lcd panel types va pricelist

By far the most common types of display panels used on PC monitors are TN, IPS and VA. We"re sure you"ve heard these terms before if you"ve researched monitors to purchase, and to be clear, the type of panel is a key piece of information that reveals a lot about how the monitor will behave and perform.

TN is the oldest of the LCD technologies and it stands for twisted nematic. This refers to the twisted nematic effect, which is an effect that allows liquid crystal molecules to be controlled with voltage. While the actual workings of a TN-effect LCD are a little more complicated, essentially the TN-effect is used to change the alignment of liquid crystals when a voltage is applied. When there is no voltage, so the crystal is "off," the liquid crystal molecules are twisted 90 degrees and in combination with polarization layers, allow light to pass through. Then when a voltage is applied, these crystals are essentially untwisted, blocking light.

VA, stands for vertical alignment. As the name suggests, this technology uses vertically aligned liquid crystals which tilt when a voltage is applied to let light pass through. This is the key difference between IPS and VA: with VA, the crystals are perpendicular to the substrates, while with IPS they are parallel. There are several VA variants, including Samsung"s SVA and AU Optronics AMVA.

IPS stands for in-plane switching and, like all LCDs, it too uses voltage to control the alignment of liquid crystals. However unlike with TN, IPS LCDs use a different crystal orientation, one where the crystals are parallel to the glass substrates, hence the term "in plane". Rather than "twisting" the crystals to modify the amount of light let through, IPS crystals are essentially rotated, which has a range of benefits.

There are many IPS variants on the market, with each of the three big LCD manufacturers using a different term to describe their IPS-type technology. LG simply calls their tech "IPS" which is easy for everyone. Samsung uses the term PLS or plane-to-line switching, while AU Optronics uses the term AHVA or advanced hyper viewing angle. AHVA shouldn"t be confused with regular VA displays, it"s an annoying and confusing name in my opinion, but AHVA is an IPS-like technology. Each of LG"s IPS, Samsung"s PLS and AUO"s AHVA are slightly different but the fundamentals are rooted in IPS.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a vertical alignment and tilt. Now let"s get into some of the performance characteristics and explore how each of the technologies differ and in general, which technology is better in any given category.

By far the biggest difference between the three technologies is in viewing angles. TN panels have the weakest viewing angles, with significant shift to color and contrast in both the horizontal and especially vertical directions. Typically viewing angles are rated as 170/160 but realistically you"ll get pretty bad shifts when viewing anywhere except for dead center. Higher-end TNs tend to be somewhat better but overall this is a big weakness for TNs.

VA and IPS panels are both significantly better, with IPS being the best overall for viewing angles. 178/178 viewing angle ratings are a realistic reflection of what you can expect with an IPS, you won"t get much shift in colors or contrast from any angle. VAs are good in this regard but not as good as IPS, mostly due to contrast shifts at off-center angles. With VAs and especially TNs having some color and contrast shifts when viewing at angles, they"re not as well suited to color-critical professional work as IPS panels, which is why you see most pro-grade monitors sticking to IPS.

In terms of brightness there"s no inherent differences between the technologies because the backlight, which determines brightness, is separate to the liquid crystal panel. However there are significant differences to contrast ratios, and this an area most people look at when determining which panel type they want.

Both TN and IPS panels tend to have a contrast ratio around 1000:1, although in my testing I have noted some differences. TN panels tend to have the lowest contrast ratios when calibrated, with an entry-level panel sitting between 700:1 and 900:1 and good panels pushing up to that 1000:1 mark. IPS has a larger range, I"ve seen some as low as 700:1 like TNs, however the very best tend to push up higher than TN, with 1200:1 as the upper range for desktop monitors and some laptop-grade displays reaching as high as 1500:1.

Neither TN nor IPS get to the range of VA though. Entry-level VA panels start with a contrast ratio of 2000:1 from those that we"ve tested, with the best easily exceeding 4500:1, although 3000:1 is a typical figure for most monitors.

TVs make extensive use of VA panels and there contrast ratios can be even higher. It"s not unusual to see over 6000:1. So if you want deep blacks and high contrast ratios, you"ll need to go with something VA.

While IPS panels tend to be a middle ground for contrast they do suffer from a phenomenon called "IPS glow," which is an apparent white glow when viewing dark imagery at an angle. The best panels exhibit minimal glow but it"s still an issue across all displays of this type.

Color quality is another difference many people cite between TN displays and other display panels in particular. And this can be split into two categories: color depth or bit depth, and color gamut.

In both of these regards, TN panels tend to fall on the weaker end of the scale. Many TN displays, in particular entry-level models, are only natively 6-bit and use frame rate control, otherwise called FRC or dithering, to achieve standard 8-bit output. 6-bit panels are prone to color banding, while native 8-bit panels have smoother color gradients and therefore better color output.

Not all TN panels are 6-bit. The top-end TNs are native 8-bit, but it"s safe to say most TNs will only be native 6-bit, even today. If you are after a native 8-bit display, you"ll need to go with either IPS or VA, where many more panels come native 8-bit.

As for native true 10-bit, typically you"ll need to look for an IPS panel, which make up the majority of native 10-bit panels. Some VA panels can do it, but they are rare. Most displays you purchase that claim to be 10-bit, are actually 8-bit+FRC, with only high-end professional-grade monitors offering a native 10-bit experience.

This is another area where VA and IPS provide a superior experience. The best TN panels tend to be limited to sRGB, or in the case of the worst entry-level panels, don"t even cover the entirety of the sRGB gamut. Wide-gamut TN panels do exist, but they are rare.

VA panels typically start with full sRGB coverage as a minimum, and depending on the panel can push higher. VAs that use a quantum dot film, typically from Samsung, offer higher gamuts, around the 125% sRGB or 90% DCI-P3 mark. Most of the wide gamut VA monitors we"ve tested fall between 85 and 90% DCI-P3 coverage, which is a decent result, though the best can approach 95% or higher.

With IPS panels, there is the largest variance. Entry-level IPS displays tend to offer 95% sRGB coverage or less, while the majority stick to full sRGB coverage. Then with high-end displays, usually for professionals, it"s not unusual to see full DCI-P3 and Adobe RGB coverage. Of all the wide gamut IPS displays I"ve tested, the lowest DCI-P3 coverage I"ve seen has been 93%, with over 95% a typical figure. This makes IPS the best technology for wide gamut work.

Throughout most of this discussion we"ve been talking about TN as the worst of the three technologies. So far, it has the worst color reproduction, contrast ratios and viewing angles. But it does have one key advantage, and that comes in the form of speed. TN panels have historically been the best for both refresh rates and response times, however that trend is slowly changing for the better.

Not long ago, we argued that only with a TN panel it was possible to hit 240 Hz, doing so at 1080p and later up to 1440p. Most recently, however we"ve seen IPS monitors hit the highest mark ever for a consumer-grade gaming monitor at 360Hz, and do so very convincingly. We"re sure other monitors will follow but as of writing, the Asus ROG Swift PG259QN can deliver both the fastest response times and an accurate color experience using an IPS panel.

More mainstream monitors using IPS panels tend to range from the regular 60Hz for productivity, up to 165 Hz and 240 Hz depending on the market they"re aimed at. VA panels top out at around 240 Hz at the moment.

Most IPS displays, especially high-grade options for professionals, as well as entry-level office monitors, are either 60 or 75 Hz. Meanwhile, a significantly larger number of VA panels across a wider range of sizes and resolutions are high-refresh, while the big selling point of TN is its super high refresh capabilities.

Another major consideration is response times, which govern the level of ghosting, smearing and overall clarity of a panel. Early IPS and VA panels were very slow, however this has improved a lot with modern panels, so the differences between the three technologies aren"t as pronounced as they once were. TN still holds an advantage here.

Most TN panels have a rated transition time of 1ms, or even lower with some recent releases. Actual grey to grey averages we"ve measured for TN panels tend to be in the 2-3 ms range when overdrive is factored in, which makes TN the fastest technology.

IPS panels are next in terms of speed, though as tends to be the case with IPS, there is a wide variance between the best and worst of this type. High-end IPS monitors, typically those with high refresh rates, can have a transition time as fast as 3ms. Compared to the best TN panels, this still makes IPS slower. However entry-level IPS panels or those without overdrive sit closer to the 10ms range, while mid-tier options tend to occupy the 5 to 7 ms bracket.

VA panels are consistently the slowest of the three types, but again, high-end gaming monitors have been pushing this further on every generation. The absolute fastest VA panel we"ve measured so far has a 4ms response time which is very impressive, though more typical numbers are between 8 and 10 ms for gaming monitors. VA panels also tend to be less consistent with their transitions; some individual transitions can be fast, while others very slow, whereas IPS panels tend to hover more around their overall grey to grey average.

While a lot of people are unlikely to spot the difference between an 8ms VA panel and a 5ms IPS, TN panels overall tend to be noticeably clearer in motion, but that gap is closing with every generation. The slowness of VA panels also limits their real world refresh rate: a 144 Hz panel that only manages a 9ms response time, is actually delivering an image most equivalent to a 110 Hz panel. Whereas most 144 Hz IPS panels can transition faster than the 6.94ms refresh window, leading to a true 144 Hz experience. So that"s something to consider.

As a quick summary, TN panels are the fastest and have the highest refresh rates, however they have the worst viewing angles by far, as well as weak color performance and typically the lowest contrast ratios. TNs are typically used for ultra-fast gaming displays, as well as budget class displays, for both desktop monitors and laptops.

IPS is a middle-ground technology. They typically have the best color performance and viewing angles, mid-tier response times and refresh rates, along with mid-tier black levels and contrast ratios. Due to its top-end color output, IPS panels are the go-to choice for professionals, but you"ll also find them in entry-level displays, office monitors, most laptops and a handful of gaming monitors.

VA panels are the slowest of the three, but have the best contrast ratio and black levels by far. Color performance isn"t quite at the level of IPS, but they still offer a significantly better experience than TN in this regard.

With response times for the best modern VAs approaching the level of a typical IPS, along with broad support for high refresh rates, VA monitors are commonly used for gaming monitors. Entry-level VAs also tend to be superior to entry-level TN and IPS panels, though you won"t find VA used in laptops.

There"s no right answer to which monitor technology is best, because all have their strengths and weaknesses which is why all three coexist on the market today. However if you want our recommendation, we tend to gravitate towards VA panels for most buyers, especially gamers and those after something entry-level. Creative professionals should be looking exclusively at IPS monitors, while those after something dirt cheap or ultra high refresh for competitive gaming should opt for TN, although superior latest-gen IPS and VA offerings are finally matching or even beating the best of TN in some regards.

lcd panel types va pricelist

When most people go shopping for a gaming monitor, their primary concerns are resolution and refresh rate. Those are certainly important considerations, but if you’ve ever had to put up with dull colors, murky blacks or terrible viewing angles, you’ll understand that panel types are important too.

TN, or Twisted Nematic panels, are the oldest variety of LCD panels, but they’re still quite common even today. They’re cheap to produce, and they have very low input lag, which makes them appealing for gamers. They also support refresh rates of up to 240Hz, another plus for fast-paced environments.

The problem with TN panels is that they have very poor color reproduction. While modern TN panels are far better than earlier models, it’s still relatively rare to find a TN panel with close to full sRGB reproduction. Even if they do have good color reproduction when you’re looking at them straight on, their viewing angles are limited, and they look washed out when viewed from the sides.

If you’re on a budget, enjoy playing competitive shooters or strategy games where reaction times matter, a TN panel could be fine for you. But if you want something that doubles as a media player, the average TN monitor might disappoint.

Fortunately, our GFT27CXB monitor is far from “average.” We engineered our TN panel to do what most TN panels simply cannot: deliver stunningly accurate colors. And with its 99% sRGB gamut, colors are rich and vibrant. And it’s fully customizable, with space to store up to 3 unique user profiles. So you get amazing color. But you also get full HD resolution with lightning-fast speeds up to 240hz refresh rate and 1ms response times.

IPS, or In-Plane Switching, monitors are almost the exact opposite of TN panels. They offer much wider viewing angles than TN panels as well as better black reproduction. The trade-off is that they’re more expensive. They have a history of slower refresh rates, too, although that has been changing lately. Today’s IPS panels can reach max. refresh rates as high as 200-240Hz.

There are some IPS monitors with very good refresh rates and response times, but they’re on the pricier side. You can expect to pay more than $500 for an IPS monitor with a 1ms response time. If you’re looking for a more budget-friendly IPS monitor, then you’ll have to settle for response times of 4ms or slower. IPS panels are also prone to backlight issues. Color reproduction is better than on TN panels, even at extreme angles, but the backlight can sometimes be seen.

Our REAPER series monitor—starting with the RFI25CBA—has been designed to overcome this particular issue. It’s been engineered to reduce the amount of backlight bleed-through on its IPS panel. The monitor also features an MRPT Mode to produce extremely clear moving pictures with excellent color while significantly reducing backlight issues.

VA, or Vertical Alignment, panels are somewhere in between TN and IPS, offering the best of both worlds. This type of panel is common in TVs but is relatively uncommon for gaming monitors. TN panels offer very good contrast ratios, so you can expect vibrant colors and good color reproduction. They also offer good viewing angles, and while brightness may vary depending on the angle you’re looking at the screen from, they’re not susceptible to the backlight issues of IPS panels.

The downside of VA panels is that they have slower response times. As with IPS panels, newer models do have high refresh rates, but the slow response time means you may see ghosting or motion blur in fast-paced, competitive games. Fortunately, all VIOTEK monitors come with AdaptiveSync, which works with AMD® FreeSync® and NVIDIA® G-Sync™ technologies. AdaptiveSync eliminates image distortion (e.g., tearing, stuttering, ghosting and judder) and other glitches that can happen if the monitor’s refresh rate doesn’t match the frame rate of the computer’s GPU. The result is smoother action with clearer images.

There are benefits and downsides to each panel type, and there’s no one correct answer to the question of “which is best.” It depends on your budget, the type of games you enjoy playing, whether you prize response times over other features, and what else you do with the monitor.

If you’re a competitive gamer who wants the absolute best response time on a budget, TN panels will get the job done, but they may disappoint when you’re playing a heavily modded game of Skyrim and want to stop and enjoy the scenery. IPS panels can deliver a similar experience if you’re willing to spend a lot of money. But if you’re like most of us, you’d rather put that extra cash towards a slightly better GPU.

VA monitors are a great “Jack of all trades.” The NBV24CB2, for example, is a highly affordable 1080P monitor that offers a 75Hz refresh rate and AdaptiveSync technology—along with some other nice extras. Those extras include GAMEPLUS targeting crosshairs and FPS/RTS display modes to help give you the advantage while playing first-person shooter games. This monitor is ideal for gamers with mid-range systems. If you’re playing marathon sessions, the NBV24CB2 has a blue-light filter to help reduce eye strain. And there’s great color reproduction for watching videos.

Looking for something with a little more power? The GNV32CBO or GFV24CB are two 1080p monitors. These offer super-fast 165Hz refresh rates for pro-motion with reduced input lag. They’re also VA panels, delivering great color reproduction, AMD FreeSync to reduce image ghosting, and other game-friendly features.

lcd panel types va pricelist

If you"re in the market for a new gaming monitor, you"re going to brush up against three distinct types of displays that all come with their own pros and cons. We"re here to break down exactly what you need to know about TN, IPS, and VA panels and help you make the right choice for your exact gaming needs.

There are three display panel types that cover most gaming monitors (cutting-edge technology like mini-LED and OLED are coming, but we won"t cover that here). TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) all use the same technology at their core--molecules that react according to different voltages to move and produce an image--but their differences and evolutions have made each one good for specific use cases.

TN panels have the worst viewing angles of the three, with colors able to drastically shift from even slight angles off the center of the display. TN also has the worst color coverage, with the inability to show a high color depth and producing noticeable banding due to interpolation. Contrast ratios are also poor, with the overall image looking washed out compared to IPS and VA.

So, if TN is this poor, why is it still on the market? For one, TN panels are incredibly cheap, which is why you"ll often find them in budget gaming monitors that can still deliver a good, if not great, image. TN is also still the fastest panel type on the market, with pixel response times (the time it takes for a pixel to change color) as fast as 1ms. While IPS and VA panels have managed to get there, they often make use of methods that lead to other issues (such as smearing or inverted ghosting), which keeps TN panels relevant for speed.

For that reason, TN panels are ideal for competitive gaming, especially in the realm of esports where response time is much more important than image quality. If you"re primarily playing Counter-Strike: Global Offensive, Fortnite, or Call of Duty: Warzone, you"ll probably benefit the most from a TN monitor if all you care about is securing those wins. Plus, you"ll save a bunch of money in the process.

One big disadvantage across the board with IPS panels are their poor contrast ratios, making them worse options for dark rooms than VA. It can make dark areas in games look more milky grey than black, made worse by the uneven backlighting that can be viewed at different angles (also known as IPS glow). The color reproduction is still the best it can be on an IPS display, but if you mostly play games at night or in a dim room, you might want to consider a VA panel.

Speaking of VA (vertical alignment) panels, there"s a reason the majority of LCD TVs use this panel type. It"s the jack-of-all-trades panel, with better color reproduction than TN panels as well as a much better contrast ratio compared to IPS. VA panels, depending on the overall display specs, can also be cheaper than IPS panels in most cases, occupying a good middle ground between performance and price that is difficult to argue against.

One area where VA truly excels is contrast. It"s a night-and-day difference compared to IPS, with VA panels able to produce far inkier blacks and really accentuate dark areas in games, especially when you"re playing in a dim environment. This is one of the strongest reasons for owning a VA panel, especially if the "IPS glow" really bothers you. You do, however, lose out on the wider viewing angles that IPS offers.

One issue with VA is its response times, like IPS. It can reach 1ms in very specific cases, but this often leads to a lot of smearing or inverse ghosting (where ghost trails behind shifting pixels have colors inverted), which make the gains moot. On average, a VA panel will have worse smearing at the same pixel response times when compared to an IPS panel, primarily down to how the vertical alignment of the molecules in the display function. It"s something you might notice when playing at very high refresh rates and in fast-paced games, but it"s also something that a lot of people don"t have an issue with at all.

If getting the fastest response times and highest frame rates possible is crucial to your gaming, there"s no question that a TN panel is still your best option. Competitive gamers who benefit from the fractions of a second that a pixel can take to update will find no corners cut on any TN panel out there, and they"ll benefit from the high refresh rates most offer.

Similarly, if you"re on a very tight budget and you"re looking for the right monitor to accompany a machine built for games like League of Legends, Dota 2, or Fortnite, then choosing a TN panel could help you put more money toward the hardware that powers your games instead. You"ll be missing out on the better color reproduction that TN lacks, but if you"re just planning to play games casually and not take in their sights, then you can save yourself a lot of money.

If single-player games are mostly what you use your PC for and you"re strictly keeping it for recreational use, then it"s difficult to argue against a VA panel. It"s a considerable step up from TN and will let you enjoy your games with visuals as their designers intended. The deep blacks will let you immerse yourself in moody atmospheres, while the cheaper prices could afford you the ability to get a bigger monitor with a decently high refresh rate.

VA panels also give you a lot of range to stretch your budget, whether you"re just looking for a slightly-above-average display or one to really bring out the best in your hardware. From 1080p to 4K, it"s easy to find a great VA-equipped display that won"t break the bank or go ultra-premium with one of Samsung"s top-of-the-line products. The company"s latest G7 (or Odyssey G9, if you have the space and the money for it) feature outstanding HDR support, incredible contrast, and great color, if you"re willing to invest in their high price points.

If you"re looking for a monitor that can do it all, there"s nothing beating out an IPS panel. Many new monitors feature the more advanced fast IPS panels, which remove many of the compromises you used to have to make with regards to pixel response times and high refresh rates.

The viewing angles, the color reproduction, and the overall experience of an IPS panel just can"t be beat right now, making it the perfect accompaniment to a high-powered gaming PC, console, or workstation. They"re accurate enough for some professional work, whether you"re color-correcting photos or videos, and fast enough to keep up with your favorite competitive games or engrossing single-player adventures.

IPS panels are also ideal for local multiplayer gaming with their wide viewing angles, but these come at the cost of good contrast ratios and potential backlight bleeding. If you"re only planning to play games in a dark environment, a VA might be better suited to your needs. But if you"re looking for a panel with the fewest compromises, it"s hard to argue against IPS.

We"ve highlighted some of our favorite monitors with each display panel type above, but if you"re looking for more options for well-priced displays, check out our guide to the best cheap gaming monitors on the market right now as well as the best monitors for PS5 and Xbox Series X. If monitors are just too small, we also have recommendations for the best 4K TVs for PS5 and Xbox Series X, some of which can also work well for PC gaming. If you’re looking for some more information on the types of monitors out there, we’ve got a list of the differences between LCD and LED Monitors. Let us know what your favorite displays are in the comments below.

lcd panel types va pricelist

Because OLED TVs are newer and generally more expensive, the average buyer is looking at LED/LCD TVs right now. And although there are several features and specifications to consider while shopping—the brand name, HDR compatibility, and refresh rate, just to name a few—there’s one important hardware spec that isn’t widely advertised: LCD panel type.

LED/LCD TVs are so called because of the two things that make up their displays: an LED (Light Emitting Diode) backlight and an LCD (Liquid Crystal Display) panel for that backlight to shine through. LED backlights vary between a variety of implementations, but modern LCDs generally come in one of two panel technologies: IPS (In-Plane Switching) and VA (Vertical Alignment).

Unlike other hardware specifications (which are usually listed on the side of a TV box or on the manufacturer’s website), information about a TV’s LCD panel type is a bit more inside baseball. But panel type has a far greater impact on a TV’s performance than you might expect—it affects contrast, color, and viewing angle as well.

Individual pixels in an LCD display are made up of liquid crystals activated by voltage. How the display arranges its crystals is part of what sets IPS panels apart from VA panels.

IPS (In-Plane Switching) panels are a common display type for both the best computer monitors and TVs. Without getting too far down the rabbit hole, let’s talk a little about how IPS panels distinguish themselves from other types.

Every non-OLED TV on the market today is an LCD TV powered by LED lighting. Individual pixels in an LCD display are made up of liquid crystals activated by voltage—this is what produces color. An IPS panel aligns its crystals horizontally, parallel to the glass substrate.

IPS technology was developed in part to improve the color and wide viewing angle performance of a display. There"s also a range of variations under the IPS umbrella, including ADS, S-IPS, H-IPS, e-IPS, P-IPS, and PLS (Plane-to-Line Switching). But, while they all differ marginally from one another in operation, their core functionality (as compared to VA panels) is the same.

VA (Vertical Alignment) panels represent another common display type, used for both computer monitors and TVs, but especially for the latter where they greatly outnumber their IPS counterparts. Most LED/LCD TVs you"ll find on the market use a VA panel. While IPS panels align their liquid crystals horizontally, VA panels align them—you guessed it—vertically. They run perpendicular to the glass substrate rather than parallel to it. When met with voltage, the crystals tilt, letting light through and producing color.

This positioning changes how the liquid crystals behave. Without any voltage, the liquid crystals in a VA panel do not tilt, which is a better outcome if your goal is to block light and create image depth. Like with IPS, VA panels also come in a few varieties: PVA, S-PVA, and MVA, though again, their core functionality (as compared to IPS panels) is the same.

TN (Twisted Nematic) is an older LCD display type. They"re still relatively common display types for computer monitors—thanks to their lightning fast response times and excellent handling of motion blur. TN panels aren"t typically used in TV production anymore, though.

The cornerstone of picture quality, contrast ratio refers to the range between a display’s darkest black levels and brightest highlights. Because VA-style panels excel at producing deep, dark black levels, this is arguably their biggest strength. VA panels almost always feature deeper black levels than their IPS counterparts, and this goes a long way in creating a detail-rich picture. An IPS panel can mitigate this by serving up an exceptionally bright image to offset relatively shallow black levels.

A TV’s total viewing angle describes how much a viewer can move away from an ideal, head-on viewing position before the contrast and color of the picture begins to deteriorate. Due to the positioning of their liquid crystals, IPS panels excel in this department; they typically offer significantly more viewing flexibility than TVs with VA-style panels. In other words, IPS panels are more reliable for group viewings (or any situation where a viewer might need to sit at an off-angle).

While impressive color production is possible on both display types, IPS panels tend to offer wider colors, given the nature of their hardware. While a wider range of colors tends to spell better color accuracy, the advent of additional TV technologies like quantum-dot color have evened the playing field considerably. In other words, you’re far more likely to notice the benefits of an IPS TV’s wider viewing angle than you are to notice its tendency for wider color.

Here’s the final takeaway: IPS panels are significantly better than VA panels when it comes to viewing angle and somewhat better than VA panels when it comes to color. VA panels, however, almost always offer deeper black levels and better overall contrast. And because they block light better, TVs and monitors using VA panels tend to have better backlight uniformity regardless of LED backlight type.

Unfortunately, not only is it rare to find a TV’s panel type listed on a manufacturer’s website, but it’s increasingly rare for a brand to reveal a TV’s panel type at all—even when we contact brands directly for information. The reason for this caginess has everything to do with marketing; it’s better to keep shoppers focused on the bells, whistles, and impressive performance specs of a TV rather than its potential shortcomings.

To add to the confusion, it’s common for different sizes of the same TV series to mix and match display types; you might find that the 55-inch version of a TV features a VA-style display while the 75-inch model uses IPS.

Fortunately, it’s relatively easy to determine panel type if you have the proper equipment and you know what to look for. Certain test results and viewing characteristics act as tell-tale signs. This is why my colleagues and I make a point of discussing panel type in just about every TV review we publish, and why you should make a point of reading reviews before making a purchase.

Panel type is not the end-all-be-all for LED/LCD TVs. Many other factors, most of them related to the style and intensity of the LED backlight, can have a major impact on factors like contrast, viewing angle, and color intensity. Ultimately, you need to see a TV in person (and ideally in the space it’s going to live in) to get the best idea of how well it creates an image. But by knowing the core differences of IPS vs VA LCD panels, you can at least make some good guesses before you buy.

Unlike the best gaming monitors, IPS and VA TV panels are on an even playing field. TVs with both technologies are capable of high refresh rates of 120Hz, or occasionally 240Hz (although it usually comes at a premium).

If you focus on single-player gaming, or your multiplayer gaming happens online, the excellent contrast of VA is the way to go. The most gaming benefits you’ll see will come from extra features like Variable Refresh Rate (VRR), Auto Low Latency Mode (ALLM), or cloud game capabilities.

If you’re buying a large screen and intend to host movie nights with friends and family, a TV with an IPS-style panel is far more accommodating thanks to its superior viewing angle. Just be aware that certain content—particularly dark content—won’t pop as much on account of the panel’s shallower black levels.

On the other hand, if you want the best possible picture overall, we recommend investing in a TV with a VA-style panel. They’re not always ideal candidates for group viewings, but the vast majority of the best non-OLED TVs you can buy feature this display type.

lcd panel types va pricelist

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

lcd panel types va pricelist

With so many companies in the market churning out newer and newer gaming monitors, shopping for LCD monitors can be confusing. Not only is there a lot of marketing noise out there today, but there are also debates on what panel/monitor type is the best?

When it comes to buying either a TV for home or a monitor for your office or a display for that gaming setup in your basement, things can be distilled down to usage and based on that; you can compare what different panels have to offer and how they will suit you. In this article, we will be having a quick look at the three most commonly used panels – TN, IPS and VA and helping you understand what they have to offer, and what they can be best used for. But first, a basic run on what an LCD is.

The major drawback of the CRT (cathode ray tube) technology was that it occupied quite a significant amount of space. The CRT displays worked on the principle of ‘light emission’ and they consumed a lot of power, which just added up to the size issue. The solution to these problems came in technological research on developing a screen that consumes less power (hence, increasing productivity), and which was smaller. Lit using fluorescent tubes, LCDs (liquid crystal displays) consume less power, are way thinner than the CRTs, and work on the principle of ‘blocking light’ rather than emitting it.

LCDs are made from a passive/active matrix grid made of conductors, the latter called as thin film display (or a TFT). Pixels are mounted on this grid at each intersection (and an active matrix has a transistor located at each pixel intersection). This network structure controls a pixel’s luminance and consuming a little amount of current. This ability leaves us with a choice to switch the current on and off more often on the grid, and this leads to a high ‘refresh rate.’ And a high refresh rate means a ‘smoother’ operation.

Developments in these screen types lead to LED TVs. The main difference between these and the LCDs is that they are lit using Light Emitting Diodes instead of fluorescent tubes. So technically, a LED display is a ‘LED backlit LCD screen.’

This LED backlighting helps in enhancing the color contrast and it consumes less power as compared to fluorescent tube lit panels. It significantly improves the overall picture quality by tapping into a wider RGB color range, and there is a better brightness achieved which allows you to see the images clearly, even in well-lit environments. On top of these things, LED backlit displays to consume less power and are lightweight too. So there are no drawbacks of this technology as such, resulting in backlighting being used in more and more panels every day. Today, we have three types of backlighting: White Edge, Full LED array, and Local Dimming LEDs.

White edge implements a diffusion panel, with white LED around the edges of the screen. This helps disperse the light evenly throughout the screen. A full LED array, as the name suggests, implements arrays of LED lights placed right behind the screen that collectively controlled for an even light dispersion. The third one is the Local Dimming LED system, which implements an array of dynamic led lights that can either be controlled in groups or individually to obtain an even light pattern.

This information, however not essential for everyone to know, is a good bit for panel enthusiasts and pro gamers, as having a high refresh rate depends on the panel’s build and it’s resolution. Now, let’s go ahead and have a look at the three most commonly used panels on these LCD monitors – TN, IPS, and VA.

The most common LCDs are based on TN (Twisted Nematic) panel designs. Manufactured on a vast scale and pretty cheap, TN displays can be found in most homes. Primarily made for supporting low response times, TN panels remain to this day, a cheaper option for gamers who want a massive resolution with a low response time and a high refresh rate. Not to say that the IPS panels don’t have these features, but an IPS panel with the same features as a TN (1ms response time, QHD resolution and a 144Hz refresh rate for example) will always be more expensive. However, while the price is good with the TN, the color quality and viewing angles take a toll. They are the drawbacks of a TN panel when compared to other panels out there.

TN displays, (TFT-LCDs for example), work by passing light through two polarized screens, a color filter and liquid crystals that tend to twist and block light in correspondence of the current applied to them. This type of an arrangement leaves a lot in your hands as you can change the amount of current applied to adjust the crystal twists. Hence, you can achieve virtually any color or shade reproduced on the screen. But while precise adjustments are possible with a TN display, there are some drawbacks to this structure.

Every LCD’s pixel is constructed using some red, green and blue sub-pixels. Colors and shades are produced by mixing different brightness levels for these pixels that result in the perception of a particular solid color by the user’s eyes. The problem with TN panels comes from its adoption of a 6-bit per channel model, which outputs 64 shades per color, instead of the 8-bit per channel, 256 shades implementation. Needless to say, color accuracy takes a toll here. And while the TN compensates for this issue with ‘dithering,’ (using alternating colors to produce a certain perceived shade) it is still a poor substitute for 24-bit color reproduction. On top of that, narrow viewing angles don’t help the case, as there is a ‘washout’ produced that puts TN panels at a low level concerning color accuracy.

But if your main concern is not the aesthetics of the performance, but the performance itself, TN LCD screens reign supreme over other panel types because of providing us low response times and high refresh rates on a budget.

Measured in milliseconds, pixel response time or ‘responsiveness’ is the time taken for a pixel to change from one shade (of gray) to another (denoted as grey-to-grey or GTG). The higher the response time, the more blur and smearing you will experience during rapid transitions. While no industry standard exists for measuring precise response times, there is a value specified by the manufacturers on these displays.

TN panel displays have very fast GTG pixel response times that are usually well under the typical 5ms TFT-LCD average. This makes these displays a good choice for competitive gamers who are willing to sacrifice some color accuracy and viewing angles for great performance at a good price.

In-Plane-Switching, or IPS, was designed to overcome the shortcomings of a Twisted Nematic panel and they are replacing TN panels. These panels also use polarized filters, liquid crystals, and transmitters. However, in this case, the arrangement is different. The liquid crystals in an IPS panel design are aligned in a way that allows less light to distort and achieves better color visibility. Additionally, IPS panels use 8-bits of depth per color unlike TN’s 6-bit, which results in a wider 256 shades spectrum. This takes care of the color accuracy problem.

The second thing that is improved in IPS panels is the range of viewing angles. While Twisted Nematic panel displays ‘washed out’ at shallow angles, IPS displays have rich colors that don’t shift/fade when viewed from side angles. One other significant improvement of the IPS screen was that there were no trailing distortions when you touched them. This made them ideal for Touch-screen applications.

While marketed as the best of the best, IPS screens have some drawbacks of their own. The major one happens to be the cost. The construction of IPS panels requires a greater number of transmitters and lighting for each pixel. Now, the higher the resolution of the constructed panel will be, the greater number of pixels will be mounted on the panel. This results in a complex architecture, and they cost more than their TN counterparts. However, with the rising competition in the market, the prices of IPS panels have come down from expensive to reasonable, and you can get a decent IPS display for a few hundred dollars. However, the more you want from your monitor as a consumer, the more pricey it will become. This leaves high-end IPS monitors most commonly found at the desks of editing professionals and competitive gamers – people who want a lot of color accuracy and detailing along with decent speed and longevity.

IPS’s complex technology introduced some additional overhead that reduced the responsiveness of these panels. For quite some time, these panels clocked in around 8ms grey-to-grey. However, due to the popularity of these panels, response times, as well as refresh rates, have been improved quite a lot (the majority averaging at 60Hz)- at the cost of bigger price tags, of course.

Today, many variants of the IPS also exist, like Samsung’s popular PLS (plane line switching) panels. These variants are not entirely different from IPS, though there are subtle ‘generational improvements’ like enhancements in viewing angles, brightness and whatnot. LG also has a variation to the IPS, called as the eIPS, which is basically a IPS panel you can get on a budget. However, in real world use, the usage experience varies by a little factor.

VA (Vertical Alignment) panel technology sits between the high speeds of TN and the color richness of IPS panels. Constructed implementing IPS’s 8-bit color depth per channel approach (that has a crystal design capable of reproducing rich colors), VA (and its variants) also retain some of the low latency of TN panels. This results in a display that is ‘almost’ as fast as TN and as colorful as IPS.

Often reaching 5000:1, VN panels have a superior contrast as compared to both IPS and TN screens, and this remains the highlight among other features. These panels reproduce better black levels than TN or IPS. However, there are more issues with VA panels today than there are advantages, and some of these issues can’t be ignored.

First on the list of cons is the color (and contrast) shift that happens when we view media from a wide angle. And while the viewing angles of VA panels are wider than TN, the shift is similar to a TN panel and renders most VA panels ‘not ideal’ for tasks that require a great amount of color accuracy. When it comes to gaming, there’s another issue. VA panels offer rapid light-to-dark pixel transitions. However, darker color shifts aren’t as speedy, and it can lead to blurring during high-performance tasks.

Just like there are variants of IPS, VA panels also have their own. To put it simply, they progressed from 1998 to 2005 (and beyond) from MVA, AMVA to AMVA+. MVA or Multi-domain Vertical Alignment technology first came out in 1998 and provided a 25ms response time with 160-170 degree viewing angles. This was, of course, a lot of value at the time. Today, these panels can be found as AMVA (Advanced MVA) in many displays, and they offer a contrast ratio as high as 5000:1 (which is the best contrast ratio in LCD technology), and QHD (2560 x 1440p) resolution at a wide screen size like 32 inches. So again, a lot of value here as well. After that, we have the AMVA+ which had improved viewing angles on the standard AMVA.

So in a nutshell, while VA panels are much better than average TN panels regarding color reproduction, they are still not good enough if you were to switch to premium TN panels oriented for gaming purposes. And when it comes to IPS panels, they dominate the list but with one disadvantage – price. If we were to talk about performance, high-end IPS panels reign over all else, with response times as low as 1ms, 144Hz refresh rates and supporting resolutions all the way up to 4K and 5K. If, however, you want to talk ‘value for money,’ TN panels give you decent colors and speed at decent rates. And if you have some more money in your pocket after selecting a TN panel of certain specifications, you can look for a VA panel that will offer you some added color quality and viewing angles. It’s all about comparison here, and understanding the fundamentals of these panels is a good starting point.

lcd panel types va pricelist

So, why is this important? A monitor’s panel technology is important because it affects what the monitor can do and for which uses it is best suited. Each of the monitor panel types listed above offer their own distinctive benefits and drawbacks.

Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.

The reason for this is because none of the different monitor panel types as they are today can be classified as “outstanding” for all of the attributes mentioned above.

Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.

IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of their liquid crystals. These monitors were designed to overcome the limitations of TN panels. The liquid crystal’s ability to shift horizontally creates better viewing angles.

IPS monitor variations include S-IPS, H-IPS, e-IPS and P-IPS, and PLS (Plane-to-Line Switching), the latter being the latest iteration. Since these variations are all quite similar, they are all collectively referred to as “IPS-type” panels. They all claim to deliver the major benefits associated with IPS monitors – great color and ultra-wide viewing angles.

When it comes to color accuracy, IPS monitors surpass the performance of TN and VA monitors with ease. While latest-gen VA technologies offer comparative performance specs, pro users still claim that IPS monitors reign supreme in this regard.

In the past, response time and contrast were the initial weakness of IPS technology. Nowadays, however, IPS monitor response times have advanced to the point where they are even capable of satisfying gamers, thus resulting in a rising popularity in IPS monitors for gaming.

With regard to gaming, some criticisms IPS monitors include more visible motion blur coming as a result of slower response times, however the impact of motion blur will vary from user to user. In fact, mixed opinions about the “drawbacks” of IPS monitor for gaming can be found all across the web. Take this excerpt from one gaming technology writer for example: “As for pixel response, opinions vary. I personally think IPS panels are quick enough for almost all gaming. If your gaming life is absolutely and exclusively about hair-trigger shooters, OK, you’ll want the fastest response, lowest latency LCD monitor. And that means TN. For the rest of us, and certainly for those who place even a modicum of importance on the visual spectacle of games, I reckon IPS is clearly the best panel technology.” Read the full article here.

IPS monitors deliver ultra-wide 178-degree vertical and horizontal viewing angles. Graphic designers, CAD engineers, pro photographers, and video editors will benefit from using an IPS monitor. Many value the color benefits of IPS monitors and tech advances have improved IPS panel speed, contrast, and resolution. IPS monitors are more attractive than ever for general desktop work as well as many types of gaming. They’re even versatile enough to be used in different monitor styles, so if you’ve ever compared an ultrawide vs. dual monitor setup or considered the benefits of curved vs. flat monitors, chances are you’ve already come into contact with an IPS panel.

TN monitors, or “Twisted Nematic” monitors, are the oldest LCD panel types around. TN panels cost less than their IPS and VA counterparts and are a popular mainstream display technology for desktop and laptop displays.

Despite their lower perceived value, TN-based displays are the panel type preferred by competitive gamers. The reason for this is because TN panels can achieve a rapid response time and the fastest refresh rates on the market (like this 240Hz eSports monitor). To this effect, TN monitors are able to reduce blurring and screen tearing in fast-paced games when compared to an IPS or VA panel.

On the flip side, however, TN panel technology tends to be ill-suited for applications that benefit from wider viewing angles, higher contrast ratios, and better color accuracy. That being said, LED technology has helped shift the perspective and today’s LED-backlit TN models offer higher brightness along with better blacks and higher contrast ratios.

The greatest constraint of TN panel technology, however, is a narrower viewing angle as TN monitors experience more color shifting than other types of panels when being viewed at an angle.

Today’s maximum possible viewing angles are 178 degrees both horizontally and vertically (178º/178º), yet TN panels are limited to viewing angles of approximately 170 degrees horizontal and 160 degrees vertical (170º /160º).

For general-purpose use, these shifts in color and contrast are often irrelevant and fade from conscious perception. However, this color variability makes TN monitors a poor choice for color-critical work like graphic design and photo editing. Graphic designers and other color-conscious users should also avoid TN displays due to their more limited range of color display compared to the other technologies.

TN monitors are the least expensive panel technology, making them ideal for cost-conscious businesses and consumers. In addition, TN monitors enjoy unmatched popularity with competitive gamers and other users who seek rapid graphics display.

Vertical alignment (VA) panel technology was developed to improve upon the drawbacks of TN. Current VA-based monitors offer muchhigher contrast, better color reproduction, and wider viewing angles than TN panels. Variations you may see include P-MVA, S-MVA, and AMVA (Advanced MVA).

These high-end VA-type monitors rival IPS monitors as the best panel technology for professional-level color-critical applications. One of the standout features of VA technology is that it is particularly good at blocking light from the backlight when it’s not needed. This enables VA panels to display deeper blacks and static contrast ratios of up to several times higher than the other LCD technologies. The benefit of this is that VA monitors with high contrast ratios can deliver intense blacks and richer colors.

MVA and other recent VA technologies offer the highest static contrast ratios of any panel technology. This allows for an outstanding visual experience for movie enthusiasts and other users seeking depth of detail. Higher-end, feature-rich MVA displays offer the consistent, authentic color representation needed by graphic designers and other pro users.

There is another type of panel technology that differs from the monitor types discussed above and that is OLED or “Organic Light Emitting Diode” technology. OLEDs differ from LCDs because they use positively/negatively charged ions to light up every pixel individually, while LCDs use a backlight, which can create an unwanted glow. OLEDs avoid screen glow (and create darker blacks) by not using a backlight. One of the drawbacks of OLED technology is that it is usually pricier than any of the other types of technology explained.

When it comes to choosing the right LCD panel technology, there is no single right answer. Each of the three primary technologies offers distinct strengths and weaknesses. Looking at different features and specs helps you identify which monitor best fits your needs.

With the lowest cost and fastest response times, TN monitors are great for general use and gaming. VA monitor offers a step up for general use. Maxed-out viewing angles and high contrast ratios make VA monitors great for watching movies and image-intensive gaming.

IPS monitors offer the greatest range of color-related features and remain the gold standard for photo editing and color-critical pro uses. Greater availability and lower prices make IPS monitors a great fit for anyone who values outstanding image quality.

LCD or “Liquid Crystal Display” is a type of monitor panel that embraces thin layers of liquid crystals sandwiched between two layers of filters and electrodes.

While CRT monitors used to fire electrons against glass surfaces, LCD monitors operate using backlights and liquid crystals. The LCD panel is a flat sheet of material that contains layers of filters, glass, electrodes, liquid crystals, and a backlight. Polarized light (meaning only half of it shines through) is directed towards a rectangular grid of liquid crystals and beamed through.

Liquid Crystals (LCs) are used because of their unique ability to maintain a parallel shape. Acting as both a solid and liquid, LCs are able to react quickly to changes in light patterns. The optical properties of LCs are activated by electric current, which is used to switch liquid crystals between phases. In turn, each pixel generates an RGB (red, green, blue) color based on the phase it’s in.

Note: When searching for monitors you can be sure to come across the term “LED Panel” at some point or another. An LED panel is an LCD screen with an LED – (Light Emitting Diode) – backlight. LEDs provide a brighter light source while using much less energy. They also have the ability to produce white color, in addition to traditional RGB color, and are the panel type used in HDR monitors.

Early LCD panels used passive-matrix technology and were criticized for blurry imagery. The reason for this is because quick image changes require liquid crystals to change phase quickly and passive matrix technology was limited in terms of how quickly liquid crystals could change phase.

Thanks to active-matrix technology, LCD monitor panels were able to change images very quickly and the technology began being used by newer LCD panels.

Ultimately, budget and feature preferences will determine