderate indoor lighting situations or the dark rooms that make TV images look their best. When it comes down to it, no modern TV could ever be considered "dim."
At the other side of light output is black level, or how dark the TV can get. OLED wins here because of its ability to turn off individual pixels completely. It can produce truly perfect black.
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
Contrast ratio is the most important aspect of picture quality. A high contrast-ratio display will look more realistic than one with a lower contrast ratio.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
OLED"s energy consumption is directly related to screen brightness. The brighter the screen, the more power it draws. It even varies with content. A dark movie will require less power than a hockey game or ski competition.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
Photo: A trick of the polarized light: rotate one pair of polarizing sunglasses past another and you can block out virtually all the light that normally passes through.
Photo: A less well known trick of polarized light: it makes crystals gleam with amazing spectral colors due to a phenomenon called pleochroism. Photo of protein and virus crystals, many of which were grown in space. Credit: Dr. Alex McPherson, University of California, Irvine. Photo courtesy of NASA Marshall Space Flight Center (NASA-MSFC).
Photo: Prove to yourself that an LCD display uses polarized light. Simply put on a pair of polarizing sunglasses and rotate your head (or the display). You"ll see the display at its brightest at one angle and at its darkest at exactly 90 degrees to that angle.
Photo: How liquid crystals switch light on and off. In one orientation, polarized light cannot pass through the crystals so they appear dark (left side photo). In a different orientation, polarized light passes through okay so the crystals appear bright (right side photo). We can make the crystals change orientation—and switch their pixels on and off—simply by applying an electric field. Photo from liquid crystal research by David Weitz courtesy of NASA Marshall Space Flight Center (NASA-MSFC).
Equipped with IPS Screen with HD 1024*600 high resolution, 16:9 display format conversion in the image and an expansive 178 degree viewing angles is ideal for work and for reviewing on-screen data.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.[{"id":37435146305690,"title":"White","option1":"White","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":{"id":38349949042917,"product_id":5979421835418,"position":3,"created_at":"2022-09-10T09:36:50-04:00","updated_at":"2022-09-10T09:37:17-04:00","alt":"7 inch LCD Display KIT W\/ HDMI \u0026 USB V Y R A L","width":3024,"height":4032,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0477\/2308\/5978\/products\/IMG_7445.jpg?v=1662817037","variant_ids":[37435146305690]},"available":true,"name":"7 inch LCD Display KIT W\/ HDMI \u0026 USB - White","public_title":"White","options":["White"],"price":12999,"weight":425,"compare_at_price":null,"inventory_management":null,"barcode":"46305690","featured_media":{"alt":"7 inch LCD Display KIT W\/ HDMI \u0026 USB V Y R A L","id":30948892901605,"position":3,"preview_image":{"aspect_ratio":0.75,"height":4032,"width":3024,"src":"https:\/\/cdn.shopify.com\/s\/files\/1\/0477\/2308\/5978\/products\/IMG_7445.jpg?v=1662817037"}},"requires_selling_plan":false,"selling_plan_allocations":[]},{"id":37435146338458,"title":"Black","option1":"Black","option2":null,"option3":null,"sku":"","requires_shipping":true,"taxable":true,"featured_image":null,"available":true,"name":"7 inch LCD Display KIT W\/ HDMI \u0026 USB - Black","public_title":"Black","options":["Black"],"price":11999,"weight":425,"compare_at_price":null,"inventory_management":null,"barcode":"46338458","requires_selling_plan":false,"selling_plan_allocations":[]}]
When you look at a display device – your phone, your TV, your smartwatch, the screen in your car – what do you see? You see the image. A bright, vivid image on surfaces of all shapes and sizes. Flat, curved, flexible, thinner than ever before.
When you stop and think about what goes into displaying one of these amazing images, you might recognize most are protected by a glass cover. You might even be familiar with display types like LCD or OLED. Yet for many, the recognition stops there. You may see the image on the surface, but rarely think about what creates that image, how it achieves life-like, vibrant color, and the journey it makes to reach our eyes.
If we look deeper, beyond the surface and the cover glass of our devices, we would find one or more layers of ultra-thin, technical glass make such images possible. Each layer with a different purpose, all working together to deliver the beautiful, thin displays we use each and every day. Combined, these layers form what we at Corning call the “glass stack.”
It’s worth looking at the individual layers of the glass stack, since each layer is the result of breakthroughs in glass science, optical physics, and state of the art manufacturing. At the top of the stack, we have the protective cover glass of a mobile device that most consumers have heard of – Corning Gorilla Glass. This cover glass protects and maintains the appearance of the display, and also supports the use of front-facing cameras and various sensors. Often, the rear side of such devices is covered with a similar protective glass, which also allows for wireless charging.
Though each layer of the glass stack is formed with the same fusion manufacturing process, the compositions of the glass are different – allowing for different properties and benefits. LCD and OLED displays, whether on mobile devices with glass cover and back or otherwise, utilize different super-thin layers of glass specific to their applications:
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.
I’m a science journalist, speaker, coach, consultant, and author of books including How to Break Up With Your Phone and Vitamania: How Vitamins Revolutionized the Way We Think About Food,among others. My newest book is called The Power of Fun: How to Feel Alive Again, available now from the Dial Press.
I created Screen/Life Balance because I realized that if you add up the hours we spend each day interacting with our phones, tablets, laptops, desktops and televisions, many of us are spending the majority of our waking lives staring at a screen. Sure, much of this screen time is useful or necessary, even enjoyable. But there are a lot of other times when our screens distract us from things that are truly important to us—whether it’s the people we love or the activities that bring us meaning and joy.
The point of Screen/Life Balance to help people (myself included) take back control over how we’re spending our attention and time—and what started as a personal project has expanded into a global community.
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.
A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.
LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, calculators, and mobile telephones, including smartphones. LCD screens have replaced heavy, bulky and less energy-efficient cathode-ray tube (CRT) displays in nearly all applications. The phosphors used in CRTs make them vulnerable to image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs do not have this weakness, but are still susceptible to image persistence.
Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.
The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.
Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.
LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.
The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).
Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.
LCDs are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:
Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.
The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.
In 1888,Friedrich Reinitzer (1858–1927) discovered the liquid crystalline nature of cholesterol extracted from carrots (that is, two melting points and generation of colors) and published his findings at a meeting of the Vienna Chemical Society on May 3, 1888 (F. Reinitzer: Beiträge zur Kenntniss des Cholesterins, Monatshefte für Chemie (Wien) 9, 421–441 (1888)).Otto Lehmann published his work "Flüssige Kristalle" (Liquid Crystals). In 1911, Charles Mauguin first experimented with liquid crystals confined between plates in thin layers.
In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.
In 1964, George H. Heilmeier, then working at the RCA laboratories on the effect discovered by Williams achieved the switching of colors by field-induced realignment of dichroic dyes in a homeotropically oriented liquid crystal. Practical problems with this new electro-optical effect made Heilmeier continue to work on scattering effects in liquid crystals and finally the achievement of the first operational liquid-crystal display based on what he called the George H. Heilmeier was inducted in the National Inventors Hall of FameIEEE Milestone.
In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.
The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.
On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.
In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.
In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,
In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,
The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.
In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.
Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,
In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,
In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.
Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.
CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.
EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.
WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.
RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.
Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.
Mini-LED: Backlighting with Mini-LEDs can support over a thousand of Full-area Local Area Dimming (FLAD) zones. This allows deeper blacks and higher contrast ratio.
Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).
The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),
A pink elastomeric connector mating an LCD panel