i2c lcd display arduino made in china

I2C_LCD is an easy-to-use display module, It can make display easier. Using it can reduce the difficulty of make, so that makers can focus on the core of the work.

We developed the Arduino library for I2C_LCD, user just need a few lines of the code can achieve complex graphics and text display features. It can replace the serial monitor of Arduino in some place, you can get running informations without a computer.

More than that, we also develop the dedicated picture data convert software (bitmap converter)now is available to support PC platform of windows, Linux, Mac OS. Through the bitmap convert software you can get your favorite picture displayed on I2C_LCD, without the need for complex programming.

Select the board: Click Tools > Board > "Arduino Duemilanove or Diecimila"(Seeeduino V3.0 Or early version), "Arduino Uno"(Seeeduino Lotus or Seeeduino V4.0).

i2c lcd display arduino made in china

ERM2402DNS-1 is 24 characters wide,2 rows character lcd module,SPLC780C controller (Industry-standard HD44780 compatible controller),6800 4/8-bit parallel interface,single led backlight with white color included can be dimmed easily with a resistor or PWM,ffstn-lcd negative,white text on the black color,high contrast,wide operating temperature range,wide view angle,rohs compliant,built in character set supports English/Japanese text, see the SPLC780C datasheet for the full character set. It"s optional for pin header connection,5V or 3.3V power supply and I2C adapter board for arduino.

It"s easily controlled by MCU such as 8051,PIC,AVR,ARDUINO,ARM and Raspberry Pi.It can be used in any embedded systems,industrial device,security,medical and hand-held equipment.

i2c lcd display arduino made in china

In this tutorial, we will learn how to make custom characters on an I2C LCD display. Click hereto refer to my previous blog and learn about the I2C LCD display basics. Custom characters are non-original figures created from original parts. You can create different figures such as hearts, squares, rectangles, and more.

The I2C LCD display is made up of blocks which are fundamentally 5 dots in a row and 8 dots in a column. The LCD has 32 of those blocks and it makes up the 16X2 LCD. You can program each of the blocks to make any figure you want.

The picture above shows the organization of a single block that is used to make up LCD. To create a custom character, we need to define which dot out of the 5 x 8 block has to be lighted up. This can be done by writing the binary equivalent of each row and column. Each dot is either on or off. We can create figures by turning them off or on. Use this website below to get the understanding on create figures.

The program is pretty simple. We are declaring the variable smileyFace which is array of type byte. This array will contain 8 bytes, one for each row in our block. The block is made up by 5X8 dots as mentioned before.We can program those dots by turning them on or off. In this code we write 0 for off and 1 is for on. Writing that, you can create any figure you want! In setup function, we simply turn on the background light of the LCD. Then, we set the cursor to the place you want to display your text, and display it by using the setCursor function of the library.

i2c lcd display arduino made in china

OK, the following works without changing anything on both Uno and Mega. As I said, I2C is I2C, and this is exactly what you would expect. After all, what is there to change? It is just a matter of connecting the SDA,SCL as appropriate. The library is produced by YWRobot and was probably obtained from a link on the eBay page when I got the display. I submit your problem is too much concern about buzzstuff like parameters and functions, not to mention your limited C++ skills, where in truth you don"t need any C++ skills at all, and you are not using the library in the manner intended i.e. no fiddling. In short, your libraries are probably innocent, and your problem lies somewhere else. I imagine the first step is to re-install the libraries virgo intacto, it could even be the only step..........

i2c lcd display arduino made in china

None of these instructions will produce a change on the screen without a display.display(); method. If your script does not appear to be working check you have included this line at the bottom of your screen changing code.

i2c lcd display arduino made in china

If you’ve ever tried to connect an LCD display to an Arduino, you might have noticed that it consumes a lot of pins on the Arduino. Even in 4-bit mode, the Arduino still requires a total of seven connections – which is half of the Arduino’s available digital I/O pins.

The solution is to use an I2C LCD display. It consumes only two I/O pins that are not even part of the set of digital I/O pins and can be shared with other I2C devices as well.

True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.

If you look closely you can see tiny rectangles for each character on the display and the pixels that make up a character. Each of these rectangles is a grid of 5×8 pixels.

At the heart of the adapter is an 8-bit I/O expander chip – PCF8574. This chip converts the I2C data from an Arduino into the parallel data required for an LCD display.

If you are using multiple devices on the same I2C bus, you may need to set a different I2C address for the LCD adapter so that it does not conflict with another I2C device.

An important point here is that several companies manufacture the same PCF8574 chip, Texas Instruments and NXP Semiconductors, to name a few. And the I2C address of your LCD depends on the chip manufacturer.

According to the Texas Instruments’ datasheet, the three address selection bits (A0, A1 and A2) are placed at the end of the 7-bit I2C address register.

According to the NXP Semiconductors’ datasheet, the three address selection bits (A0, A1 and A2) are also placed at the end of the 7-bit I2C address register. But the other bits in the address register are different.

So your LCD probably has a default I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it.

Connecting an I2C LCD is much easier than connecting a standard LCD. You only need to connect 4 pins instead of 12. Start by connecting the VCC pin to the 5V output on the Arduino and GND to ground.

Now we are left with the pins which are used for I2C communication. Note that each Arduino board has different I2C pins that must be connected accordingly. On Arduino boards with the R3 layout, the SDA (data line) and SCL (clock line) are on the pin headers close to the AREF pin. They are also known as A5 (SCL) and A4 (SDA).

After wiring up the LCD you’ll need to adjust the contrast of the display. On the I2C module you will find a potentiometer that you can rotate with a small screwdriver.

Plug in the Arduino’s USB connector to power the LCD. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.

To drive an I2C LCD you must first install a library called LiquidCrystal_I2C. This library is an enhanced version of the LiquidCrystal library that comes with your Arduino IDE.

Filter your search by typing ‘liquidcrystal‘. There should be some entries. Look for the LiquidCrystal I2C library by Frank de Brabander. Click on that entry, and then select Install.

The I2C address of your LCD depends on the manufacturer, as mentioned earlier. If your LCD has a Texas Instruments’ PCF8574 chip, its default I2C address is 0x27Hex. If your LCD has NXP Semiconductors’ PCF8574 chip, its default I2C address is 0x3FHex.

So your LCD probably has I2C address 0x27Hex or 0x3FHex. However it is recommended that you find out the actual I2C address of the LCD before using it. Luckily there’s an easy way to do this, thanks to the Nick Gammon.

But, before you proceed to upload the sketch, you need to make a small change to make it work for you. You must pass the I2C address of your LCD and the dimensions of the display to the constructor of the LiquidCrystal_I2C class. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!

First of all an object of LiquidCrystal_I2C class is created. This object takes three parameters LiquidCrystal_I2C(address, columns, rows). This is where you need to enter the address you found earlier, and the dimensions of the display.

In ‘setup’ we call three functions. The first function is init(). It initializes the LCD object. The second function is clear(). This clears the LCD screen and moves the cursor to the top left corner. And third, the backlight() function turns on the LCD backlight.

After that we set the cursor position to the third column of the first row by calling the function lcd.setCursor(2, 0). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.

There are some useful functions you can use with LiquidCrystal_I2C objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.

lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.

lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.

If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.

CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.

CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.

Creating custom characters has never been easier! We have created a small application called Custom Character Generator. Can you see the blue grid below? You can click on any 5×8 pixel to set/clear that particular pixel. And as you click, the code for the character is generated next to the grid. This code can be used directly in your Arduino sketch.

After the library is included and the LCD object is created, custom character arrays are defined. The array consists of 8 bytes, each byte representing a row of a 5×8 LED matrix. In this sketch, eight custom characters have been created.

i2c lcd display arduino made in china

I"d recommend that you use my hd44780 library as the hd44780_I2Cexp i/o class includes API functions to turn on/off the pixels and the backlight separately or at the same time when using one of those backpacks.

The LCD itself takes a trivial current. There is little point in turning it off. If you do, you simply re-initialise it and redraw the display. (you would need to keep track of the last data that was shown)

I have some LCD panels that I"ve been testing with for 7-8 years and they are noticeably dimmer than they were when new and these panels are not on anywhere close to 24x7.

The typical i2c hd44780 backpack doesn"t have any current limiting resistor in its backlight control circuit, so it depends on there being one on the actual LCD panel. The resistor(s) on the panel are often set to provide a very bright backlight (often too bright for my taste) so the LED is being driven at a fairly high current, which will reduce the overall usable lifespan of the backlight vs using a larger resistor for a dimmer display.

i2c lcd display arduino made in china

Hot Tags: lcd1602 hd44780 character lcd /w iic/i2c serial interface adapter module for lcd16*2 suppliers China, manufacturers, low price, buy discount, pricelist, price, made in China