lcd display lifespan free sample
Perhaps you’ve wondered how long a digital display lasts. It’s a great question. One quick search on Google will tell you that an LCD panel has a lifespan of about 60,000 hours, which is equivalent to almost seven years.
Of course, LCDs aren’t the only kind of displays. You also have LED, OLED, QLED, ELD, PDP, and MicroLED, plus many other variations. Obviously, that 7-year estimation will not apply across the board. For the sake of ease, let’s just focus on some of the common types of displays that most of us are familiar with.
Here’s some LCD alphabet soup: There are LED LCD displays, CFFL LCD displays, LED displays, and more. With all these acronyms, it can get a bit confusing. What"s important to note is whether or not the display uses an LCD panel, and how the LCD panel is illuminated. You can read more about thedifferences between types of LCD and LED signage, but these are the most common types:
LCD displaysgenerate images and colors via a Liquid Crystal Display (LCD) panel, which is not self-emitting and requires an external light source to illuminate the image, typically an LED backlight. Their full name "LED-backlit LCD display" is commonly shortened to "LED displays", which is why they"re often confused with the true LED displays we"ve identified above.
Unfortunately, LED backlights used in LCD displays burn out over time. If used at high or maximum brightness, which is necessary for outdoor applications,an LED backlight will last between 40,000 to 60,000 hours. Or, about 4.5 to 7 years.
OLED stands for Organic Light Emitting Diode. OLED displays differ from common LCD displays in that their pixels are self-illuminating. In other words, there is no LED backlight required to illuminate the the display image; everything occurs within the OLED pixels themselves. According to onearticle from the US Department of Energy,OLED screens have a life expectancy of about 40,000 hours at 25% brightness, and 10,000 hours at full brightness. That equates to about 1 to 4.5 years, which is a much shorter (albeit, brilliant) lifetime than an LCD display.
Perhaps you noticed that the acronym QLED closely resembles the acronym OLED. This is not accidental. QLED is basically Samsung’s original design built to compete with OLED technology. However, the two are not the same. QLED stands for Quantum Light Emitting Diode. While QLED is similar to a regular LED design, it in fact differs by using nanoparticles called “Quantum dots” to achieve its unique brightness and color. Samsung approximates that the lifespan ofQLED panels are likely to last 7-10 years. After that, a user is likely to notice traces of degradation.
MicroLED is an emerging display technology, consisting of small LEDs in tiny arrays within each pixel. This technology goes beyond the offerings of the formerly frontrunning OLEDs, with much darker blacks and more radiant contrast levels. And, unlike OLEDs, MicroLEDs are not organic. They are not as subject to burn-in, and thus, have a longer lifespan than OLEDs. However, they are significantly more expensive - so much, in fact, that they aren’t considered a viable option for the majority of consumers.According to Samsung, the lifespan of its MicroLED panels should last about 100,000 hours, or, roughly 11 years.
PDP stands for Plasma Display Panel, and it refers to displays that use small cells full of plasma. The atoms within the plasma emit light upon being charged by electricity. While PDP is generally considered to offer better colors than LCDs, they consume a lot more power and usually cannot be battery-operated.The average lifespan of the newest generation of PDPs is approximated to be 100,000 hours, or 11 years of continual use.
In some ways,reflective LCD panelsoperate similarly to other LCDs, only they have one key difference - they do not require a backlight. Instead, they rely on ambient light (or sunlight) in order to produce images. This opens the door to some groundbreaking possibilities. The first (and most appreciable) is low power consumption. Reflective displays use up to 95% less energy. Not bad - especially in a world that is continually looking for new ways to go green. Take into consideration the financial implications of this. Lower power means less money spent on operating costs.
Being that reflective displays do not require a backlight (a component that is particularly subject to degradation), and since they do not generate as much heat, it is safe to say that the lifespan of these displays should far exceed that of backlit LCD panels (which was 7 years at the high end). However, being that thisinnovative technologyis relatively new, its actual lifespan is therefore more difficult to estimate -- simply because it has yet to be reached.
There are also a few challenges that can affect reflective displays. For one, they rely on ambient light. On a nice sunny day, these displays perform beautifully and can be easily seen in even the brightest of conditions. This performance wanes as the available ambient light decreases. And, since they do not generate light of their own, they are not designed to be viewed under nighttime or extremely low light conditions (without additional lighting features). In short, their images are visible to the degree that ambient light is present. However, in light of this, side light (and front light) options are being explored.
One company at the front lines of this research isAzumo. Azumo has created a light guide that laminates to the front of a display. It requires 90% less energy than the backlight of a traditional LCD display. This greatly improves the problem of low light visibility otherwise encountered, and keeps reflective displays in the same low energy consumption ballpark. One issue, however, is that Azumo currently only offers its light guides for smaller-sized units. If you happen to want this feature applied to a display that is over 10” diagonally, then you’re still on the search for a solution.
One other factor to consider regarding reflective technology is its cost. That reflective layer is more costly to manufacture than many of the backlights it replaces, creating a seemingly greater upfront cost for those who are interested in investing in energy-efficient signage. However, these initial price points are quickly justified as buyers will recognize the significantly lower operating costs and increased longevity (not even including replacement costs of other “expired” displays) that comes with their purchase of reflective display signage. If a backlit LCD panel only lasts 7 years, for example, you’ll have paid for that LCD twice in the period of ten years. A very valid question arises… is that “cheaper” backlight really cheaper? Probably not. It only feels that way at first.
Sun Vision Displayis working hard to create reflective display solutions for the digital signage world. We are currently offering them in 32" and 43" diagonal sizes, with a 55” size in development. These displays are built formany environments. We are thrilled to be bringing such innovative solutions to the market.
The act of selecting the television screen that suits your needs can be difficult enough, but when you consider all the different technologies available out there, it can become downright confusing. If you aren’t into buying a new set every couple of years, you’ll want to take the TV lifespan into consideration. Thankfully, we’re going to cover
LED & LCD –LED and LCD televisions are the big players in the market today. They are basically the same backlit setup and each technology has similar perk/setbacks. LED and LCD televisions work excellent in bright rooms, they’ve outsold plasma televisions (and they have taken over the market). They consume less power, they’re thin/light to transport, and they’re bright. However, both LCD and LED televisions fall short when it comes to motion blur (on lower-end models), they sometimes have backlight issues, and they offer limited viewing angles.
People generally want to know the lifespan of a TV in years. The average life of LED TVs and LCD sets is typically somewhere from 4 to 7 years of active use. Most of us don’t watch our TVs twenty-four hours a day, so a simple calculation on your watching habits can give you a good estimate. If you watched for 6 hours a day, you could theoretically multiply that lifespan by 4 (6×4=24), giving you 16 to 28 years.
Considering the regular defects and issues that occur over time, LCD and LED televisions basically have the same lifespan. With each of these technologies, the likely failure will come in the form of a worn-out backlight, so decreasing your backlight levels can significantly extend your set’s lifespan. A higher-quality set with a better backlight can also net you a few more years of use.
Knowing the average lifespan of your monitor is the first step in ensuring the monitor lasts longer. The second tip is to establish how best you can use your monitor while maintaining it in the best condition. Finally, you need to know the signs of a malfunctioning monitor.
This article is a complete guide to monitors" lifespan. We"ve discussed in detail the average lifespan of cathode ray tube monitors, LCD monitors, and so on. Most importantly, we"ve included ways in which you can maintain your monitor to last longer.
A cathode-ray tube monitor has a lifespan of between 20,000 to 30,000 hours. This duration means that your CRT monitor will last up to 10 years of active use. This duration will last if you use the monitor for eight hours every day. After lasting for ten years, you"ll need to repair it or replace it if it"s in an unworthy condition.
The CRT monitor has a shorter lifespan because it uses less efficient cathode-ray tubes. Besides, these monitors are bulky and have fragile units with low durability.
Expectedly, LCD monitors last longer than CRT monitors. Depending on use frequency and maintenance practices, a typical LCD monitor will last for about 30,000 hours to 60,000 hours. This duration translates to between 10 to 20 years of active use, given that you use the monitor eight hours a day.
The reason for the improved lifespan of the LCD monitors is the robust, durable components and the use of more advanced technology. This monitor uses a liquid crystal solution in a polarized material to produce light.
You"ll know that your LCD monitor has reached its lifespan if you notice a drop in the brightness level, display fades on the screen edges, and its backlight tint becomes yellowish.
The lifespan of a LED monitor is higher than that of a CRT monitor and LED monitor. On average, it has a lifespan of 80,000 hours to 120,000 hours of active use. This duration translates to 30 to 40 years if you use it for 8 hours every day.
The reason behind the long lifespan of LED monitors is its production of bright displays with energy efficiency. Its screen technology is also efficient in energy consumption, making the monitor last longer.
Little is known about the lifespan of OLED monitors. However, various research and experiments show that an OLED monitor can last 100,000 hours of active use. This duration implies that your OLED monitor can last for 35 years if you use it for 8 hours a day.
How long your OLED monitor lasts largely depends on how you use it. Exposing the OLED monitor to harsh working conditions degrades its components, resulting in early burn-in. Long session gaming on these monitors also limits its lifespan.
The number of hours you use your monitor per day can extend or lower the computer monitor lifespan. The average estimate of hours per day you should use your monitor is 8 hours. Keeping the monitor active past 8 hours can lower its lifespan. Similarly, using the monitor for fewer hours than 8 hours per day may increase its duration, provided you keep it at optimum condition.
The tips for improving the lifespan of your monitor are listed below.Always observe the recommended usage condition of the monitor as stipulated by the manufacturer.
Calibrate the screensaver to solid black mode. This mode has low power consumption and the LCD"s backlight bulb to last longer. With this mode, you won"t experience burn-in issues easily.
If your monitor has a burn-in, it will frequently display some unintended graphics on the screen. You can address the burn-in issue by placing a screensaver at the exact point the graphics show up. You can also use JScreenFix software.
Your monitor may develop unusual behavior when it nears the end of its lifespan. It may switch on or off unexpectedly, hibernate suddenly, and show a black screen more often. The most common cause of this malfunction is a faulty power supply unit.
A faulty screen display does not display images or graphics. Instead, it lights up but shows a blue screen. You shouldn"t confuse this problem with the black screen. If the screen is black, then it is a power supply issue.
Faulty monitors have many signs. You can tell your monitor is faulty when it turns on and off unexpectedly, black or blue display, or horizontal and vertical lines on the screen.
How long will your LED display last? In nearly every industry, from retail businesses to concert halls to corporate centers, decision makers need to evaluate the return on investment (ROI) of their LED signage. In most cases, potential buyers go straight to the obvious place: the LED manufacturer’s spec sheet. The industry standard for LED lifespan is 100,000 hours, or about 10 years, and most people assume that’s how long their display will last. But it’s not quite that simple.
The 100,000-hour figure assumes that every diode will be running at full brightness, consistently — which, on an LED screen, is virtually never the case. The lifespan figure can also be misleading because it indicates when a diode degrades to half-brightness, not completely dark. Many other variables affect an LED display’s lifespan; you can’t rely solely on the number on the diode spec sheet.
“The reality is, your screen can often last significantly longer than 100,000 hours,” says Kevin Izatt, a senior product manager in Samsung’s Display division. “We’ve had displays that have been up for 15-plus years with more than adequate brightness. Because the diode is actually only one factor in the lifespan of your LED display.”
The biggest contributor to diode degradation is heat. As you increase a diode’s brightness, it produces more heat. Your display’s physical environment also contributes to the temperature of the diodes, especially for outdoor displays.
The quality of your display’s power supply — and how hard it drives the diodes — can have a significant impact on your screen’s lifespan. The other components being powered, such as fans and electrical components, have their own lifespans as well, which are also impacted by the power supply.
“Fans are mechanical; they break down,” explains Izatt. “And similar to your computer, the electrical components don’t last forever. Together, these factors all contribute to the lifespan of an LED display. Looking at just the diode lifespan doesn’t give you the complete story — almost always, another part will go out first.”
It’s easy to see why: The circuit boards powering the display release heat, and that heat needs to go somewhere. Without a strong design, thermal stress will degrade the life of the display, except for the highest-quality parts — optimal conditions notwithstanding.
That’s not to say you should hold back on displaying rich, vibrant colors — after all, that’s what LED does best. But it does factor into your product’s life expectancy.
To help businesses transition from LCD to longer-lasting LED signage, Samsung has launched a trade-in program. Samsung will come on site to remove your existing display and provide a discount on a new LED bundle kit.
Traded-in LCD displays that are still operating will be refurbished and resold, and your business will receive a cash rebate. Nonworking displays will be recycled and their parts reused.
You can’t rely on the number on the diode spec sheet; the lifespan of your LED display depends on many more factors. “Overall quality has a tremendous impact on the life of the display that diode specs just don’t take into account,” says Izatt. Your best bet is to look at the purchase holistically and invest in a top-tier product.
As you plan your LED signage rollout — or an upgrade — learn how to configure and tailor your screens’ real-time messaging with an integrated CMS in thisfree guide. And if you haven’t decided what kind of display is best suited to your current project, compare all ofSamsung’s LED displays.
We come across Liquid Crystal Display (LCD) displays everywhere around us. Computers, calculators, television sets, mobile phones, and digital watches use some kind of display to display the time.
An LCD screen is an electronic display module that uses liquid crystal to produce a visible image. The 16×2 LCD display is a very basic module commonly used in DIYs and circuits. The 16×2 translates a display of 16 characters per line in 2 such lines. In this LCD, each character is displayed in a 5×7 pixel matrix.
Contrast adjustment; the best way is to use a variable resistor such as a potentiometer. The output of the potentiometer is connected to this pin. Rotate the potentiometer knob forward and backward to adjust the LCD contrast.
A 16X2 LCD has two registers, namely, command and data. The register select is used to switch from one register to other. RS=0 for the command register, whereas RS=1 for the data register.
Command Register: The command register stores the command instructions given to the LCD. A command is an instruction given to an LCD to do a predefined task. Examples like:
Data Register: The data register stores the data to be displayed on the LCD. The data is the ASCII value of the character to be displayed on the LCD. When we send data to LCD, it goes to the data register and is processed there. When RS=1, the data register is selected.
Generating custom characters on LCD is not very hard. It requires knowledge about the custom-generated random access memory (CG-RAM) of the LCD and the LCD chip controller. Most LCDs contain a Hitachi HD4478 controller.
CG-RAM address starts from 0x40 (Hexadecimal) or 64 in decimal. We can generate custom characters at these addresses. Once we generate our characters at these addresses, we can print them by just sending commands to the LCD. Character addresses and printing commands are below.
LCD modules are very important in many Arduino-based embedded system designs to improve the user interface of the system. Interfacing with Arduino gives the programmer more freedom to customize the code easily. Any cost-effective Arduino board, a 16X2 character LCD display, jumper wires, and a breadboard are sufficient enough to build the circuit. The interfacing of Arduino to LCD display is below.
The combination of an LCD and Arduino yields several projects, the most simple one being LCD to display the LED brightness. All we need for this circuit is an LCD, Arduino, breadboard, a resistor, potentiometer, LED, and some jumper cables. The circuit connections are below.
Plasma TV production ended in 2015. However, they are still being used and sold in the secondary market. As a result, it"s helpful to understand how a Plasma TV works and how it compares to an LCD TV.
Within each cell, a narrow gap that contains an insulating layer, address electrode, and display electrode, separates two glass panels. In this process, neon-xenon gas is injected and sealed in plasma form during the manufacturing process.
Each group of red, green, and blue phosphors is called a pixel (picture element — the individual red, green, and blue phosphors are called sub-pixels). Since Plasma TV pixels generate their light, they are referred to as "emissive" displays.
LCD crystals do not produce light, so they need an external source, such as fluorescent (CCFL/HCFL) or LEDs, for the picture created by the LCD to become visible to the viewer.
Unlike a Plasma TV, since there are no phosphors that light up, less power is needed for operation, and the light source in an LCD TV generates less heat than a Plasma TV. There is no radiation emitted from the screen.
Potentially shorter display lifespan. Early models had 30,000 hours or 8 hours of viewing a day for nine years, which was less than LCD. However, screen lifespan improved and 60,000-hour lifespan rating became the standard, with some sets rated as high as 100,000 hours, due to technology improvements.
Not as good at tracking motion (fast-moving objects may exhibit lag artifacts). However, this has with the implementation of 120Hz screen refresh rates and 240Hz processing in most LCD sets, but that can result in the "Soap Opera Effect," in which film-based content sources look more like a videotape than film.
Narrower effective side-to-side viewing angle than Plasma. On LCD TVs, it is common to notice color fading or color shifting as you move your viewing position further to either side of the center point.
Although LCD TVs do not suffer from burn-in susceptibility, single pixels can burn out, causing small but visible, black or white dots to appear on the screen. Individual pixels are not fixable. Replacing the whole screen is the sole option if the pixel burnout becomes unbearable.
An LCD TV was typically more expensive than an equivalent-sized (and equivalent featured) Plasma TV. However, that is no longer a factor, since companies have ceased manufacturing Plasma TVs.
Manufacturers chose to incorporate 4K resolution only in LCD TVs, using LED back and edge-lighting, and, in the case of LG and Sony, incorporating 4K into TVs using OLED technology.
Although it was possible to incorporate 4K resolution display capability into a Plasma TV, it was prohibitively expensive. When the sales of Plasma TVs started declining, TV makers decided against bringing consumer-based 4K Ultra HD Plasma TVs to market, which was another factor in their demise. The only 4K Ultra HD Plasma TVs manufactured were for commercial application use.
A vacuum fluorescent display (VFD) is a display device once commonly used on consumer electronics equipment such as video cassette recorders, car radios, and microwave ovens.
Unlike liquid crystal displays, a VFD emits very bright light with high contrast and can support display elements of various colors. Standard illumination figures for VFDs are around 640 cd/m2 with high-brightness VFDs operating at 4,000 cd/m2, and experimental units as high as 35,000 cd/m2 depending on the drive voltage and its timing.Cadmium was commonly used in the phosphors of VFDs in the past, but the current RoHS-compliant VFDs have eliminated this metal from their construction, using instead phosphors consisting of a matrix of alkaline earth and very small amounts of group III metals, doped with very small amounts of rare earth metals.
VFDs can display seven-segment numerals, multi-segment alpha-numeric characters or can be made in a dot-matrix to display different alphanumeric characters and symbols. In practice, there is little limit to the shape of the image that can be displayed: it depends solely on the shape of phosphor on the anode(s).
The principle of operation is identical to that of a vacuum tube triode. Electrons can only reach (and "illuminate") a given plate element if both the grid and the plate are at a positive potential with respect to the cathode.multiplexed displays where the multiple grids and plates form a matrix, minimizing the number of signal pins required. In the example of the VCR display shown to the right, the grids are arranged so that only one digit is illuminated at a time. All of the similar plates in all of the digits (for example, all of the lower-left plates in all of the digits) are connected in parallel. One by one, the microprocessor driving the display enables a digit by placing a positive voltage on that digit"s grid and then placing a positive voltage on the appropriate plates. Electrons flow through that digit"s grid and strike those plates that are at a positive potential. The microprocessor cycles through illuminating the digits in this way at a rate high enough to create the illusion of all digits glowing at once via persistence of vision.
The light emitted by most VFDs contains many colors and can often be filtered to enhance the color saturation providing a deep green or deep blue, depending on the whims of the product"s designers. Phosphors used in VFDs are different from those in cathode-ray displays since they must emit acceptable brightness with only around 50 volts of electron energy, compared to several thousand volts in a CRT.
Besides brightness, VFDs have the advantages of being rugged, inexpensive, and easily configured to display a wide variety of customized messages, and unlike LCDs, VFDs are not limited by the response time of rearranging liquid crystals and are thus able to function normally in cold, even sub-zero, temperatures, making them ideal for outdoor devices in cold climates. Early on, the main disadvantage of such displays was their use of significantly more power (0.2 watts) than a simple LCD. This was considered a significant drawback for battery-operated equipment like calculators, so VFDs ended up being used mainly in equipment powered by an AC supply or heavy-duty rechargeable batteries.
During the 1980s, this display began to be used in automobiles, especially where car makers were experimenting with digital displays for vehicle instruments such as speedometers and odometers. A good example of these were the high-end Subaru cars made in the early 1980s (referred to by Subaru enthusiasts as a digi-dash, or digital dashboard). The brightness of VFDs makes them well suited for use in cars. The Renault Espace and older models of Scenic used VFD panels to show all functions on the dashboard including the radio and multi message panel. They are bright enough to read in full sunlight as well as dimmable for use at night. This panel uses four colors; the usual blue/green as well as deep blue, red and yellow/orange.
This technology was also used from 1979 to the mid-1980s in portable electronic game units. These games featured bright, clear displays but the size of the largest vacuum tubes that could be manufactured inexpensively kept the size of the displays quite small, often requiring the use of magnifying Fresnel lenses.LCD games could be manufactured for a fraction of the price, did not require frequent changes of batteries (or AC adapters) and were much more portable. Since the late 1990s, backlit color active-matrix LCD displays have been able to cheaply reproduce arbitrary images in any color, a marked advantage over fixed-color, fixed-character VFDs. This is one of the main reasons for the decline in popularity of VFDs, although they continue to be made. Many low-cost DVD players still feature VFDs.
From the mid-1980s onwards, VFDs were used for applications requiring smaller displays with high brightness specifications, though now the adoption of high-brightness organic light-emitting diodes (OLEDs) is pushing VFDs out of these markets.
Vacuum fluorescent displays were once commonly used as floor indicators for elevators by Otis Elevator Company worldwide and Montgomery Elevator Company in North America (the former from the early 1980s to the mid-2000s in the form of (usually two) 16-segment displays, and the latter from the mid 1980s to the mid 1990s in the form of (usually 3) 10x14 dot-matrix displays).
In addition to the widely used fixed character VFD, a graphic type made of an array of individually addressable pixels is also available. These more sophisticated displays offer the flexibility of displaying arbitrary images, and may still be a useful choice for some types of consumer equipment.
Fading is sometimes a problem with VFDs. Light output drops over time due to falling emission and reduction of phosphor efficiency. How quickly and how far this falls depends on the construction and operation of the VFD. In some equipment, loss of VFD output can render the equipment inoperable. Fading can be slowed by using a display driver chip to lower the voltages necessary to drive a VFD. Fading can also occur due to evaporation and contamination of the cathode. Phosphors that contain sulfur are more susceptible to fading.
Of the three prevalent display technologies – VFD, LCD, and LED – the VFD was the first to be developed. It was used in early handheld calculators. LED displays displaced VFDs in this use as the very small LEDs used required less power, thereby extending battery life, though early LED displays had problems achieving uniform brightness levels across all display segments. Later, LCDs displaced LEDs, offering even lower power requirements.
The first VFD was the single indication DM160 by Philips in 1959. It could easily be driven by transistors, so was aimed at computer applications as it was easier to drive than a neon and had longer life than a light bulb. The 1967 Japanese single digit seven segment display in terms of anode was more like the Philips DM70 / DM71 Magic Eye as the DM160 has a spiral wire anode. The Japanese seven segment VFD meant that no patent royalties needed to be paid on desk calculator displays as would have been the case using Nixies or Panaplex neon digits. In the UK the Philips designs were made and marketed by Mullard (almost wholly owned by Philips even before WWII).
Joseph A. Castellano (ed), Handbook of display technology, Gulf Professional Publishing, 1992 ISBN 0-12-163420-5 Chapter 7 Vacuum Fluorescent Displays pp. 163 and following
Steven Van Slyke and Ching Wan Tang pioneered the organic OLED at Eastman Kodak in 1979. The first OLED product was a display for a car stereo, commercialized by Pioneer in 1997. Kodak’s EasyShare LS633 digital camera, introduced in 2003, was the first consumer electronic product incorporating a full-color OLED display. The first television featuring an OLED display, produced by Sony, entered the market in 2008. Today, Samsung uses OLEDs in all of its smartphones, and LG manufactures large OLED screens for premium TVs. Other companies currently incorporating OLED technology include Apple, Google, Facebook, Motorola, Sony, HP, Panasonic, Konica, Lenovo, Huawei, BOE, Philips and Osram. The OLED display market is expected to grow to $57 billion in 2026.
AMOLED (Active Matrix Organic Light Emitting Diode) is a type of OLED display device technology. OLED is a type of display technology in which organic material compounds form the electroluminescent material, and active matrix is the technology behind the addressing of individual pixels.
An AMOLED display consists of an active matrix of OLED pixels generating light (luminescence) upon electrical activation that have been deposited or integrated onto a thin-film transistor (TFT) array, which functions as a series of switches to control the current flowing to each individual pixel.
TFT backplane technology is crucial in the fabrication of AMOLED displays. In AMOLEDs, the two primary TFT backplane technologies, polycrystalline silicon (poly-Si) and amorphous silicon (a-Si), are currently used offering the potential for directly fabricating the active-matrix backplanes at low temperatures (below 150 °C) onto flexible plastic substrates for producing flexible AMOLED displays. Brightness of AMOLED is determined by the strength of the electron current. The colors are controlled by the red, green and blue light emitting diodes. It is easier to understand by thinking of each pixel is independently colored, mini-LED.
IPS technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but with more enhanced features and more widespread usability compared with the older generation of TN type TFT screen (normally used for low-cost computer monitors). Actually, it is called super TFT. IPS LCD display consists of the following high-end features. It has much wider viewing angles, more consistent, better color in all viewing directions, it has higher contrast, faster response time. But IPS screens are not perfect as their higher manufacturing cost compared with TN TFT LCD.
Utilizing an electrical charge that causes the liquid crystal material to change their molecular structure allowing various wavelengths of backlight to “pass-through”. The active matrix of the TFT display is in constant flux and changes or refreshes rapidly depending upon the incoming signal from the control device.
It can be argued that the display on your smartphone is its most important feature, as it is the principle way in which you interact with your device. A poor display means a poor user experience. As with all tech, it is easy to spot an under-performer, however the differences between a good display and a truly excellent display are harder to discern.
Roughly speaking there are two main types of displays used in smartphones: LCD and LED. These two base technologies have been refined and tweaked to give us AMOLED and IPS LCD. The former stands for Active Matrix Organic Light-Emitting Diode, while the latter means In-Plane Switching Liquid Crystal Display.
All of this hasn’t gone unnoticed by the marketing people, which means that plain old AMOLED or regular IPS LCD aren’t the terms used in the marketing fluff. Instead, we have Super AMOLED, Dynamic AMOLED, Super LCD, Super Retina OLED, Super Retina XDR, Infinity Display, and so on. But what’s any of that actually mean?
The LED part of AMOLED stands for Light Emitting Diode. It’s the same tech as you find on many home appliances that show that the power is on with a little red light. An LED display takes this concept, shrinks it down, and arranges the LEDs in red, green, and blue clusters to create an individual pixel.
The image above is a close-up shot of the AMOLED display on the Samsung Galaxy S8. The RGB triangular pattern is clearly shown. Towards the bottom of the image, the green and red LEDs are off and the blue LEDs are on only slightly. This is why AMOLED displays have deep blacks and good contrast.
Super AMOLED is a marketing term from Samsung. It means a display that incorporates the capacitive touchscreen right in the display, instead of it being a separate layer on top of the display. This makes the display thinner.
Dynamic AMOLED is another marketing term from Samsung. It denotes Samsung’s next-generation AMOLED display which includes HDR10+ certification. According to Samsung, Dynamic AMOLED also reduces the harmful blue light emitted from the display, which helps reduce eye strain and helps lessen sleep disturbances if you’re using your phone late in the day!
As for Infinity Display (or Infinity-O Display), it is more marketing from Samsung. It means “a near bezel-less, full-frontal, edge-to-edge” display. However, it is still a Super AMOLED unit.
LCD displays work with a backlight that shines through some polarizing filters, a crystal matrix, and some color filters. Liquid crystals untwist when an electric charge is applied to them, which affects the frequency of the light that can pass through. Since the crystals can be twisted to varying degrees depending on the voltage used, a display can be built when they are used with polarized panels. A grid of integrated circuits is then used to control each pixel, by sending a charge down into a specific row or column. Colors are created by the use of red, green, and blue filters, known as sub-pixels, which are then blended by varying degrees to produce different colors.
The above image is of an LCD display from a Huawei Mate 8. Notice how the pixels are made up of equally-sized sub-pixels, one for each of the colors: red, green, and blue.
Like Super AMOLED, a Super LCD display also incorporates the touchscreen. There is no “air gap” between the outer glass and the display element, which means it has similar benefits to Super AMOLED.
Samsung isn’t the only company that is good at marketing, there is another! Apple has coined the term “Retina” for its displays. The term was first used for its smartphones with the launch of the iPhone 4, as it offered a significantly greater pixel density (over 300 ppi) when compared to the iPhone 3GS. Later came Retina HD, which applies to iPhones with at least a 720p screen resolution.
All Retina and Retina HD displays on the iPhone are LCD IPS displays. However, things have changed a bit with the iPhone X as it features an AMOLED display, now marketed under the term Super Retina. It’s still an AMOLED display. It just has extra adjectives. With the launch of the iPhone 11 Pro, Apple coined the term Super Retina XDR. The XDR part means Extended Dynamic Range, as they have better contrast ratios and higher peak brightness.
Not all Retina displays use OLED. Although the MacBook Pro is marketed with a “Retina” display, as you can see from the magnified image above, it is a regular LCD, even if it uses the latest Apple silicon.
Both technologies can be used to build displays with 720p, 1080p, Quad HD, and 4K resolutions. And OEMs have made handsets that support HDR10 using both LCD and AMOLED displays. So from that point of view, there isn’t much difference between the two.
When it comes to color, we know that the blacks will be deeper and the contrast ratios higher on AMOLED displays. But, overall color accuracy can be high on both types of display.
One of the main weaknesses of AMOLED displays is the possibility of “burn-in”. This is the name given to a problem where a display suffers from permanent discoloration across parts of the panel. This may take the form of a text or image outline, fading of colors, or other noticeable patches or patterns on the display. The display still works as normal, but there’s a noticeable ghost image or discoloration that persists. It occurs as a result of the different life spans between the red, green, and blue LED sub-pixels used in OLED panels.
Blue LEDs have significantly lower luminous efficiency than red or green pixels, which means that they need to be driven at a higher current. Higher currents cause the pixels to degrade faster. Therefore, an OLED display’s color doesn’t degrade evenly, so it will eventually lean towards a red/green tint (unless the blue sub-pixel is made larger, as you can see in the first image in this post). If one part of the panel spends a lot of time displaying a blue or white image, the blue pixels in this area will degrade faster than in other areas.
The theoretical lifespan of an AMOLED display is several years, even when used for 12 hours a day. However, there is anecdotal evidence that some displays suffer from burn-in quicker than others. Displays that show signs of burn-in after only a few months should be considered defective because they certainly aren’t normal.
While owners of devices with LCD screens might congratulate themselves for picking a smartphone that is immune to burn-in, there can be a problem with LCD panels called “image retention.” Put simply, liquid crystals can develop a tendency to stay in one position when left at the same voltage for extended periods. Thankfully this phenomenon is normally temporary and can usually be reversed by allowing the liquid crystals to return to their relaxed state.
Picking a winner can be hard as there are many factors to consider, not only about the display technologies but also about the other components in a handset. For example, if you are an AMOLED fan, then would you consider a device with large storage and a good processor, but with an LCD display? The same argument works the other way for LCD fans. Generally, you’ll be fine with either display type, so just pick the handset you like.
Higher-end devices typically sport AMOLED displays and mid-range/budget devices usually use LCD. But that isn’t set in concrete as there are plenty of high-end devices that have LCD displays. With OLED production costs dropping dramatically in recent years, more and more budget options will be offering OLED panels in the future.
Companies like LG and Samsung have seen this trend coming and are rapidly expanding their OLED (and flexible OLED) production capabilities. LCD might still have a bright future in televisions and other large-panel applications, but for now, it looks like mobile will be increasingly dominated by OLED screens.
What do you think? AMOLED or LCD? What about the terms like Retina vs Infinity Display? Are they meaningful to you? Please let me know in the comments below.