lcd panel technology comparison manufacturer
Liquid Crystal Display (LCD) screens are a staple in the digital display marketplace and are used in display applications across every industry. With every display application presenting a unique set of requirements, the selection of specialized LCDs has grown to meet these demands.
LCD screens can be grouped into three categories: TN (twisted nematic), IPS (in-plane switching), and VA (Vertical Alignment). Each of these screen types has its own unique qualities, almost all of them having to do with how images appear across the various screen types.
This technology consists of nematic liquid crystal sandwiched between two plates of glass. When power is applied to the electrodes, the liquid crystals twist 90°. TN (Twisted Nematic) LCDs are the most common LCD screen type. They offer full-color images, and moderate viewing angles.
TN LCDs maintain a dedicated user base despite other screen types growing in popularity due to some unique key features that TN display offer. For one,
Displays with VA screens deliver wide viewing angles, high contrast, and good color reproduction. They maintain high response rates similar to TN TFTs but may not reach the same sunlight readable brightness levels as comparable TN or IPS LCDs. VA displays are generally best for applications that need to be viewed from multiple angles, like digital signage in a commercial setting.
IPS (In-Plane Switching) technology improves image quality by acting on the liquid crystal inside the display screen. When voltage is applied, the crystals rotate parallel (or “in-plane”) rather than upright to allow light to pass through. This behavior results in several significant improvements to the image quality of these screens.
Based on current trends, IPS and TN screen types will be expected to remain the dominant formats for some time. As human interface display technology advances and new product designs are developed, customers will likely choose IPS LCDs to replace the similarly priced TN LCDs for their new projects.
Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.
Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:
Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:
MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:
LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.
"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.
"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.
"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.
"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.
Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.
"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.
With the rapid development of my country’s display industry, the global display industry structure has undergone major changes. At present, the LCD industry is mainly concentrated in China, Japan, and South Korea. With the release of the new production capacity of mainland panel manufacturers, mainland China will become the world’s largest LCD production area shortly. So, what are the top ten LCD manufacturers in the world, and how do they rank?
LG Display (Chinese name is LG Display) is currently the world’s No. 1 LCD panel manufacturer, affiliated to LG Group, headquartered in Seoul, South Korea, with R&D, production, and trading institutions in China, Japan, South Korea, and the United States and Europe.
LGDisplay’s customers include Apple, HP, DELL, SONY, Toshiba, PHILIPS, Lenovo, Acer, and other world-class consumer electronics manufacturers. Apple’s iPhone4, iPhone4S, iPhone5, iPad, iPad2, TheNewiPad, and the latest iPad mini all use LG Display’s liquid crystal display panel.
Samsung Electronics is South Korea’s largest electronics industrial company and the largest subsidiary of the Samsung Group. In the late 1990s, Samsung Electronics’ independent technology development and independent product innovation capabilities were further enhanced. Its product development strategy emphasized, “leading technology, using the most advanced technology to develop new products in the introduction stage to meet high-end market needs.” In addition to the matching principle, it also emphasizes the matching principle of “leading technology, using the most advanced technology to develop new products, creating new demands and new high-end markets”.
Innolux is a professional TFT-LCD panel manufacturing company founded by Foxconn Technology Group in 2003. The factory is located in Shenzhen Longhua Foxconn Technology Park, with an initial investment of RMB 10 billion. Innolux has a strong display technology research and development team, coupled with Foxconn’s strong manufacturing capabilities, and effectively exerts the benefits of vertical integration, which will make a significant contribution to improving the level of the world’s flat-panel display industry.
Innolux conducts production and sales operations in a one-stop manner and provides overall solutions for group system customers. Innolux attaches great importance to the research and development of new products. Star products such as mobile phones, portable and car-mounted DVDs, digital cameras, game consoles, and PDA LCD screens have been put into mass production, and they have quickly seized the market to win market opportunities. Several patents have been obtained.
AU Optronics was formerly known as Daqi Technology and was established in August 1996. In 2001, it merged with Lianyou Optoelectronics and changed its name to AU Optronics. In 2006, it acquired Guanghui Electronics again. After the merger, AUO has a complete production line for all generations of large, medium, and small LCD panels. AU Optronics is also the world’s first TFT-LCD design, manufacturing, and R&D company to be publicly listed on the New York Stock Exchange (NYSE). AU Optronics took the lead in introducing an energy management platform and was the first manufacturer in the world to obtain ISO50001 energy management system certification and ISO14045 eco-efficiency assessment product system verification, and was selected as the Dow Jones Sustainability World in 2010/2011 and 2011/2012. Index constituent stocks set an important milestone for the industry.
Founded in April 1993, BOE is the largest display panel manufacturer in China and a provider of Internet of Things technology, products, and services. Core businesses include display devices, smart systems, and health services. Display products are widely used in mobile phones, tablet computers, notebook computers, monitors, TVs, vehicles, wearable devices, and other fields; smart systems build IoT platforms for new retail, transportation, finance, education, art, medical and other fields, providing ” “Hardware products + software platform + scenario application” overall solution; the health service business is combined with medicine and life technology to develop mobile health, regenerative medicine, and O+O medical services, and integrate the resources of the health park.
At present, BOE’s shipments in notebook LCD screens, flat-panel LCD screens, mobile phone LCD screens, and other fields have reached the world’s first place. Its successful entry into Apple’s supply chain will become the world’s top three LCD panel manufacturers soon.
Sharp is known as the “Father of LCD Panels.” Since its establishment in 1912, Sharp Corporation has developed the world’s first calculator and liquid crystal display, represented by the invention of the live pencil, which is the origin of the current company’s name. At the same time, Sharp is actively expanding into new areas to improve the living standards of human beings and society. Contribute to progress.
Established in 1971, Chunghwa Picture Tubes is committed to the development of display technology. Continuous innovative design and research and development have introduced high-quality innovative products to meet human needs for visual enjoyment.
Chunghwa Picture Tubes has rich experience in R&D and mass production of video products, combined with advantageous technologies such as wide viewing angles, fast response, and high color saturation, and constantly launches new products, improves product quality and service standards, and exerts “creative innovation, the pursuit of perfection, and unity” The business philosophy of “cooperation” is dedicated to the research and development of a full range of products ranging from small to large sizes, and actively strives to innovate in all-round optoelectronic technology, becoming a leader in the video industry.
Toshiba is a well-known multinational enterprise group with a history of 130 years, with a wide range of business, involving social infrastructure construction, household appliances, digital products, electronic components, and other business fields, covering almost all aspects of production and life. Toshiba has the largest R&D institution in Japan. Through unremitting innovation and development, Toshiba has always been at the forefront of world science and technology. From launching Japan’s first washing machines, refrigerators, and other household appliances, to developing the world’s first notebook computer, the first 16MB flash memory, the world’s smallest 0.85-inch HDD; creating advanced HDDVD technology; researching and manufacturing new SED displays, Toshiba has created many “world firsts” and has contributed to changing people’s lives through continuous technological innovation. Recently, Toshiba is gradually withdrawing from the home appliances and electronic product markets and developing into industries with higher technological content.
Tianma Microelectronics was established in 1983 and listed on the Shenzhen Stock Exchange in 1995. It is an innovative technology company that provides display solutions and fast service support for global customers.
The company independently masters leading technologies including LTPS-TFT, AMOLED, flexible display, Oxide-TFT, 3D display, transparent display, and IN-CELL/ON-CELL integrated touch control. The company has a national engineering laboratory for TFT-LCD key materials and technology, a national-level enterprise technology center, a post-doctoral mobile workstation, and undertakes many major national-level special projects such as the National Development and Reform Commission, the Ministry of Science and Technology, and the Ministry of Industry and Information Technology. The company’s strong technology and scientific research capabilities have become the cornerstone of the company’s sustainable development.
The general consumer typically has very limited knowledge about the different types of LCD panels on the market and they take all of the information, specifications, and features printed on the packaging to heart. The reality is that advertisers tend to take advantage of the fact that most people conduct very minimal research before making big technological purchases—in fact, they depend on this to sell higher quantities of commercial monitors. With that in mind, how exactly do you know if you’re actually getting a good quality product that’ll suit your needs? Reading up on all of the different types of industrial LCD monitors is a good place to start!
LCD stands for liquid-crystal display. Over the years, LCD technology has become ubiquitous with various commercial and industrial screen manufacturing. LCDs are constructed of flat panels that contain liquid crystals with light modulating properties. This means that these liquid crystals use a backlight or reflector to emit light and produce either monochromatic or coloured images. LCDs are used to construct all sorts of displays from cellphones to computer screens to flat-screen TVs. Keep reading to learn everything you need to know about the different types of LCD displays on the market.
Twisted Nematic LCDs are the most commonly manufactured and used types of monitors across a wide range of industries. They’re most commonly used by gamers because they’re inexpensive and boast faster response times than most of the other display types on this list. The only real downside to these monitors is that they possess low quality and limited contrast ratios, colour reproduction, and viewing angles. However, they suffice for everyday operations.
In Plane Switching displays are considered to be among the best of the best when it comes to LCD technology as they offer superior viewing angles, excellent image quality, and vibrant colour accuracy and contrast. They’re most commonly used by graphic designers and in other applications that require the highest possible standards for image and colour reproduction.
Vertical Alignment panels fall somewhere in the middle between TN and IPS panel technology. While they have much better viewing angles and higher quality colour reproduction features than TN panels, they also tend to have significantly slower response times. However, even their most positive aspects still don’t come anywhere close to holding a candle to IPS panels, which is why they’re much more affordable and suitable for everyday use.
AFFS LCDs offers far superior performance and a wider range of colour reproduction than even IPS panel technology. The applications involved in this type of LCD display are so advanced that they can minimize colour distortion without compromising on the extremely wide viewing angle. This screen is typically used in highly advanced and professional environments such as in the cockpits of commercial airplanes.
Nauticomp Inc. is the leading designer and manufacturer of high-quality LCD panels and displays. All of our touchscreen displays are made to order and customized according to your specific needs and applications. To learn more about our products, please contact us today.
The display industry has come a long way in recent years. With so many competing standards on the market today, it’s often hard to tell if an emerging technology is worth paying extra for. OLED and QLED, for instance, sound similar enough on the surface but are, in fact, completely different display types.
LCDs, or liquid crystal displays, are the oldest of all display types on this list. They are made up of two primary components: a backlight and a liquid crystal layer.
Since liquid crystals don’t produce any light by themselves, LCDs rely on a white (or sometimes blue) backlight. The liquid crystal layer then simply has to let this light pass through, depending on the image that needs to be displayed.
You may have noticed that the term LCD has started to disappear of late, especially in the television industry. Instead, many manufacturers now prefer branding their televisions as LED models instead of LCD. Don’t be fooled, though — this is just a marketing ploy.
These so-called LED displays still use a liquid crystal layer. The only difference is that the backlights used to illuminate the display now use LEDs instead of cathode fluorescent lamps, or CFLs. LEDs are a better light source than CFLs in almost every way. They are smaller, consume lesser power, and last longer. However, the displays are still fundamentally LCDs.
Twisted nematic, or TN, was the very first LCD technology. Developed in the late 20th century, it paved the way for the display industry to transition away from CRT.
TN panels have been around for decades in devices like handheld calculators and digital watches. In these applications, you only need to power sections of the display where you don’t want light. In other words, it is an incredibly energy-efficient technology. Twisted nematic panels are also cheap to manufacture.
In the early 2010s, many smartphone manufacturers used TN panels as a way to keep costs down. However, the industry has almost entirely moved away from it. The same holds true for televisions, where wide viewing angles are a critical selling point, if not a necessity.
Instead of a twisted orientation, liquid crystals in an IPS display are oriented parallel to the panel. In this default state, light is blocked — the exact opposite of what happens in a TN display. Then, when a voltage is applied, the crystals simply rotate in the same plane and let light through. As a side note, this is why the technology is called in-plane switching.
IPS displays were originally developed to deliver wider viewing angles than TN. However, they also offer a myriad of other benefits, including higher color accuracy and bit-depth. While most TN panels are limited to the sRGB color space, IPS can support more expansive gamuts. These parameters are important for playing back HDR content and are downright necessary for creative professionals.
Having said that, IPS displays do come with a few minor compromises. The technology isn’t nearly as energy-efficient as TN, nor is it as cheap to manufacture at scale. Still, if you care about color accuracy and viewing angles, IPS is likely your only option.
In a VA panel, liquid crystals are oriented vertically instead of horizontally. In other words, they are perpendicular to the panel, and not parallel like in IPS.
This default vertical arrangement blocks a lot more of the backlight from coming through to the front of the display. Consequently, VA panels are known for producing deeper blacks and offering better contrast compared to other LCD display types. As for bit-depth and color gamut coverage, VA is capable of doing just as well as IPS.
On the downside, the technology is still relatively immature. Early VA implementations suffered from extremely slow response times. This led to ghosting, or shadows behind fast-moving objects. The reason for this is simple — it takes longer for VA’s perpendicular arrangement of crystals to change orientation.
However, VA displays also have narrower viewing angles than IPS panels. Still, most VAs come out on top when compared to even the best TN implementations.
From this description alone, it’s easy to see how OLED differs from LCD and prior display types. Since the compounds used in OLEDs emit their own light, they are an emissive technology. In other words, you don’t need a backlight for OLEDs. This is why OLEDs are universally thinner and lighter than LCD panels.
Since each organic molecule in an OLED panel is emissive, you can control whether a particular pixel is lit up or not. Take away the current and the pixel turns off. This simple principle allows OLEDs to achieve remarkable black levels, outperforming LCDs that are forced to use an always-on backlight. Besides delivering a high contrast ratio, turning off pixels also reduces power consumption.
The contrast alone would make the technology worth it, but other benefits exist too. OLEDs boast high color accuracy and are extremely versatile. Foldable smartphones such as the Samsung Galaxy Flip series simply wouldn’t exist without AMOLED’s physical flexibility.
In summary, OLED subtypes aren’t nearly as varied as LCDs. Furthermore, only a handful of companies manufacture OLEDs so there’s even less quality variance than you’d expect. Samsung manufactures the majority of OLEDs in the smartphone industry. Meanwhile, LG Display has a near-monopoly on the large-sized OLED market. It supplies panels to Sony, Vizio, and other giants in the television industry.
In the section on LCDs, we saw how the technology can vary based on differences in the liquid crystal layer. Mini-LED, however, attempts to improve contrast and image quality at the backlight level instead.
The backlights in conventional LCDs have only two modes of operation — on and off. This means that the display has to rely on the liquid crystal layer to adequately block light in darker scenes. Failing to do that results in the display producing grays instead of true black.
This technique, known as local dimming, has become ubiquitous in higher-end LCD televisions. Until recently, though, it wasn’t viable for smaller displays like those found in laptops or smartphones. And even in larger devices like monitors and TVs, you run the risk of not having enough dimming zones.
Take the 2021 iPad Pro, for example. It was among the first consumer devices to adopt mini-LED technology. Even with 2,500 zones across 12.9 inches, however, some users reported blooming or halos around bright objects.
Still, it’s not hard to see how mini-LEDs can eventually deliver better contrast than conventional local dimming implementations. Furthermore, since mini-LED displays still rely on traditional LCD technologies, they aren’t prone to burn-in like OLEDs.
Quantum dot technology has become increasingly common — usually positioned as a key selling point for many mid-range televisions. You may also know it by Samsung’s marketing shorthand: QLED. Similar to mini-LED, however, it isn’t some radically new panel technology. Instead, quantum dot displays are basically conventional LCDs with an additional layer sandwiched in between.
When combined with traditional LCD color filters, quantum dot displays can cover a greater percentage of the visible light spectrum. Put simply, you get richer and ore accurate colors — enough to deliver a satisfactory HDR experience. And since the crystals emit their own light, you also get a tangible bump in brightness compared to traditional LCDs.
However, quantum dot technology does not improve other pain points of LCDs such as contrast and viewing angles. For that, you’d have to combine quantum dots with local dimming or mini-LED technologies. And until those mature, you’re unlikely to find a quantum dot display that can rival OLED in all aspects.
Quantum-dot OLED, or QD-OLED, is an amalgamation of two existing technologies — quantum dots and OLED. More specifically, it aims to eliminate the drawbacks of both traditional OLEDs and LCD-based quantum dot displays.
In a traditional OLED panel, each pixel is composed of four white sub-pixels. The idea is rather simple: since white contains the entire color spectrum, you can use red, green, and blue color filters to obtain an image. However, this process is rather inefficient. As you’d expect, blocking large portions of the original light source leads to significant brightness loss by the time the image reaches your eyes.
Modern OLED implementations combat this by leaving the fourth sub-pixel white (without any color filters) to improve the perception of brightness. However, they still usually fall short in terms of brightness, especially against high-end LCDs with larger backlights.
However, it’s still early days for the technology as a whole. Traditional OLEDs have enjoyed a nearly decade-long head start yet remain relatively unaffordable. It remains to be seen if QD-OLED televisions and monitors can compete in terms of price and durability, especially considering the risks of image retention or burn-in with organic compounds.
Their small size means that you can build an entire display out of microLEDs alone. The result is an emissive display — much like OLED, but without the drawbacks of that technology’s organic component. There’s no backlight either, so each pixel can be turned off completely to represent black. All in all, the technology delivers an exceptionally high contrast ratio and wide viewing angles.
Finally, MicroLED displays can also be modular. Even some of the earliest demonstrations of the technology had manufacturers creating giant video walls using a grid of smaller microLED panels.
Samsung offers its flagship The Wall microLED display (pictured above) in configurations ranging from 72 inches all the way to 300 inches and beyond. With a million-dollar price tag, though, it is clearly not a consumer product. Still, it offers a glimpse into the future of televisions and display technology in general.
And with that, you’re now up to speed on every display technology on the market today! Display types can vary significantly and the best option depends on the characteristics you deem important or require the most.
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.
There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.
Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.
Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.
Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.
Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.
LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.
VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.
Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.
There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.
OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.
As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.
First, to be clear, there is no “best” panel type out of these, as all have their respective advantages and disadvantages over the others. The information here pertains to general characteristics, as even panels of the same panel type will have some variance in characteristics (power consumption, backlight bleed, etc.) depending on the luck of the draw. Manufacturer tuning can also impact display output, affording some differentiating leverage to manufacturers sourcing from panel suppliers (which is effectively all of them).
Nostalgia or riddance aside, there are still some valid reasons to use a CRT monitor. When compared to LCD panels, CRT monitors can have higher contrast ratio, very low response time (which leads to non-blurred pictures even with fast movement on screen), and very little input lag, although LCD input lag can be largely negated. The downsides of CRTs are apparent, though: they’re large, heavy, consume more power, produce flicker, can produce audible, high frequency noise (although age plays into whether one can hear them or not), produce slightly distorted images, and produce harmful electromagnetic waves (in the form of x-rays), which requires that toxic materials such as lead and barium must be used as shielding to prevent detrimental health effects. CRT monitors are also notoriously hazardous to repair, given their large, active electrical coils that can measure upwards of 50,000 volts of electricity.
CRT displays are sometimes still used in medical, simulation, military, and government fields that have embedded the displays into control panels and machinery.
CRT monitors have largely gone out of production, and are rarely sold new (finding a used CRT is fairly easy), but their advantages temporarily lent themselves to some special uses. In regards to gaming, CRT monitors have historically been advantageous to use when gaming competitively due to very little motion blur and very little input lag. That being said, these advantages have faded with the progressive march of TN panels.
TN panels now have low motion blur (especially with lightboost or a similar technology), offer high refresh rates, low response times (1ms GTG in many cases), and are more than adequate even in the world’s most competitive games.
Ultimately, for the vast majority of users, the disadvantages of CRTs aren’t worth their limited gains, especially when TN panels meant for gaming more than adequately satisfy the needs of even competitive gamers.
TN panels have many benefits over the previously popular CRT monitors: lower weight, lower cost to produce, lower power consumption, they’re much thinner, offer clearer pictures, have no realistically achievable resolution limits, offer flexibility in size and shape, and the ability to eliminate flicker.
That being said, TN panels weren"t and still aren’t perfect, and compared to the previously popular CRT monitors, they’ve suffered from limited viewing angles, uneven backlighting, worse motion blur, higher input lag, dead/stuck pixels, and poor display in sunlight.
To be clear, many of these issues have been improved upon, but due to the underlying science of LCD TN panels, cannot be completely resolved. In fact, many of these issues -- like uneven backlighting, motion blur, input lag, and dead/stuck pixels -- are inherent issues across all LCD panel types. Poor viewing angles become a more pressing issue with larger displays, since the viewing angle when viewed straight on increases towards the outside of the monitor, thus causing more color distortion. TN panels do have the advantages of lower response times and higher refresh rates than other panel types/CRTs. TN panels are generally from 60Hz to 144Hz, offering substantially greater fluidity of gameplay with higher frequencies.
TN panels provide a good compromise between CRTs and other LCD panels as their traditionally low response rates, input lag, and high refresh rate make them comparable to CRTs for accuracy; TN panels also have the advantages of offering sharper pictures, widescreen output, lower weight, smaller physical dimensions, and higher resolutions compared to CRTs.
Still, compared to other LCD panels, TN panels suffer from poor viewing angles and worse color reproduction. Ultimately, for most gamers playing somewhat competitively to very competitively, TN panels are a good choice, but for those looking for a prettier and improved color experience, another panel type may be worth considering.
IPS (In-Plane Switching) was created to address the shortcomings of TN panels. IPS panels seek to solve TN panels’ issues of poor color reproduction and viewing angles. In this regard, IPS panels have largely succeed. Not only do they offer a higher contrast ratio (superior blacks), high color accuracy (which leads to IPS panels also generally looking less “washed out”), but IPS panels also have very little color shift when changing the viewing angles.
The tradeoff to this is that IPS panels have slower response times, higher production costs, higher power consumption, and lower possible refresh rates. IPS panels have traditionally been 60Hz, although, as with all monitors, they can be overclocked (results will vary). There have been improvements to IPS panels over the years, and slightly different revisions in the form of E-IPS and H-IPS, but ultimately the differences between these versions are inconsequential to gamers and those not involved in graphic design as a job.
Due to their worse response rates and lower possible refresh rates, IPS panels are generally considered to be worse for competitive gameplay and used more often when color is important, such as graphic design. For gamers who don’t play competitively and prefer breathtaking strolls in Skyrim instead of sweeping scrubs in CS:GO, an IPS panel should be a consideration for the next monitor.
PLS (Plane to Line Switching) are quite similar to IPS panels, so much so that they have the same advantages and disadvantages, with a couple extra minor advantages. PLS is produced by Samsung, who claims that compared to IPS panels, PLS panels have better viewing angles, a 10% increase in brightness, 15% decrease in production costs, increased image quality, and allow for flexible panels. Samsung’s PLS panels have been known to overclock well in monitors such as the QNIX 2710 in particular. Overall, PLS is basically Samsung’s version of IPS, as it is very similar in functionality (and even name). AHVA is also very similar to IPS and PLS, and differentiation between them is rare, although it should not be confused with the next panel type.
VA (Vertical Alignment) panels offer a solid medium between TN and IPS panels. VA was created to combine the advantages of IPS and TN panels, and largely did, although they did so with some compromise. That seems to be a theme in the world of monitors.
Compared to IPS panels, VA panels have the advantage of higher possible refresh rates. Although most are currently 60Hz, there are a few that are above 60Hz. VA has more advantages over TN panels than IPS, with better color reproduction, higher maximum brightness, and better viewing angles. VA panels do have the best contrast ratios of all panel types mentioned, but they also have the worst response times of the monitor technologies covered here. This causes blurring in fast-moving pictures and is disadvantageous to gaming.
For the use of gaming, VA is not the greatest option due to generally higher response time in comparison to other panel types; this slower response causes more motion blur, effectively eliminating its deployment for fast-moving titles. For a general work monitor, VA panels provide high contrast ratios, brightness, refresh rates, good color reproduction, and good viewing angles.
TN panels are another good choice for competitive gamers, as they support higher refresh rates, low response times, decent input lag, and high resolutions. Their bad viewing angles, color reproduction, and slight blurring compared to CRT monitors (due to higher response times) are all disadvantages, ones which cannot be easily fixed.
IPS panels solve the issues of TN panels, with better color reproduction and viewing angles, but do so at the cost of refresh rate and response time. IPS panels are especially useful for those not wanting to play too competitively, but want a beautiful/immersive visual experience. PLS and AHVA are similar enough to IPS to usually not be differentiated.
VA panels provide a good middle ground with better-than-IPS refresh rates and contrast levels, but have worse viewing angles and color production, although generally still better than TN. Response times are VA’s largest downfall, though, being slower than IPS and its variants and TN.
What’s best for you will depend on all of these items. For those wanting to play at a competitive level and who favor FPS or racing games, TN panels are best. Those wanting a more impressive and immersive experience may want an IPS (or similar variant, such as PLS), especially if working on artistic endeavors. Finally, those wanting a general monitor for work might consider a VA panel, although due to their higher response times, they won’t be good for gaming.
NDSsi uses only “Grade A” LCD panels in all of its products, while many competitors use “Grade B” panels in order to save cost, and as a result compromise quality. In medical applications, it is important not to compromise the quality of the displayed image since it is often the basis for making clinical decisions. The following tables and images show the differences between “Grade A” and “Grade B” LCD panels in terms of different types of allowable defects.
There are essentially two different types of pixel defects, bright (stuck pixels) and dark (dead pixels).The table and images below show the differences between Grade A and Grade B LCD panels in terms of allowable pixel defects.
In order to choose the best monitor for your needs, it is very important to distinguish what kind of LCD panel interface type is in the monitor you’re looking at. The most common panels used nowadays are;
One of the types of panels that you will find in a computer monitor is a TN Panel. This stands for Twisted Nematic, and this particular type of LCD panel is generally the cheapest. They are the cheapest to manufacture among all LCD technologies, so they are the most commonly used in budget monitors.
If you are looking to game online, you will need a monitor with a higher refresh rate like that offered by a TN panel. Refresh rates are measured in Hertz (Hz), which defines how many times per second your screen can display new images.
The typical response time for a TN panel is less than 5 ms which is much faster than the 6 or 8 ms response time that other LCD displays have, such as vertical alignment or VA.
The biggest downside with these panels is often their viewing angles. On a TN panel, the viewing angles aren"t very good, and depending on how far off-center you are, the picture can begin to lose color and contrast.
TN panels also don"t support as wide a range of resolutions as IPS. This LCD monitor panel type has a poor contrast ratio when compared with other technologies such as IPS and VA. This results in an inability to display deep blacks and bright whites at the same time.
TN panels are manufactured by Samsung, LG, AUO, Chi-Mei, Chunghwa Picture Tubes, Hannstar Display Corporation, Sharp Corporation, CMI, Innolux, J-Tech Digital Imaging Co. Ltd, AU Optronics Corporation, etc.
A TN panel is a type of liquid crystal display (LCD) used in most LCD monitors and laptops. TN panels were the workhorse of the 1990s and early 2000s, but they were eventually replaced by their more-expensive cousins, the in-plane switching (IPS) and vertical alignment (VA) panels.
TN computer panels work by using two polarized filters, vertical and horizontal, to control the light that passes through them. The filters are arranged so that when the electrical current is off, light cannot pass through. When it"s on, it hits the twisted crystals to produce colors. The active layer is twisted to allow the light to pass through it, and this twist is controlled by electrical fields applied to the liquid crystal material.
It is worth noting that A TN panel is made up of millions of pixels, each pixel being red, green, or blue in color. The light from each pixel can be either on or off, so black is created when all the pixels are off and white when all are on. When all three colors are combined, any color can be produced. This arrangement is called RGB (red-green-blue).
A TN panel uses twisted nematic liquid crystals to form images. While not as desirable as other technologies, it does have several benefits worth considering when making a purchasing decision.They are mostly found in budget LCDs, as they are cheaper to manufacture and therefore sell for less.
TN panels have excellent response rates and refresh rates, typically 1 - 2 milliseconds and 50 – 75 Hz, respectively. This makes them ideal for high-end gaming
TN is the oldest and most common type of LCD panel, and it"s also the cheapest to produce. TN panels were the first panels to be introduced to the market, but they"re no longer as popular as they used to be. This is because TN panels have several downsides:The main disadvantage of TN panels is limited viewing angles, which can be extremely limiting in some cases. If you"re sitting straight in front of the monitor, everything is fine, but if you move to the side, then all colors shift and get distorted. That can be extremely annoying for graphic designers or architectswho work with color palettes, photographers who need exact color matching, etc. (see also
TN panels typically have lower contrast ratios than IPS displays do, so they don"t look as rich in color or dark black. So TN panels are usually not suitable for professional applications such as color-critical photo editingand graphic design.
Many gamers prefer TN panels because they provide a very fast response time and higher refresh rates. You can also find some with a refresh rate of 240Hz, which is even better.The Asus VG248QE is a 24-inch LCD display with a 1920 x 1080 resolution and a 1ms response time. It uses a TN panel, so don"t expect much in terms of viewing angle or color reproduction accuracy compared to an IPS display. But if you"re looking for a good 144Hz monitor, choose this one.
ViewSonic VX2458-MHD. It has a TN panel. The refresh rate of this monitor is 72Hz, which is standard. The response time of this monitor is 1ms. It also comes with 4 USB 3.0 ports, which is great if you plan on hooking up multiple devices, which is frequently used when trading. If you have a setup like that, you will also want to look at bezel less monitors, or frameless monitors, for your needs.
Another common type of panel is a VA panel. This stands for Vertical Alignment and is a step above a TN panel in terms of quality. Its name comes from the fact that light emitted from the screen"s backlight (see also LED monitors) is aligned vertically rather than being scattered horizontally and vertically as it is with a TN display.
VA panels provide high-quality images, wide viewing angles along with excellent contrast ratio and high refresh rates. These factors make VA panel monitors preferred for graphic design, photographers, video editors, and others who often work on their PCs.
VA panels are also better when displaying fast-moving images because they offer high refresh rates hence have less motion blur. Additionally, some panels have support for even 120 Hz refresh rates for ultra-smooth movement in games and movies.
Traditional LCD displays use two polarizing filters and liquid crystals (LCs) to create all the colors and patterns that we see on computer monitors and flat-panel televisions.
What are the Benefits of VA Panels?Image quality of VA technology is considered better than TN technology; text appears crisper, and images appear sharper and richer in contrast and color.
One of the other key benefits of VA technology is its high contrast ratio; VA displays can deliver a true black when displaying dark images or video content
The big downside of TN panels is their response time. Most TN panels have a response time of 5-8 MS, which is fine for most people. However, if you"re mostly into competitive gaming or fast-paced action games like me that require quick reflexes, then this could be a problem.
We did some research and came up with a list of the best monitors with VA panels, and they are;ViewSonic VX2457-MHD. It is a24-inch monitor with a 1920 x 1080 resolution and covers 100% of the sRGB spectrum. It also has plenty of picture-enhancing features, including adjustable color settings and support for AMD"s FreeSync technology (see also affordable G Sync monitors).
This is the best LCD panel type. IPS stands for In-Plane Switching, and the biggest advantage over the other panels listed above is its wide viewing angles.
These screens are more expensive than TN panels but offer a greater contrast ratio, higher resolutions than their TN counterparts. They also support higher refresh rates, lower response time which makes them ideal for monitors larger than 24 inches.
These panels offer much more consistent colors, which makes them ideal for graphic designers or anyone who does any kind of color-critical work on their monitor.
IPS panels offer wider viewing angles than VA panels do, making them better suited for use in public spaces such as retail stores or airports where you can expect people will be walking by your TV from both sides.
The contrast ratio of an IPS panel is higher than that of TN panels. The contrast ratio of a display refers to the difference between the darkest black and the brightest white that the display is capable of producing. This can be an important factor in overall display quality, depending on how you use your laptop or desktop monitor.
Some manufacturers that specialize in IPS panel interphases include Samsung, LG, and even Mac Apple. Also, almost all Dell monitors use IPS panels. However, there are plenty of other high-quality manufacturers that also offer IPS panels for you to choose from.
In a liquid crystal display (LCD), light passes through a pair of polarizers. Each polarizer is made of a long chain of molecules, each oriented in a different direction; one vertical, the other horizontal.
In an IPS LCD panel, liquid crystals are aligned so that both polarizers face the same way—horizontal. Light from behind the panel passes through one polarizer and then bounces off onto a second polarizer before reaching your eyes. This design makes IPS LCDs nearly as bright as VA panels and much brighter than TN panels without sacrificing contrast ratio or color accuracy.
If you"re looking for a new monitor, IPS panels may be the right ones for you. Here are some of their most important benefits:It allows for wider viewing angles. This is very useful for monitors used at work that involve customer service, where the monitor may be viewed from many different angles.
The IPS LCD displays are also characterized by their high degree of brightness and contrast, which makes them ideal for outdoor use, among many other features.
The typical lifespan of an IPS panel is around 100,000 hours, which is more than enough for even heavy users to get their money"s worth from their monitor.
They have great color reproduction. Many people who are serious about a photo or video editing are drawn to IPS panels because they offer superior color reproduction possibilities when compared with TN panels.
The main disadvantage of IPS panels is that they are more expensive than TN panels. The cost of an IPS panel will typically be $10-$20 higher than a comparable TN panel.
Today, the majority of flat-panel monitors use in-plane switching (IPS) technology. Best monitors that have IPS panels include;Samsung U28E590D 28-Inch 4K UHD Monitor. If you love gaming, then this is the product for you; it comes with AMD FreeSync, which proved successful in eliminating screen tearing since being introduced as VSync, as this post explained.
Also, bear in mind that if it is a flat panel display with a 1080p resolution or higher, you can refurbish it and resell it after using it. Older monitors with lower resolutions may not be worth much.
It offers a much higher resolution than conventional LCD and can be used to manufacture large panels. It"s an innovative display technology that has the potential to change the face of consumer electronics.
There are 3 main types of LCDs; VA (Vertical Alignment), TN (Twisted Nematic), and IPS (In-Plane Switching). All these technologies have been used for over 10 years and have their own pros and cons. However, they have reached their upper limits in terms of resolution and other features, and it"s nearly impossible to increase them any further. That"s where Super PLS-Plane to Line Switching comes in.
Super PLS-Plane to Line Switching offers resolutions as high as 8K, has wider viewing angles, and is brighter. The image quality presented by this technology is said to be much better than traditional LCDs, and it could potentially disrupt the current.