20x4 i2c lcd display arduino code supplier
ERM2004FS-2 is 20 characters wide,4 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with white color included can be dimmed easily with a resistor or PWM,fstn-lcd positive,black text on the white color,high contrast,wide operating temperature range,wide view angle,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.
It"s easily controlled by MCU such as 8051,PIC,AVR,ARDUINO,ARM and Raspberry Pi.It can be used in any embedded systems,industrial device,security,medical and hand-held equipment.
Of course, we wouldn"t just leave you with a datasheet and a "good luck!".For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and Development Kit at the bottom of this page.
This is a 20x4 Arduino compatible LCD display module with high speed I2C interface. It is able to display 20x4 characters on two lines, whitecharacterson blue background.
Generally, LCD display will run out of Arduino pin resource. It needs 6 digital pins and 2 power pin for a LCD display. If you want to build a robot project, it will be a problem with Arduino UNO and LCD display.
This I2C 20x4 LCD display module is designed for Arduino microcontroller. It is using I2C communication interface, With this I2C interface, only 2 lines (I2C) are required to display the information on any Arduino based projects. It will save at least 4 digital / analog pins on Arduino. All connector are standard XH2.54 (Breadboard type). You can connect it with jumper wire directly.
This 1602 LCD module has 8 I2C address in all, from 0x20 to 0x27. You can set one according to your requirements, avoiding the confliction of I2C address. And its contrast can be adjusted manually.
This board is able to be powered by 5V or 3.3V which make it compatible with both Arduino 101 or Arduino DUE, intel edison 3.3V system and standard Arduino UNO/Arduino Mega 5V system.
As we all know, though LCD and some other displays greatly enrich the man-machine interaction, they share a common weakness. When they are connected to a controller, multiple IOs will be occupied of the controller which has no so many outer ports. Also it restricts other functions of the controller. Therefore, LCD2004 with an I2C bus is developed to solve the problem.
I2C bus is a type of serial bus invented by PHLIPS. It is a high performance serial bus which has bus ruling and high or low speed device synchronization function required by multiple host system. I2C bus has only two bidirectional signal lines, Serial Data Line (SDA) and Serial Clock Line (SCL). The blue potentiometer on the I2C LCD2004 is used to adjust backlight to make it easier to display on the I2C LCD2004.
I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for attaching lower-speed peripheral ICs to processors and microcontrollers. Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).
I²C uses only two bidirectional open-drain lines, Serial Data Line (SDA) and Serial Clock Line (SCL), pulled up with resistors. Typical voltages used are +5 V or +3.3 V although systems I²C (Inter-Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial computer bus invented by Philips Semiconductor (now NXP Semiconductors). It is typically used for attaching lower-speed peripheral ICs to processors and microcontrollers. Alternatively I²C is spelled I2C (pronounced I-two-C) or IIC (pronounced I-I-C).
3) Find the file LiquidCrystal_I2C which you just download. Click it open and then you"ll be prompted by "Library added to your libraries. Check "Import libraries"”. You also can see the libraries just imported have appeared on the list by Sketch->Include Library->LiquidCrystal_I2C.
If everything is correct,But the display just shows 16 black rectangles on Line 1.it may be the address of i2c is not 0x27,therfore you need to run the following code to read the address,then modify the 0x27 to which you read.
Blue backlight with white text 20 character X 4 line LCD. The LCD display has the I2C backpack module mounted on the back side which requires only two connected
Sometimes it may be necessary to use a display while making a hardware project, but the size and the type of the display may vary according to the application. In a previous project, we used a 0.96″ I2C OLED display, and in this project we will have an I2C 20×4 character display.
This liquid crystal display has 4 lines, 20 character in each line and cannot be used to display graphics. The main feature of this display that it uses I2C interface, which means that you will need only two wires to connect with Arduino. At the back side of the screen there is a small PCB soldered in the display, this circuit is a serial LCD 20 x 4 module and it also has a small trimpot to adjust the contrast of the LCD.
Display’s backlight is blue and the text is white. It is fully compatible with Arduino and has 5V input voltage. Its I2C address could be 0x27 or 0x3F. You can get it for about $7 from Bangood store.
DS3231 is a low-cost, accurate I2C real-time clock (RTC), with an integrated temperature-compensated crystal oscillator (TCXO) and crystal. The device incorporates a battery input, so that if power is disconnected it maintains accurate time.
RTC maintains seconds, minutes, hours, day, date, month, and year information. Less than 31 days of the month, the end date will be automatically adjusted, including corrections for leap year. The clock operates in either the 24 hours or band / AM / PM indication of the 12-hour format. Provides two configurable alarm clock and a calendar can be set to a square wave output. Address and data are transferred serially through an I2C bidirectional bus.
First we need to download the library of the display, which includes all required functions to configure and write on the display. You can find it here.
Unzip the library and add it to the Arduino libraries folder, then run Arduino IDE and copy the following code. The first two lines are to include both of I2C and LCD libraries.
lcd.setCursor(3,0) will set the cursor of the LCD in the specified location, the first argument for the column and the second for the row starting form 0.
Here we will use a small breadboard to connect the RTC module and display with the Arduino’s I2C pins (A4 and A5). The SCL pins are connected with analog 5 pin and the SDA pins with analog 6 pin. The top rail of the breadboard used as I2C bus and the bottom one is power bus.
In addition to setup and loop function, we will create four other functions to organize the code. As the corners and vertical lines of the frame are special characters, we have to create them manually. So we will use a function to create them and another one to print them on the LCD.
Inside the loop function the time will be read from the real time clock module and the printed to the LCD using a custom function for each of time and date.
At first, we have to include the three libraries, I2C, LCD, and RTC and set the LCD address. Inside the setup function the display is initialized, then we will call createCustomCharacters() function and print them.
Each character can be 5-pixel long in width and 8-pixel in height. So to create a custom character we need to create a new byte. We need 5 characters, the vertical line and the four corners. The yellow pattern shows you how the character will be displayed on the LCD.
Inside createCustomCharacters() function, we called lcd.createChar(#, byte array) function. The LCD supports up to 8 custom characters numbered from 0 to 7. It will assign the index in the first argument to the character given by the byte array. To print this character we can use lcd.write(byte(#)) function.
This function is very simple, it uses lcd.setCursor(#,#) to move the cursor and lcd.print(“”) to print the given string. The function will print the top and bottom horizontal lines, then printing other custom characters.
As we discussed earlier, the loop function will get the current time and date every second and refresh them on the display. First we defined a time element “tm” which has current time data, then if the time is correct and the RTC module working fine the time and date will be printed.
PrintTime function uses three arguments, the column and line where it will print the time, and the time element. lcd.print(tm.Hour) will print the hour, then if the minutes and seconds are less than 10 we will add 0 to the left. And the same method is used to print the date.
Now everything is ready, upload the code to your Arduino and enjoy watching your new clock. You can find the full Arduino sketches and libraries in the attachment below.
LCD Display Module I2C 20x4 Blue Arduino - If your current LCD is frustrating you because it occupies all your GPIO pins and lacks characters" space, it is time to replace it with this one. This LCD Display Module uses an I2C communication interface, which only needs 2 wires to display information on any microcontroller-based project, including the Arduino. It is capable of displaying 4 lines of 20 white characters on a blue background. Moreover, it is compatible with either 3.3V or 5V logic systems, which is basically everything in programmable electronics.
A regular LCD is substantially more difficult to connect than an I2C LCD. Instead of 12, only 4 pins must be connected. Start by connecting the GND pin to the ground and the VCC pin to the Arduino"s 5V output. The I2C communication pins are all that is left at this point. Keep in mind that the I2C pins on each Arduino board vary and must be linked appropriately. The SDA (data line) and SCL (clock line) are located on the pin headers close to the AREF pin on Arduino boards with the R3 configuration. They also go by the names A5 (SCL) and A4 (SDA).
To power, the LCD, connect the Arduino"s USB port. The backlight will be visible lighting up. You will now begin to see the first row of rectangles as you adjust the potentiometer"s knob. Congratulations if that occurs! Your LCD is operational. After completing this, we can begin programming the LCD.
You must first install a library called LiquidCrystal I2C to drive an I2C LCD. The LiquidCrystal library that comes with your Arduino IDE has been improved by this library.
You can narrow your search by entering "liquid-crystal." Several entries ought to be present. Look for Frank de Brabander"sLiquidCrystal I2C library. Select Install after clicking that entry.
As was already said, the manufacturer determines the LCD"s I2C address. The default I2C address for LCDs powered by Texas Instruments PCF8574 chips is 0x27Hex. The default I2C address for LCDs powered by NXP Semiconductors" PCF8574 chip is 0x3FHex.
Therefore, your LCD"s I2C address is most likely 0x27Hex or 0x3FHex. However, it is advised that you ascertain the LCD"s precise I2C address before utilizing it. Fortunately, there is a simple method for doing this, due to Nick Gammon.
A straightforward I2C scanner sketch created by Nick scans your I2C bus and gives the addresses of each I2C device it encounters. Launch your Serial Monitor after loading this sketch onto your Arduino. You get to see the I2C address of your I2C LCD.
Just getting the i2c address may not be enough. This is because there is no standard for how the PCF8574 is wired up to the LCD or how to control the backlight. As a result different backpack manufacturers wire them up in different ways and use different backlight control circuits.
This means that even if the Arduino library is given the correct i2c address it still may not work if the library also does not know how the PCF8574 output port pins are wired up to the hd44780 LCD interface pins.
The sample code shown in the original post is using a LiquidCrystal_I2C library that assumes a particular pin wiring between the PCF8574 and the LCD. It appears to be using/expecting the LiquidCrystal_I2C library available through the IDE library manager.
If the backpack uses the specific wiring that the library assumes, then all that is necessary is to get the I2C address correct. If the wiring used on the backpack is different than what the library assumes, it will not work even if the correct i2c address is used.
Then you can look at the other hd44780_I2Cexp i/o class examples like HelloWorld, to see what files need to be included and how to declare your lcd object.
I"m using a Arduino Nano with a 20x4 LCD connected to it by using I2C. Too bad the display only displays squares and not the text I"m trying to display.
First of all I tried the code form the vender where I bought the LCD. The code compiles and when I upload it, it only displays squares. I tried adjusting the potmeter, but it doesn"t help.
The Arduino family of devices is features rich and offers many capabilities. The ability to interface to external devices readily is very enticing, although the Arduino has a limited number of input/output options. Adding an external display would typically require several of the limited I/O pins. Using an I2C interface, only two connections for an LCD character display are possible with stunning professional results. We offer both a 4 x 20 LCD.
The character LCD is ideal for displaying text and numbers and special characters. LCDs incorporate a small add-on circuit (backpack) mounted on the back of the LCD module. The module features a controller chip handling I2C communications and an adjustable potentiometer for changing the intensity of the LED backlight. An I2C LCD advantage is that wiring is straightforward, requiring only two data pins to control the LCD.
A standard LCD requires over ten connections, which can be a problem if your Arduino does not have many GPIO pins available. If you happen to have an LCD without an I2C interface incorporated into the design, these can be easily
The LCD displays each character through a matrix grid of 5×8 pixels. These pixels can display standard text, numbers, or special characters and can also be programmed to display custom characters easily.
Connecting the Arduino UNO to the I2C interface of the LCD requires only four connections. The connections include two for power and two for data. The chart below shows the connections needed.
The I2C LCD interface is compatible across much of the Arduino family. The pin functions remain the same, but the labeling of those pins might be different.
Located on the back of the LCD screen is the I2C interface board, and on the interface is an adjustable potentiometer. This adjustment is made with a small screwdriver. You will adjust the potentiometer until a series of rectangles appear – this will allow you to see your programming results.
The Arduino module and editor do not know how to communicate with the I2C interface on the LCD. The parameter to enable the Arduino to send commands to the LCD are in separately downloaded LiquidCrystal_I2C library.
The LiquidCrystal_I2C is available from GitHub. When visiting the GitHub page, select the Code button and from the drop-down menu, choose Download ZIP option to save the file to a convenient location on your workstation.
Before installing LiquidCrystal_I2C, remove any other libraries that may reside in the Arduino IDE with the same LiquidCrystal_I2C name. Doing this will ensure that only the known good library is in use. LiquidCrystal_I2C works in combination with the preinstalled Wire.h library in the Arduino editor.
To install the LiquidCrystal_I2C library, use the SketchSketch > Include Library > Add .ZIP Library…from the Arduino IDE (see example). Point to the LiquidCrystal_I2C-master.zip which you previously downloaded and the Library will be installed and set up for use.
Several examples and code are included in the Library installation, which can provide some reference and programming examples. You can use these example sketches as a basis for developing your own code for the LCD display module.
There may be situations where you should uninstall the Arduino IDE. The reason for this could be due to Library conflicts or other configuration issues. There are a few simple steps to uninstalling the IDE.
The I2c address can be changed by shorting the address solder pads on the I2C module. You will need to know the actual address of the LCD before you can start using it.
Once you have the LCD connected and have determined the I2C address, you can proceed to write code to display on the screen. The code segment below is a complete sketch ready for downloading to your Arduino.
The code assumes the I2C address of the LCD screen is at 0x27 and can be adjusted on the LiquidCrystal_I2C lcd = LiquidCrystal_I2C(0x27,16,2); as required.
Similar to the cursor() function, this will create a block-style cursor. Displayed at the position of the next character to be printed and displays as a blinking rectangle.
This function turns off any characters displayed to the LCD. The text will not be cleared from the LCD memory; rather, it is turned off. The LCD will show the screen again when display() is executed.
Scrolling text if you want to print more than 16 or 20 characters in one line then the scrolling text function is convenient. First, the substring with the maximum of characters per line is printed, moving the start column from right to left on the LCD screen. Then the first character is dropped, and the next character is displayed to the substring. This process repeats until the full string has been displayed on the screen.
The LCD driver backpack has an exciting additional feature allowing you to create custom characters (glyph) for use on the screen. Your custom characters work with both the 16×2 and 20×4 LCD units.
A custom character allows you to display any pattern of dots on a 5×8 matrix which makes up each character. You have full control of the design to be displayed.
To aid in creating your custom characters, there are a number of useful tools available on Internet. Here is a LCD Custom Character Generator which we have used.