lcd panel types va free sample

In order to choose the best monitor for your needs, it is very important to distinguish what kind of LCD panel interface type is in the monitor you’re looking at. The most common panels used nowadays are;

One of the types of panels that you will find in a computer monitor is a TN Panel. This stands for Twisted Nematic, and this particular type of LCD panel is generally the cheapest. They are the cheapest to manufacture among all LCD technologies, so they are the most commonly used in budget monitors.

If you are looking to game online, you will need a monitor with a higher refresh rate like that offered by a TN panel. Refresh rates are measured in Hertz (Hz), which defines how many times per second your screen can display new images.

The typical response time for a TN panel is less than 5 ms which is much faster than the 6 or 8 ms response time that other LCD displays have, such as vertical alignment or VA.

The biggest downside with these panels is often their viewing angles. On a TN panel, the viewing angles aren"t very good, and depending on how far off-center you are, the picture can begin to lose color and contrast.

TN panels also don"t support as wide a range of resolutions as IPS. This LCD monitor panel type has a poor contrast ratio when compared with other technologies such as IPS and VA. This results in an inability to display deep blacks and bright whites at the same time.

TN panels are manufactured by Samsung, LG, AUO, Chi-Mei, Chunghwa Picture Tubes, Hannstar Display Corporation, Sharp Corporation, CMI, Innolux, J-Tech Digital Imaging Co. Ltd, AU Optronics Corporation, etc.

A TN panel is a type of liquid crystal display (LCD) used in most LCD monitors and laptops. TN panels were the workhorse of the 1990s and early 2000s, but they were eventually replaced by their more-expensive cousins, the in-plane switching (IPS) and vertical alignment (VA) panels.

TN computer panels work by using two polarized filters, vertical and horizontal, to control the light that passes through them. The filters are arranged so that when the electrical current is off, light cannot pass through. When it"s on, it hits the twisted crystals to produce colors. The active layer is twisted to allow the light to pass through it, and this twist is controlled by electrical fields applied to the liquid crystal material.

It is worth noting that A TN panel is made up of millions of pixels, each pixel being red, green, or blue in color. The light from each pixel can be either on or off, so black is created when all the pixels are off and white when all are on. When all three colors are combined, any color can be produced. This arrangement is called RGB (red-green-blue).

A TN panel uses twisted nematic liquid crystals to form images. While not as desirable as other technologies, it does have several benefits worth considering when making a purchasing decision.They are mostly found in budget LCDs, as they are cheaper to manufacture and therefore sell for less.

TN panels have excellent response rates and refresh rates, typically 1 - 2 milliseconds and 50 – 75 Hz, respectively. This makes them ideal for high-end gaming

TN is the oldest and most common type of LCD panel, and it"s also the cheapest to produce. TN panels were the first panels to be introduced to the market, but they"re no longer as popular as they used to be. This is because TN panels have several downsides:The main disadvantage of TN panels is limited viewing angles, which can be extremely limiting in some cases. If you"re sitting straight in front of the monitor, everything is fine, but if you move to the side, then all colors shift and get distorted. That can be extremely annoying for graphic designers or architectswho work with color palettes, photographers who need exact color matching, etc. (see also

TN panels typically have lower contrast ratios than IPS displays do, so they don"t look as rich in color or dark black. So TN panels are usually not suitable for professional applications such as color-critical photo editingand graphic design.

Many gamers prefer TN panels because they provide a very fast response time and higher refresh rates. You can also find some with a refresh rate of 240Hz, which is even better.The Asus VG248QE is a 24-inch LCD display with a 1920 x 1080 resolution and a 1ms response time. It uses a TN panel, so don"t expect much in terms of viewing angle or color reproduction accuracy compared to an IPS display. But if you"re looking for a good 144Hz monitor, choose this one.

ViewSonic VX2458-MHD. It has a TN panel. The refresh rate of this monitor is 72Hz, which is standard. The response time of this monitor is 1ms. It also comes with 4 USB 3.0 ports, which is great if you plan on hooking up multiple devices, which is frequently used when trading. If you have a setup like that, you will also want to look at bezel less monitors, or frameless monitors, for your needs.

Another common type of panel is a VA panel. This stands for Vertical Alignment and is a step above a TN panel in terms of quality. Its name comes from the fact that light emitted from the screen"s backlight (see also LED monitors) is aligned vertically rather than being scattered horizontally and vertically as it is with a TN display.

VA panels provide high-quality images, wide viewing angles along with excellent contrast ratio and high refresh rates. These factors make VA panel monitors preferred for graphic design, photographers, video editors, and others who often work on their PCs.

VA panels are also better when displaying fast-moving images because they offer high refresh rates hence have less motion blur. Additionally, some panels have support for even 120 Hz refresh rates for ultra-smooth movement in games and movies.

Unlike a TN display, a VA display has excellent viewing angles. You can view them from any direction, and you won"t see any distortion in the display. They make them a good choice for home theater systems as it allows users to be seated off-center without affecting the image quality or contrast ratio.

Traditional LCD displays use two polarizing filters and liquid crystals (LCs) to create all the colors and patterns that we see on computer monitors and flat-panel televisions.

What are the Benefits of VA Panels?Image quality of VA technology is considered better than TN technology; text appears crisper, and images appear sharper and richer in contrast and color.

One of the other key benefits of VA technology is its high contrast ratio; VA displays can deliver a true black when displaying dark images or video content

VA displays also offer an ultra-wide viewing angle, which means that you can view them from a wide range of angles without experiencing color distortion.

The big downside of TN panels is their response time. Most TN panels have a response time of 5-8 MS, which is fine for most people. However, if you"re mostly into competitive gaming or fast-paced action games like me that require quick reflexes, then this could be a problem.

We did some research and came up with a list of the best monitors with VA panels, and they are;ViewSonic VX2457-MHD. It is a24-inch monitor with a 1920 x 1080 resolution and covers 100% of the sRGB spectrum. It also has plenty of picture-enhancing features, including adjustable color settings and support for AMD"s FreeSync technology (see also affordable G Sync monitors).

This is the best LCD panel type. IPS stands for In-Plane Switching, and the biggest advantage over the other panels listed above is its wide viewing angles.

These screens are more expensive than TN panels but offer a greater contrast ratio, higher resolutions than their TN counterparts. They also support higher refresh rates, lower response time which makes them ideal for monitors larger than 24 inches.

These panels offer much more consistent colors, which makes them ideal for graphic designers or anyone who does any kind of color-critical work on their monitor.

IPS panels offer wider viewing angles than VA panels do, making them better suited for use in public spaces such as retail stores or airports where you can expect people will be walking by your TV from both sides.

They also have a high refresh rate. Newer models are now available with 120Hz or even 240Hz refresh rates. These are found chiefly on gaming monitors but will likely become more common in other types of monitors in the future.

The contrast ratio of an IPS panel is higher than that of TN panels. The contrast ratio of a display refers to the difference between the darkest black and the brightest white that the display is capable of producing. This can be an important factor in overall display quality, depending on how you use your laptop or desktop monitor.

Some manufacturers that specialize in IPS panel interphases include Samsung, LG, and even Mac Apple. Also, almost all Dell monitors use IPS panels. However, there are plenty of other high-quality manufacturers that also offer IPS panels for you to choose from.

In a liquid crystal display (LCD), light passes through a pair of polarizers. Each polarizer is made of a long chain of molecules, each oriented in a different direction; one vertical, the other horizontal.

In an IPS LCD panel, liquid crystals are aligned so that both polarizers face the same way—horizontal. Light from behind the panel passes through one polarizer and then bounces off onto a second polarizer before reaching your eyes. This design makes IPS LCDs nearly as bright as VA panels and much brighter than TN panels without sacrificing contrast ratio or color accuracy.

If you"re looking for a new monitor, IPS panels may be the right ones for you. Here are some of their most important benefits:It allows for wider viewing angles. This is very useful for monitors used at work that involve customer service, where the monitor may be viewed from many different angles.

The IPS LCD displays are also characterized by their high degree of brightness and contrast, which makes them ideal for outdoor use, among many other features.

The typical lifespan of an IPS panel is around 100,000 hours, which is more than enough for even heavy users to get their money"s worth from their monitor.

They have great color reproduction. Many people who are serious about a photo or video editing are drawn to IPS panels because they offer superior color reproduction possibilities when compared with TN panels.

The main disadvantage of IPS panels is that they are more expensive than TN panels. The cost of an IPS panel will typically be $10-$20 higher than a comparable TN panel.

Today, the majority of flat-panel monitors use in-plane switching (IPS) technology. Best monitors that have IPS panels include;Samsung U28E590D 28-Inch 4K UHD Monitor. If you love gaming, then this is the product for you; it comes with AMD FreeSync, which proved successful in eliminating screen tearing since being introduced as VSync, as this post explained.

Also, bear in mind that if it is a flat panel display with a 1080p resolution or higher, you can refurbish it and resell it after using it. Older monitors with lower resolutions may not be worth much.

It offers a much higher resolution than conventional LCD and can be used to manufacture large panels. It"s an innovative display technology that has the potential to change the face of consumer electronics.

There are 3 main types of LCDs; VA (Vertical Alignment), TN (Twisted Nematic), and IPS (In-Plane Switching). All these technologies have been used for over 10 years and have their own pros and cons. However, they have reached their upper limits in terms of resolution and other features, and it"s nearly impossible to increase them any further. That"s where Super PLS-Plane to Line Switching comes in.

Super PLS-Plane to Line Switching offers resolutions as high as 8K, has wider viewing angles, and is brighter. The image quality presented by this technology is said to be much better than traditional LCDs, and it could potentially disrupt the current.

The Nano IPS panel technology adds a layer of nano-particles to the backlight in order to transmit the screen"s picture more efficiently and reduce the chances of image retention.

Advanced Hyper-Viewing Angle (AHVA) computer display was developed by AU Optronics Corp. It is a type of LCD that can be seen clearly even from the most acute angles. Through the process of strengthening the polarizing plate, it can help minimize the reflection ratio to less than 1%. The viewing angle is about 178 degrees.

This technology was initially applied in television and notebook screens by AU Optronics Corp. The company claimed that AHVA could be seen clearly from all angles, which is better than VA and IPS technologies by 30% and 20%, respectively.

AHVA also provides a greater range of colors which makes images appear to pop off the screen. And it gives better performance outdoors, so you get a great view no matter whether it"s sunny or cloudy.

Most LCDs (liquid crystal display) monitors are now manufactured with an anti-glare coating to reduce the effect of ambient light reflecting off the screen. Anti-glare coatings can reduce reflections by 25 to 70%.

VA panel is better thank IPS. Although IPS panels have a contrast ratio of 700:1 to 1500:1, they are still inferior to VA panels. The majority of VA monitor panels have contrast ratios above 2500:1, and some even reach 5000:1 or 6000:1. Even local dimming is used by more recent monitors to obtain even greater contrast ratios.

Yes, IPS is better than OLED. The main benefit of IPS panels is their increased brightness, particularly when combined with a tiny LED backlight. OLED displays are often limited to brightness levels of roughly 1,000 nits, while mini LED displays can reach peak brightness levels of around 2,000 nits.

lcd panel types va free sample

Even after the introduction of newer display technologies, LCDs still remain relevant even today.LCD displays are used for multiple purposes (TV, Monitor, Mobile Phones, Laptops, Automobiles, etc.) and one single configuration cannot satisfy all the purposes. So, LCD displays come with two different panels – VA (Vertical Alignment) and IPS (In-Plane Switching) to satisfy the different viewing needs of consumers.

A VA panel offers a superior contrast ratio but a narrow viewing angle. Contrarily, an IPS panel offers a wide viewing angle but a low contrast ratio.

As mentioned earlier, displays with VA Panels provide a great contrast ratio. You can find VA panels that typically come with contrast ratios of 3000:1 or 6000:1. A comparable IPS panel will only have a contrast ratio of 1000:1.

VA panels have narrow viewing angles. You will only be able to have an immersive experience when you sit straight opposite the display. The wider angles will not provide you the same experience.

In this, the liquid crystals are arranged parallel to the glass substrate instead of the perpendicular alignment. Furthermore, the structure of crystals and the placement of electrodes differ from the one used in VA panels. The electrodes occupy more space that results in lower contrast and brightness of the screen.

With the IPS panels, you can view the TV / monitor from a wide-angle and still get an impressive picture quality. Unlike VA panels, you will notice very little difference in color reproduction when you sit at a wide-angle from the display.

But when it comes to black uniformity, the IPS panels are sub-par. These panels do a poor job in displaying a bright image in the center of a completely black screen.

One more major drawback with the IPS panels is that they exhibit a distinct phenomenon called ‘IPS Glow’. You will notice some light patches on the corners of the screen. This happens when excessive light is passed through the screen.

Initially, IPS panels are mainly used in TVs due to their wide viewing angles, as we can watch TV in our living room from anywhere. But due to their better quality, color accuracy and response time, LCD panels gradually occupied the high-end computer monitor and laptop screens

IPS:These panels have the highest color range. You will be able to enjoy a realistic gaming experience. Besides, they have better viewing angles. So, you won’t notice any drop in picture quality even when you are not sitting in front of your TV / monitor.

VA:Even though the color range is not as great as the IPS panel, it does a pretty good job in showing the color variations. But the viewing angle is narrow. So, you have to sit straight opposite the TV / monitor.

VA panel compensates for its decent color range with an impressive contrast ratio. You will be able to see great detailing in the difference between light and dark colors.

IPS:IPS panels have one of the highest refresh rates. While you easily find an IPS panel with a refresh rate of 144Hz, some of the latest ones come with a refresh rate of 360Hz. If you are a serious online-gamer, digital artist, or video editor, then you have to go with the highest refresh rate within your budget.

VA:VA panels have lower refresh rates than IPS panels. Most VA panels come with a refresh rate of 120Hz. If you want to have a higher refresh rate, then you have to be willing to spend extra. VA panels have a maximum refresh rate of 240Hz.

IPS:IPS panels generally come with a response time of 4 milliseconds. This would suffice for watching TV or playing most games. But, if you are playing racing games or first-person shooting games, you need to have a response time of less than 2 milliseconds.

VA:VA panels generally have a slower response time than IPS panels with 5 milliseconds. So, there is a higher chance for you to experience motion blur. But, some of the VA panels that come with an expensive price tag have faster response times.

IPS:When it comes to the viewing angle, IPS panels far outweigh the VA panels. They have wider viewing angles. You will experience no drop in picture quality even if you sit and watch the TV from an extreme angle.

VA:The VA panels have a very narrow viewing angle. You have to sit as close to the straight axis of the TV to enjoy the picture quality. If you sit wider, there will be a significant loss in the picture quality.

IPS:IPS panels do a decent job in the contrast ratio segment but they are nowhere close to that of VA panels. An IPS panel offers a contrast ratio of 1000:1. When you watch a black color environment in an IPS panel, the black color will be slightly greyed out.

VA:VA panels offer a superior contrast ratio of 6000:1 that is very impressive. It has the capacity to show dark environments as darker. So, you will enjoy the picture detailing shown by the VA panels.

IPS:IPS panels are not really great at displaying the uniform black color throughout the screen. Due to the low contrast ratio, the black color will appear slightly greyed out.

VA:VA panels have a good black uniformity. But it also depends on the TV model you go with. Not all TV models with a VA panel have good black uniformity. But it is safe to say that in general, VA panels have better black uniformity than an IPS panel.

To put it short, the main difference between the panels lies in the alignment of the liquid crystals. The alignment results in the differences in the performance and picture quality of the panels.

The VA panels are ideal for office/study use, high-end PC games, and online games. If you are looking for a panel for mixed usage, the VA panel should still suffice your needs.

lcd panel types va free sample

If you’ve ever bought a monitor, you would know how vital the refresh rate, screen size, and 3D support are. However, there is another feature that can significantly impact the quality of your picture. And that is known as monitor panel type.

Are you aware of the monitor panel type? Well, if you’re not, we can help. In this article, you’ll find everything about a monitor panel and its types. This will help you select the right kind of monitor for your use. So, if you’re ready, let’s dive right in.

Panel type is a technology used in LCD monitors. Different panel types bring in various features and benefits. The most common panel types are TN panels, VA panels, and IPS panels.

The TN panel type is one of the most popular panel types that replaced CRT TVs. It’s better than the CRT TVs but comes with some disadvantages. Viewing angles being an example. The colors in a TN panel invert completely when you view it from an extreme angle.

Another disadvantage is the low color reproduction. The TN panels cannot display 24-bit true color and use interpolation for color shade stimulation. This leads to a low contrast ratio as compared to IPS or VA panels.

However, people still go for TN panels. It’s because these panels are cheap and affordable. If you don’t want many colors and great viewing angles, the TN panels can be significant. The TN panels also support refresh rates of 240Hz without any hassle.

You can think of VA panels as an advanced form of TN panels. These panel types offer a better contrast ratio. It’s the reason why TV manufacturers use it vigorously. You can commonly find a contrast ratio of 3000:1 in these panel types.

The VA panels also offer amazing viewing angles. The performance is way better than TN panels and similar to IPS panels. However, the response rate of VA panels is slower as compared to the TN panels. VA monitor with refresh rates of up to 240Hz is available, but it usually results in motion blur.

Unlike the TN panels, VA panels offer better color reproduction even if you buy lower models in this range. The VA panels are good for multiple average uses. You can play single-player games using this panel type or use it generally for watching TV.

IPS panels are the best panels available in the LCD panel technology. These panels offer better image quality, viewing angles, and color accuracy. When it comes to graphics design, where you need constant color reproduction and color accuracy, IPS panels are the best.

Also, the viewing angles you get with IPS panels are the best. It can even support a wide viewing angle of 178 degrees, which is quite impressive. So, if you care about the image quality and viewing angles, this is what you should go for.

Super PLS is similar to the IPS panel technology that Samsung developed. The manufacturer claims to produce better and wider angles as compared to previously available IPS panels. Also, they claim to generate about 10 percent more brightness as compared to the generic IPS displays.

The AHVA panels are also known for being similar to IPS panels and offer performance similar to PLS. The AHVA is an acronym that, when expanded, becomes Advanced Hyper Viewing Angle. As the name suggests, this panel type delivers a better and wider viewing angle.

IPS panels are the best when compared with the VA or TN panels. For everyone who needs better color accuracy, reproduction, and wider viewing angles, IPS panels are what you should prefer.

The IPS screens require more backlighting as compared to other variants. And this can sometimes lead to backlight bleed. This scenario is visible during the night and is non-removable.

All of the above panel types come with their advantages and disadvantages. Choosing the best one can be easy if you know the purpose you need the monitor for. Here’s a briefly summarized view of all the panel types discussed above for your reference.

IPS, PLS, AHVA:All the IPS panel types are usually voted as the best because of the better image quality they deliver. However, it’s the price that keeps most people from buying a monitor with IPS panels.

VA Panels:VA panels offer a good contrast ratio, color reproduction, and viewing angles as compared to the TN and IPS panels.However, the response times are slightly lower as compared to TN and IPS panels. You may also experience color shifting in these kinds of panels. But the VA panels are easily available and affordable too.

TN Panels:These panels are easily available in the market and are the cheapest. You can also find the best response rates with these panels. However, the TN panels offer poor contrast ratio, viewing angles, and color reproduction.

lcd panel types va free sample

So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.

TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.

IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.

In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.

While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.

Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.

One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.

VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.

In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”

VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.

Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.

For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.

When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.

Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.

LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.

Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.

Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.

Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.

Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.

Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.

Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.

lcd panel types va free sample

With so many companies in the market churning out newer and newer gaming monitors, shopping for LCD monitors can be confusing. Not only is there a lot of marketing noise out there today, but there are also debates on what panel/monitor type is the best?

When it comes to buying either a TV for home or a monitor for your office or a display for that gaming setup in your basement, things can be distilled down to usage and based on that; you can compare what different panels have to offer and how they will suit you. In this article, we will be having a quick look at the three most commonly used panels – TN, IPS and VA and helping you understand what they have to offer, and what they can be best used for. But first, a basic run on what an LCD is.

The major drawback of the CRT (cathode ray tube) technology was that it occupied quite a significant amount of space. The CRT displays worked on the principle of ‘light emission’ and they consumed a lot of power, which just added up to the size issue. The solution to these problems came in technological research on developing a screen that consumes less power (hence, increasing productivity), and which was smaller. Lit using fluorescent tubes, LCDs (liquid crystal displays) consume less power, are way thinner than the CRTs, and work on the principle of ‘blocking light’ rather than emitting it.

LCDs are made from a passive/active matrix grid made of conductors, the latter called as thin film display (or a TFT). Pixels are mounted on this grid at each intersection (and an active matrix has a transistor located at each pixel intersection). This network structure controls a pixel’s luminance and consuming a little amount of current. This ability leaves us with a choice to switch the current on and off more often on the grid, and this leads to a high ‘refresh rate.’ And a high refresh rate means a ‘smoother’ operation.

Developments in these screen types lead to LED TVs. The main difference between these and the LCDs is that they are lit using Light Emitting Diodes instead of fluorescent tubes. So technically, a LED display is a ‘LED backlit LCD screen.’

This LED backlighting helps in enhancing the color contrast and it consumes less power as compared to fluorescent tube lit panels. It significantly improves the overall picture quality by tapping into a wider RGB color range, and there is a better brightness achieved which allows you to see the images clearly, even in well-lit environments. On top of these things, LED backlit displays to consume less power and are lightweight too. So there are no drawbacks of this technology as such, resulting in backlighting being used in more and more panels every day. Today, we have three types of backlighting: White Edge, Full LED array, and Local Dimming LEDs.

White edge implements a diffusion panel, with white LED around the edges of the screen. This helps disperse the light evenly throughout the screen. A full LED array, as the name suggests, implements arrays of LED lights placed right behind the screen that collectively controlled for an even light dispersion. The third one is the Local Dimming LED system, which implements an array of dynamic led lights that can either be controlled in groups or individually to obtain an even light pattern.

This information, however not essential for everyone to know, is a good bit for panel enthusiasts and pro gamers, as having a high refresh rate depends on the panel’s build and it’s resolution. Now, let’s go ahead and have a look at the three most commonly used panels on these LCD monitors – TN, IPS, and VA.

The most common LCDs are based on TN (Twisted Nematic) panel designs. Manufactured on a vast scale and pretty cheap, TN displays can be found in most homes. Primarily made for supporting low response times, TN panels remain to this day, a cheaper option for gamers who want a massive resolution with a low response time and a high refresh rate. Not to say that the IPS panels don’t have these features, but an IPS panel with the same features as a TN (1ms response time, QHD resolution and a 144Hz refresh rate for example) will always be more expensive. However, while the price is good with the TN, the color quality and viewing angles take a toll. They are the drawbacks of a TN panel when compared to other panels out there.

TN displays, (TFT-LCDs for example), work by passing light through two polarized screens, a color filter and liquid crystals that tend to twist and block light in correspondence of the current applied to them. This type of an arrangement leaves a lot in your hands as you can change the amount of current applied to adjust the crystal twists. Hence, you can achieve virtually any color or shade reproduced on the screen. But while precise adjustments are possible with a TN display, there are some drawbacks to this structure.

Every LCD’s pixel is constructed using some red, green and blue sub-pixels. Colors and shades are produced by mixing different brightness levels for these pixels that result in the perception of a particular solid color by the user’s eyes. The problem with TN panels comes from its adoption of a 6-bit per channel model, which outputs 64 shades per color, instead of the 8-bit per channel, 256 shades implementation. Needless to say, color accuracy takes a toll here. And while the TN compensates for this issue with ‘dithering,’ (using alternating colors to produce a certain perceived shade) it is still a poor substitute for 24-bit color reproduction. On top of that, narrow viewing angles don’t help the case, as there is a ‘washout’ produced that puts TN panels at a low level concerning color accuracy.

But if your main concern is not the aesthetics of the performance, but the performance itself, TN LCD screens reign supreme over other panel types because of providing us low response times and high refresh rates on a budget.

Measured in milliseconds, pixel response time or ‘responsiveness’ is the time taken for a pixel to change from one shade (of gray) to another (denoted as grey-to-grey or GTG). The higher the response time, the more blur and smearing you will experience during rapid transitions. While no industry standard exists for measuring precise response times, there is a value specified by the manufacturers on these displays.

TN panel displays have very fast GTG pixel response times that are usually well under the typical 5ms TFT-LCD average. This makes these displays a good choice for competitive gamers who are willing to sacrifice some color accuracy and viewing angles for great performance at a good price.

In-Plane-Switching, or IPS, was designed to overcome the shortcomings of a Twisted Nematic panel and they are replacing TN panels. These panels also use polarized filters, liquid crystals, and transmitters. However, in this case, the arrangement is different. The liquid crystals in an IPS panel design are aligned in a way that allows less light to distort and achieves better color visibility. Additionally, IPS panels use 8-bits of depth per color unlike TN’s 6-bit, which results in a wider 256 shades spectrum. This takes care of the color accuracy problem.

The second thing that is improved in IPS panels is the range of viewing angles. While Twisted Nematic panel displays ‘washed out’ at shallow angles, IPS displays have rich colors that don’t shift/fade when viewed from side angles. One other significant improvement of the IPS screen was that there were no trailing distortions when you touched them. This made them ideal for Touch-screen applications.

While marketed as the best of the best, IPS screens have some drawbacks of their own. The major one happens to be the cost. The construction of IPS panels requires a greater number of transmitters and lighting for each pixel. Now, the higher the resolution of the constructed panel will be, the greater number of pixels will be mounted on the panel. This results in a complex architecture, and they cost more than their TN counterparts. However, with the rising competition in the market, the prices of IPS panels have come down from expensive to reasonable, and you can get a decent IPS display for a few hundred dollars. However, the more you want from your monitor as a consumer, the more pricey it will become. This leaves high-end IPS monitors most commonly found at the desks of editing professionals and competitive gamers – people who want a lot of color accuracy and detailing along with decent speed and longevity.

IPS’s complex technology introduced some additional overhead that reduced the responsiveness of these panels. For quite some time, these panels clocked in around 8ms grey-to-grey. However, due to the popularity of these panels, response times, as well as refresh rates, have been improved quite a lot (the majority averaging at 60Hz)- at the cost of bigger price tags, of course.

Today, many variants of the IPS also exist, like Samsung’s popular PLS (plane line switching) panels. These variants are not entirely different from IPS, though there are subtle ‘generational improvements’ like enhancements in viewing angles, brightness and whatnot. LG also has a variation to the IPS, called as the eIPS, which is basically a IPS panel you can get on a budget. However, in real world use, the usage experience varies by a little factor.

VA (Vertical Alignment) panel technology sits between the high speeds of TN and the color richness of IPS panels. Constructed implementing IPS’s 8-bit color depth per channel approach (that has a crystal design capable of reproducing rich colors), VA (and its variants) also retain some of the low latency of TN panels. This results in a display that is ‘almost’ as fast as TN and as colorful as IPS.

Often reaching 5000:1, VN panels have a superior contrast as compared to both IPS and TN screens, and this remains the highlight among other features. These panels reproduce better black levels than TN or IPS. However, there are more issues with VA panels today than there are advantages, and some of these issues can’t be ignored.

First on the list of cons is the color (and contrast) shift that happens when we view media from a wide angle. And while the viewing angles of VA panels are wider than TN, the shift is similar to a TN panel and renders most VA panels ‘not ideal’ for tasks that require a great amount of color accuracy. When it comes to gaming, there’s another issue. VA panels offer rapid light-to-dark pixel transitions. However, darker color shifts aren’t as speedy, and it can lead to blurring during high-performance tasks.

Just like there are variants of IPS, VA panels also have their own. To put it simply, they progressed from 1998 to 2005 (and beyond) from MVA, AMVA to AMVA+. MVA or Multi-domain Vertical Alignment technology first came out in 1998 and provided a 25ms response time with 160-170 degree viewing angles. This was, of course, a lot of value at the time. Today, these panels can be found as AMVA (Advanced MVA) in many displays, and they offer a contrast ratio as high as 5000:1 (which is the best contrast ratio in LCD technology), and QHD (2560 x 1440p) resolution at a wide screen size like 32 inches. So again, a lot of value here as well. After that, we have the AMVA+ which had improved viewing angles on the standard AMVA.

So in a nutshell, while VA panels are much better than average TN panels regarding color reproduction, they are still not good enough if you were to switch to premium TN panels oriented for gaming purposes. And when it comes to IPS panels, they dominate the list but with one disadvantage – price. If we were to talk about performance, high-end IPS panels reign over all else, with response times as low as 1ms, 144Hz refresh rates and supporting resolutions all the way up to 4K and 5K. If, however, you want to talk ‘value for money,’ TN panels give you decent colors and speed at decent rates. And if you have some more money in your pocket after selecting a TN panel of certain specifications, you can look for a VA panel that will offer you some added color quality and viewing angles. It’s all about comparison here, and understanding the fundamentals of these panels is a good starting point.

lcd panel types va free sample

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

lcd panel types va free sample

When choosing a new computer monitor, the type of panel used by the display is a key piece of information that reveals a lot about how the monitor will behave and perform. By far the most common types of display panels are TN, IPS and VA.

Monitor LCD panels are made up of many layers, including a backlight, polarizing filters and the liquid crystal layer. It"s this liquid crystal layer that determines the intensity of light let through from the backlight, and in what colors, whether red, green or blue. To control this intensity, a voltage is applied to the liquid crystals, which physically moves the crystals from one position to another. How these crystals are arranged and how they move when voltage is applied, is the fundamental difference between TN, VA and IPS.

Our original explainer about display technology and the difference between TN vs. VA vs. IPS was published almost three years ago, and while most of that information remains accurate to this day, we"ve seen the introduction of much faster IPS displays as well as a revolutionary updates to VA panels, particularly from Samsung Odyssey gaming monitors. We"ve also since tested over 100 monitors, so we have a lot more insights to share about performance.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are various subvariants to these technologies which can tweak things further, and you"ll also see different brand names depending on the panel manufacturer. For example, AU Optronics use "AHVA" to refer to an IPS-type panel, not a VA panel. Samsung use PLS, while brands like LG simply use "IPS". Then on the VA side we have AU Optronics "AMVA" and Samsung"s "SVA" among others.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

The most immediately obvious difference when viewing a TN, IPS or VA panel for the first time is in viewing angles. This is one area that hasn"t significantly changed since the introduction of these technologies.

TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs and can impact the experience for productivity where any shifts to color impact accuracy for things like photo editing.

VA and IPS panels are significantly better for viewing angles, with IPS panels generally giving the best overall experience. Here you"ll commonly see 178/178 ratings for viewing angles, and while there can still be some shift to colors and brightness viewing at off-center angles, this will be far less noticeable than on a TN panel. Of all the IPS panels we"ve reviewed over the years, I"d describe the majority of them as having excellent viewing angles, a non-issue for modern IPS displays.

VAs are also good but not as good as IPS and can have a greater degree of contrast shifting than IPS. But the thing that impacts VA viewing angles more than this is the fact that many VA monitors today are curved, and any introduction of a curve reduces viewing angles. That"s something to keep in mind when choosing between IPS and VA

Because the liquid crystal layer is separate to the backlight layer, there is no technical reason why TN, IPS or VA monitors should differ in terms of brightness. Across the 100 displays we"ve tested using our latest test suite, the average SDR brightness for IPS panels was 385 nits, versus 367 nits for TN and 346 nits for VA - so really there"s not much of a difference.

Contrast ratio, on the other hand, is where another major difference occurs. TN panels have the worst contrast ratios, with the twisting technique not particularly great at producing deep blacks. In the best cases you"ll see contrast ratios around 1000:1, but typically after calibration these numbers are lower, in the 700:1 to 900:1 range. Of the monitors we"ve tested, the average TN has a contrast ratio of 872:1, which is poor so if you want rich, beautiful blacks - well maybe just buy an OLED but if you"re buying LCD, don"t get a TN.

IPS is the next step up, though generally IPS contrast ratios aren"t that different from TN. In the worst cases - in particular LG"s current line-up of Nano IPS panels - you won"t see contrast performance any different from a typical TN, with a ratio below 1000:1. However outside of those worst cases, it"s much more common to see contrast at or above 1000:1, with some best case examples pushing up to 1500:1 which is about the ceiling I"ve seen for IPS. Of the IPS panels we"ve tested, an average contrast ratio of 1037:1 was recorded, 19% higher than the average contrast of a TN.

If you really want an LCD to produce deep blacks though, you"ll have to go with a VA panel. The design of these panels is much more conducive to great contrast ratios, which typically start at 2000:1, higher than even the best IPS alternatives.

We"ve measured ratios up to 5000:1 for VAs, and some TVs can push this even higher. The range of typical contrast ratios is also quite a bit larger than with the other two technologies, but when manufacturers list a 3000:1 ratio for their VA monitor they"re usually correct - on average we measured a 2898:1 contrast ratio for VAs. With that in mind you can see VAs are usually 2.5 to 3 times better at producing blacks than IPS or TN, great for night scenes.

We often get asked whether these differences in contrast ratios actually matter. Almost all monitors use some sort of matte anti-glare coating, which can reduce the effective contrast ratio in brighter viewing environments. So if you"re using your monitor during the day, or under artificial lights, the difference between TNs, IPSs and VAs in contrast ratio is going to be less noticeable. But if you typically use your monitor in a dimmer environment, like gaming with the lights off or having a cheeky late night incognito browser session, you"ll much more easily spot the massive superiority VAs have in this area.

It"s also worth mentioning that while IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type, and can vary between individual units.

Before when discussing TN vs. VA vs. IPS, we spent some time talking about the differences between TNs, VAs and IPS in terms of bit depth -- or the difference between 6-bit, 8-bit and 10-bit panels. But we feel this is less relevant these days when the vast majority of displays are native 8-bit panels, with the exception of a few low-end panels that are 6-bit, and a few professional grade high-end panels that are 10-bit.

It remains the case that most displays advertised as "10-bit" or having "1 billion colors" are not true 10-bit panels, instead achieving this through FRC or dithering, and the type of LCD panel technology makes little difference.

There also isn"t a significant difference these days between LCD types when it comes to coverage of "standard" color spaces like sRGB or Rec. 709, which is used by default in Windows and is widely used for video content.

Even TN panels, which historically have had the "worst" color quality, these days will cover over 95% of the sRGB color space at a minimum for any monitor worth buying. The exceptions to this are entry-level junk some OEMs like to punish their low-end laptop buyers with; it"s rare for a desktop monitor to go below 90% sRGB coverage and certainly you shouldn"t buy it if it does.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

The main differences between TN, IPS and VA for color quality these days comes in coverage of wider gamut, such as DCI-P3, Adobe RGB or Rec. 2020. DCI-P3 and the larger Rec. 2020 are important for HDR videos and gaming, while Adobe RGB is common for work with wide gamut images.

As far as gaming monitors are concerned, which is the majority of monitors we test, it"s uncommon for TN panels to exceed the sRGB color space and produce a wide color gamut. We"ve seen it on occasion, with DCI-P3 coverage topping out around 92% in the best cases, but the majority of TN displays are standard gamut which is fine for SDR content.

The next best panel type for color gamut is VA. Some entry-level VAs will start at only sRGB coverage, but today"s wide gamut VA monitors typically cover between 85 and 90% DCI-P3, or up to around 66% of Rec. 2020. They don"t generally have adequate Adobe RGB coverage (below 85%), making them most suited to a basic wide gamut experience for videos or games. We"ve also yet to test a VA monitor with a really wide color gamut, like 98% DCI-P3, despite the highest end models of today using Quantum Dot enhancement films. Still, VA is decently mid-range for gamut coverage.

If you want the widest color gamut, you"ll need to get an IPS monitor. While basic IPS panels will be limited to sRGB only, the best wide gamut IPS displays offered these days can achieve much higher gamuts than TN or IPS.

We"ve measured up to 97% DCI-P3 and over 99% Adobe RGB in the same panel - usually a high-end model from AU Optronics - which leads to excellent Rec. 2020 coverage above 80%. This tends to make IPS the most, or at times only suitable technology for color critical wide gamut work like video or photo editing, and it"s the tech I"d choose for that task.

Time to talk about speed. Whereas before there was a pretty clear cut distinction between the technologies: TN was the fastest, IPS sat in the middle, and VA was the slowest. In 2021, that is no longer the case, and there"s a lot less separating each technology.

Historically, the highest refresh rate displays on the market were almost all TN models, but that"s not true anymore. Currently there are TN, IPS and VA monitors capable of 240Hz speeds, or sometimes in excess of 240Hz, including at resolutions like 1440p.

The highest refresh rate displays on the market today are capable of 1080p 360Hz speeds, and use an IPS panel from AU Optronics, not a TN. There is lower demand for TN panels than other panel types these days, so a lot of development effort on high refresh models has gone into IPS instead. This makes IPS the highest refresh technology for now, with all three technologies being available at 1440p 240Hz.

Response times have also improved substantially for IPS and VA monitors, especially for high-end panels. There is no longer a clear distinction between TN and the rest of today"s contenders, thanks to big speed gains headed by LG"s Nano IPS and Samsung"s new-gen VA.

The fastest TN panels that we"ve measured using our current, strict test methodology are able to hit the 4ms mark on average with a cumulative deviation of around 400. Cumulative deviation tells us how close a monitor"s response times get to the ideal instant response, and also show the balance between response times and overshoot. The HP Omen X 27 is definitely a