lcd display lifespan quotation
Much has been made of the longevity of LCD displays, at least compared to plasma monitors. The conventional wisdom is that LCD televisions last longer than their plasma TV counterparts, which is true. The problem is, a lot of people extrapolate from this that either (a) LCD displays last forever or (b) LCD monitors suffer no picture "wear" over time. Neither of these suppositions is correct.
Flat-panel LCD screen displays have a lifespan approaching 60,000 hours. The lifespan of an LCD display is generally longer than that of similar-sized plasma displays. Some manufacturers even claim that their LCDs can last upwards of 80,000 hours when used continuously under controlled conditions (e.g., in a room with "standard" lighting conditions and 77° temperatures throughout). Just how realistic such claims are is debatable. After all, whose living room has no windows and remains at a perfectly comfortable 77 degrees year-round?
In any case, the pictures on LCD displays will show some "wear" because they are generated by powerful lamps, which, like any lighting appliance, will dim over time and with use. The picture you see will dim ever so slightly as the lamp itself dims.
Therefore, the most important thing to consider when it comes to the lifespan of your LCD TV is the actual lifespan of the light source in your LCD. LCD TVs last as long as their lightsources do. So, the lightsource in your LCD monitor is the critical component of your LCD display unit.
The quality of your lightsource is particularly important for maintaining a proper white balance on your TV. As these florescent bulbs age, colors can become unbalanced, which could result in too much red, for example, in your picture. So, it pays to buy name-brand displays. You will definitely pay more for better LCD display brands like Sharp, Toshiba, JVC, or Sony than you will for cheap Chinese or Korean variety knock-offs, but you"ll get a backlighting bulb of higher quality and, in the end, a TV whose colors will stay truer longer.
To ensure the integrity of your lightsource for the duration of your LCD display"s lifespan, you will definitely want to adjust the CONTRAST setting of your LCD TV. Too high of a CONTRAST level will prematurely age your lightsource because it will have to work harder to maintain such light intensities. Your best bet is to keep your CONTRAST set appropriately for the conditions under which your view your LCD display. Higher light levels require slightly higher CONTRAST levels, while lower ambient light levels demand less CONTRAST.
You will also want to pay attention to the warranty for this particular feature, since it can be shorter than for the display as a whole. This means you might have to buy a whole new LCD monitor because the coverage on its backlight has expired. Moreover, some bulbs can be replaced, while others are built in to the unit itself. You should definitely do some research on the backlighting system, how it"s configured, and how it"s warranted.
Note: Sharp is currently the only manufacturer that makes LCD displays whose lamps can be changed out. This is definitely something to consider, given that LCD monitors dim as their lightsources do, so being able to replace its lamp will restore your picture to "like new" levels.
Perhaps you’ve wondered how long a digital display lasts. It’s a great question. One quick search on Google will tell you that an LCD panel has a lifespan of about 60,000 hours, which is equivalent to almost seven years.
Of course, LCDs aren’t the only kind of displays. You also have LED, OLED, QLED, ELD, PDP, and MicroLED, plus many other variations. Obviously, that 7-year estimation will not apply across the board. For the sake of ease, let’s just focus on some of the common types of displays that most of us are familiar with.
Here’s some LCD alphabet soup: There are LED LCD displays, CFFL LCD displays, LED displays, and more. With all these acronyms, it can get a bit confusing. What"s important to note is whether or not the display uses an LCD panel, and how the LCD panel is illuminated. You can read more about thedifferences between types of LCD and LED signage, but these are the most common types:
LCD displaysgenerate images and colors via a Liquid Crystal Display (LCD) panel, which is not self-emitting and requires an external light source to illuminate the image, typically an LED backlight. Their full name "LED-backlit LCD display" is commonly shortened to "LED displays", which is why they"re often confused with the true LED displays we"ve identified above.
Unfortunately, LED backlights used in LCD displays burn out over time. If used at high or maximum brightness, which is necessary for outdoor applications,an LED backlight will last between 40,000 to 60,000 hours. Or, about 4.5 to 7 years.
OLED stands for Organic Light Emitting Diode. OLED displays differ from common LCD displays in that their pixels are self-illuminating. In other words, there is no LED backlight required to illuminate the the display image; everything occurs within the OLED pixels themselves. According to onearticle from the US Department of Energy,OLED screens have a life expectancy of about 40,000 hours at 25% brightness, and 10,000 hours at full brightness. That equates to about 1 to 4.5 years, which is a much shorter (albeit, brilliant) lifetime than an LCD display.
Perhaps you noticed that the acronym QLED closely resembles the acronym OLED. This is not accidental. QLED is basically Samsung’s original design built to compete with OLED technology. However, the two are not the same. QLED stands for Quantum Light Emitting Diode. While QLED is similar to a regular LED design, it in fact differs by using nanoparticles called “Quantum dots” to achieve its unique brightness and color. Samsung approximates that the lifespan ofQLED panels are likely to last 7-10 years. After that, a user is likely to notice traces of degradation.
MicroLED is an emerging display technology, consisting of small LEDs in tiny arrays within each pixel. This technology goes beyond the offerings of the formerly frontrunning OLEDs, with much darker blacks and more radiant contrast levels. And, unlike OLEDs, MicroLEDs are not organic. They are not as subject to burn-in, and thus, have a longer lifespan than OLEDs. However, they are significantly more expensive - so much, in fact, that they aren’t considered a viable option for the majority of consumers.According to Samsung, the lifespan of its MicroLED panels should last about 100,000 hours, or, roughly 11 years.
PDP stands for Plasma Display Panel, and it refers to displays that use small cells full of plasma. The atoms within the plasma emit light upon being charged by electricity. While PDP is generally considered to offer better colors than LCDs, they consume a lot more power and usually cannot be battery-operated.The average lifespan of the newest generation of PDPs is approximated to be 100,000 hours, or 11 years of continual use.
In some ways,reflective LCD panelsoperate similarly to other LCDs, only they have one key difference - they do not require a backlight. Instead, they rely on ambient light (or sunlight) in order to produce images. This opens the door to some groundbreaking possibilities. The first (and most appreciable) is low power consumption. Reflective displays use up to 95% less energy. Not bad - especially in a world that is continually looking for new ways to go green. Take into consideration the financial implications of this. Lower power means less money spent on operating costs.
Being that reflective displays do not require a backlight (a component that is particularly subject to degradation), and since they do not generate as much heat, it is safe to say that the lifespan of these displays should far exceed that of backlit LCD panels (which was 7 years at the high end). However, being that thisinnovative technologyis relatively new, its actual lifespan is therefore more difficult to estimate -- simply because it has yet to be reached.
There are also a few challenges that can affect reflective displays. For one, they rely on ambient light. On a nice sunny day, these displays perform beautifully and can be easily seen in even the brightest of conditions. This performance wanes as the available ambient light decreases. And, since they do not generate light of their own, they are not designed to be viewed under nighttime or extremely low light conditions (without additional lighting features). In short, their images are visible to the degree that ambient light is present. However, in light of this, side light (and front light) options are being explored.
One company at the front lines of this research isAzumo. Azumo has created a light guide that laminates to the front of a display. It requires 90% less energy than the backlight of a traditional LCD display. This greatly improves the problem of low light visibility otherwise encountered, and keeps reflective displays in the same low energy consumption ballpark. One issue, however, is that Azumo currently only offers its light guides for smaller-sized units. If you happen to want this feature applied to a display that is over 10” diagonally, then you’re still on the search for a solution.
One other factor to consider regarding reflective technology is its cost. That reflective layer is more costly to manufacture than many of the backlights it replaces, creating a seemingly greater upfront cost for those who are interested in investing in energy-efficient signage. However, these initial price points are quickly justified as buyers will recognize the significantly lower operating costs and increased longevity (not even including replacement costs of other “expired” displays) that comes with their purchase of reflective display signage. If a backlit LCD panel only lasts 7 years, for example, you’ll have paid for that LCD twice in the period of ten years. A very valid question arises… is that “cheaper” backlight really cheaper? Probably not. It only feels that way at first.
Sun Vision Displayis working hard to create reflective display solutions for the digital signage world. We are currently offering them in 32" and 43" diagonal sizes, with a 55” size in development. These displays are built formany environments. We are thrilled to be bringing such innovative solutions to the market.
year of the CCFL expected life if you assume a CCFL lifetime in the middle of the range. If you don"t operate your LCD at max brightness then these numbers should be conservative.
Deciding when it’s time to replace your digital display can be tough. After all, you want to get as much use as possible out of your investment. But even the best displays don’t last forever. It’s important to consider upgrading your LED display to not only remain competitive and compliant, but also to avoid having to use more power to keep it running. With a newer setup, you can ensure lower energy costs and worry less about downtime.
The average display lifespan is between seven and 10 years. Though boards can last much longer than the average, when you exceed that age range is when problems start to arise.
You should also consider how long your manufacturer stated your board would last. Perhaps your specific board was quoted as a 10- to 12-year lifespan. If you’re approaching the end of that range, it may be time to look into an upgrade — while you still have the luxury of time. With age also comes warranty concerns. If your display has aged out of its warranty, any issues that arise can be costly to fix.
Even with the best maintenance, displays are subject to mechanical issues and failure. Older displays, especially those outdoors, receive a lot of environmental wear and tear over the years. Sunlight fades and degrades individual diodes, decreasing display brightness and picture consistency. With an inconsistent picture, your display is less valuable to both you and your advertisers. And as with any aging product, parts can fail. It happens, and without a warranty to replace or repair, those parts can be a big hit to your budget — if you can find obsolete parts at all.
Like it or not, cost is always a contributing factor, and evaluating the LED display board cost of your current board versus an upgrade is another effective way to weigh your options. Some considerations include:
With rapid advancements in display technology, an upgrade may be necessary to stay competitive or compliant. Samsung’s MagicINFO, an all-in-one digital signage platform, is also an option that can help you manage the software and the hardware of your LED displays and optimize their performance, all from one place.
The life span of traditional LCD screens is between 40,000 and 60,000 hours, and the more recent popular OLED screens have a life span of about 30,000 hours. If you look at the phone for an average of 3 hours a day, it can also last 10,000 days, or 27 years, which is far more than the average user’s replacement cycle.
OLED display technology, which uses a very thin coating of organic material and a glass substrate (or flexible organic substrate) that emits light when an electric current is passed through it.
Nowadays, OLED screen has become the standard for high-end smartphones, compared with the traditional LCD technology, it is not only thinner, lower energy consumption, high brightness, can display pure black, faster response time, but also can be made into a curved screen, giving people a different visual impact
Why under-screen fingerprint recognition can only be used in OLED screen? This is because it is relatively “soft”, OLED in the construction of only two layers of thin film and glass or plastic substrate, and through the OLED material self-lighting characteristics, can be without backlight module and color filter, also do not need the general LCD panel filling liquid crystal process, can achieve 0.5-1.8mm thickness. Nowadays, most of the under-screen fingerprint recognition is optical fingerprint program, so relatively in the use of optical fingerprint program, OLED screen will be more suitable.
Why can’t under-screen fingerprint recognition be used in LCD screen? This is because it is relatively “hard”, the working principle of LCD is mainly composed of two parallel glass plate, between the two layers of glass plate and then by the liquid crystal layer and polarizer, color filter layer and so on material composition. In simple terms, LCD is the need for backlight irradiation to display, so is the result of LCD screen than OLED screen thicker, light transmission is weaker, not conducive to the use of under-screen fingerprint identification.
Since OLED screen can use under-screen fingerprint recognition, why do not all cell phone manufacturers use OLED screen? This involves the advantages and disadvantages of LCD screens and OLED screens.
LCD screen, although temporarily can not use under-screen fingerprint recognition, but, LCD screen is also the advantages of OLED can not be comparable, there is a natural DC dimming more eye protection, color is also natural, drawing people prefer LCD, screen life compared to OLED long, but also not easy to change color, also do not have to worry about using a long time after the problem of burning screen, which is also the reason why LCD loyal users like it.
In addition, LCD screen does not stimulate the human eye, will not cause eye fatigue, especially open eye protection mode filtering blue light, less damage to the eyes. oled screen will leave residual shadows, eye damage, even dimming can not be completely avoided.
The act of selecting the television screen that suits your needs can be difficult enough, but when you consider all the different technologies available out there, it can become downright confusing. If you aren’t into buying a new set every couple of years, you’ll want to take the TV lifespan into consideration. Thankfully, we’re going to cover
LED & LCD –LED and LCD televisions are the big players in the market today. They are basically the same backlit setup and each technology has similar perk/setbacks. LED and LCD televisions work excellent in bright rooms, they’ve outsold plasma televisions (and they have taken over the market). They consume less power, they’re thin/light to transport, and they’re bright. However, both LCD and LED televisions fall short when it comes to motion blur (on lower-end models), they sometimes have backlight issues, and they offer limited viewing angles.
People generally want to know the lifespan of a TV in years. The average life of LED TVs and LCD sets is typically somewhere from 4 to 7 years of active use. Most of us don’t watch our TVs twenty-four hours a day, so a simple calculation on your watching habits can give you a good estimate. If you watched for 6 hours a day, you could theoretically multiply that lifespan by 4 (6×4=24), giving you 16 to 28 years.
Considering the regular defects and issues that occur over time, LCD and LED televisions basically have the same lifespan. With each of these technologies, the likely failure will come in the form of a worn-out backlight, so decreasing your backlight levels can significantly extend your set’s lifespan. A higher-quality set with a better backlight can also net you a few more years of use.
If you’re designing a display application or deciding what type of TV to get, you’ll probably have to choose between an OLED or LCD as your display type.
Not sure which one will be best for you? Don’t worry! We’re here to help you figure out the right display for your project or application. In this post we’ll break down the pros and cons of these display types so you can decide which one is right for you.
LCDs utilize liquid crystals that produce an image when light is passed through the display. OLED displays generate images by applying electricity to organic materials inside the display.OLED and LCD Main Difference:
These different technological approaches to display technology have big impact in some features including contrast, brightness, viewing angles, lifespan, black levels, image burn-in, and price.
Everything from the environment your display will be used in, your budget, to the lighting conditions and the required durability will play a part in this decision.
Contrast refers to the difference between the lightest and darkest parts of an image. High contrast will produce sharper images and more easily readable text. It’s a crucial quality for high fidelity graphics and images or to make sure that a message on a display is very visible.
graphics and images visible. This is the reason you’re still able to see light coming through on images that are meant to be dark on an LCD monitor, display, or television.
OLEDs by comparison, deliver a drastically higher contrast by dynamically managing their individual pixels. When an image on an OLED display uses the color black, the pixel shuts off completely and renders a much higher contrast than that of LCDs.OLED vs LCD - Who is better at contrast?
Having a high brightness level is important if your display is going to be used in direct sunlight or somewhere with high ambient brightness. The display"s brightness level isn"t as important if it’s going to be used indoors or in a low light setting.OLED vs LCD - Who is better at Brightness?
This means the display is much thinner than LCD displays and their pixels are much closer to the surface of the display, giving them an inherently wider viewing angle.
You’ll often notice images becoming distorted or losing their colors when tilting an LCD or when you view it from different angles. However, many LCDs now include technology to compensate for this – specifically In-Plane Switching (IPS).
LCDs with IPS are significantly brighter than standard LCDs and offer viewing angles that are on-par with OLEDs.OLED vs LCD - Who is better at Viewing Angles?
LCDs have been on the market much longer than OLEDs, so there is more data to support their longevity. On average LCDs have proven to perform for around 60,000 hours (2,500) days of operation.
With most LCDs you can expect about 7 years of consistent performance. Some dimming of the backlight has been observed but it is not significant to the quality of the display.
OLEDs are a newer technology in the display market, which makes them harder to fully review. Not only does OLED technology continue to improve at a rapid pace, but there also hasn’t been enough time to thoroughly observe their performance.
You must also consider OLED’s vulnerability to image burn-in. The organic material in these displays can leave a permanent afterimage on the display if a static image is displayed for too long.
So depending on how your OLED is used, this can greatly affect its lifespan. An OLED being used to show static images for long periods of time will not have the same longevity as one displaying dynamic, constantly moving images.OLED vs LCD - Which one last longer?
There is not yet a clear winner when it comes to lifespans between LCD and OLED displays. Each have their advantages depending on their use-cases. It’s a tie!
For a display application requiring the best colors, contrast, and viewing angles – especially for small and lightweight wearable devices – we would suggest an OLED display.
Sony told Register Hardware that it stands by its statement that the XEL-1"s brightness drops to 50 per cent after 30,000 hours of usage, despite independent tests that showed the set’s average half-brightness time - a standard measure of display longevity - is closer to 17,000 hours.
The test was conducted by market watcher DisplaySearch. It told Register Hardware it ran two XEL-1s alongside each other for 1000 hours, one showing a plain white picture, the other video footage. From the inevitable dip in brightness, it calculated how long it would be before the luminance fell to 50 per cent.
Like all colour TVs, the XEL-1 colours its pixels by mixing different intensities of red, green and blue light. DisplaySearch found that, during the 1000-hour test period, the ability of the two screens to display blue had degraded by 12 per cent. A seven per cent drop was recorded for red and an eight per cent decline for green.
Sony wouldn"t comment on DisplaySearch"s specific findings becuase the analyst "has not provided details on testing". So perhaps the two companies should get together and share figures?
It’s well known that OLED displays have a shorter lifespan than LCD and plasma screens though, with the typical half-brightness lifespan of an LCD, for instance, being between 50,000 and 60,000 hours.
Sony"s figure for the XEL-1 comes to 3.5 years, falling to 1.9 years if you use DisplaySearch"s timescale. Again, the practical life of the TV is going to be rather longer than that.
However, both numbers highlight the shorter longevity of OLED. These panels degrade over time, as oxygen and water molecules penetrate the screen’s sandwich of different organic chemicals. That, in turn, reduces the screens" ability to display colours consistently.
Fortunately, a Singapore research firm recently announced the invention of a plastic film which it claims can boost an OLED’s lifespan by reducing the number of molecules able to seep through the protective layer.
LED stands for Light Emitting Diode. SMD refers to Surface Mounted Diode, a technology that utilizes a process of mounting each LED chip (pixel) directly to a printed circuit board (PCB). Mounting the diodes in this fashion allows displays to be thinner and sleeker than older LED technology. SMD also allows for finer pixel pitch. Simply put, pixel pitch refers to the distance between the diodes and is responsible for resolution. Fine pixel pitch translates into high resolution. Fine pixel pitch is what makes HD and UHD LED possible.
LCD panels are made of a layer of liquid crystal between two pieces of polarized glass. Liquid crystal can not emit light. Backlights are therefore used to illuminate the display. LCD panels are sleek in design, but typically limited to specific sets of dimensions.
LEDs are their own light source. This means that LED video walls are glare free and not subject to many of the problems ambient lighting creates for other video display types.
LED technology is modular in nature. This means that LED panels fit together seamlessly and can be used to make displays to fit any space. Custom cabinets can even be built to accommodate unusual shapes or dimensions.
LCD video walls on the other hand take on a tiled approach. This means that screens are jutted against one another. This approach creates bezels or seams and the final dimensions of the wall is directly dependent on the dimensions of the individual screens.
LED is a versatile display option. Thanks to various IP options, LED video walls can be displayed indoors or outdoors. LED video walls can be built with a variety of internal mechanisms as well. Quick refresh rates and dual power backup can ensure that LED video walls look great on camera. Various pixel pitches can ensure the proper resolution for the right context.
LCD is a more straightforward product and consumers are generally more familiar with LCD. LCD is used for cell phones, computer screens, and most TVs, but is it the best choice for video walls? Ultimately that choice is up to the consumer. LCD is cheaper, but generally less customizable. LCD does not work well for outdoor uses and is generally very limited in terms of size and shape.
LED technology has improved drastically in recent years improving quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours.
Just like anything else, the best video wall product is largely dependant on context. If you like LED technology but are unsure of the process associated in obtaining a LED video wall read: How to Purchase a LED Video Wall Display.
Finding and choosing the right seven segment display can be very difficult and time-consuming. There are several technologies out there, with vastly different specifications, advantages, and disadvantages. Reading this article, will provide you new insights on what seven segment displays that will suit your project or product.
This post aims to give you a better understanding of what different 7 segment display technologies are available on the market and how they can be applied in various use-cases. We will cover the following seven segment display options:
* 2x2 cm^2 outer dimension of a 1x7 segment display, approximately equivalent to 1 cm2 active display area. The calculations are based on 100 display updates per day. The presented figures are the average energy consumption from multiple datasheets available online.
In this seven segment display comparison, we include both emissive displays and reflective displays. An emissive display versus a reflective display are significantly different when comparing factors such as energy consumption and optical performance. For instance, a reflective display cannot be used without ambient light, but an emissive display is close to impossible to read in direct sunlight. Additional factors that will be covered in this article include cost, form factor, electrical driving, connector options.
If you’re looking for an ultra-low-powered display technology, a segmented LED display is ruled out, and most likely, so is a backlit LCD display. What you need is a reflective display. This leaves us with three choices; reflective LCD, the E Ink display, and the Rdot display.
Reflective LCDs are less complex in terms of energy consumption. Our research indicates that the average power consumption for one square centimeter active display area will consume around 6.6 µW. This figure will not be significantly affected depending on the number of display updates you perform.
The E Ink display is close to fully bistable, which means that it will not consume any energy for static images. Close to all energy is consumed when the display content is changed. One display update is usually around 4mW during 1 second per 1 square centimeter. With 100 number changes per day, the total power consumption is approximately 4.6 µW/cm2.
The Rdot display has similar bistability characteristics as E Ink, but the screen will not retain the image as long as an E Ink display. The image retention time can be anywhere from 0 minutes up to 24 hours, depending on the use-case. For this example, we use a display with 15 minutes of image retention time. At 100 display updates per day, the Rdot display will consume around 1.2µW/cm2. One noteworthy feature to remember is that if the display is no longer powered, the current number on the seven segment display will naturally fade out during the next hour or so - you don’t have to actively turn it off.
The cost per unit will always influence the decision regarding which seven segment display technology to use. Before writing this article, a lot of work went into requesting offers from manufacturers worldwide to generate an average cost for all identified display technologies. The vast number of available variations, such as different types of liquid crystals, different connector types, different LED options, etc., makes it nearly impossible to end up at one generalized and representative number. For small one-digit seven segment displays in approximately 100 000 units per year, we are however able to draw the following conclusions:
The Rdot display is the only seven segment display that is bendable. The screen choice will therefore become very easy if your project requires a flexible display. The Rdot display is printed on a transparent plastic substrate that is bendable. The bend radius can be optimized to match your requirements simply through choosing the right thickness of the plastic substrate on which the display stack is printed upon.
Our preferred approach to evaluate the optical performance of various seven segment display types is to request samples from the producers. Seeing is believing. The very standard LCD and LED technologies will be easily accessible through multiple vendors. E Ink and Rdot have
My personal opinion is that the visual appearance of backlit and reflective LCDs, as well as segment LED displays, is not that appealing. One particular factor is that the segments in the unpowered state are still very visible in relation to the background. Another parameter is the viewing angle dependency. Most low-cost LCDs and LEDs are far from being perfectly non-angle dependent. Some are even impossible to read if you observe from only a 30° angle or more.
Both E Ink and the Rdot displays have close to no viewing angle dependency. E Ink has also managed to create very good black in the dark state, but still only 40% white reflection in the bright state which makes it fairly dark in poor light. The seven segment displays from Rdot will fade into the background color perfectly with accurate driving, which makes the Rdot display together with the E Ink display more visually appealing than the other options.
A robust display solution that can reliably work at least throughout the entire product lifetime is apparently a critical factor. From our perspective, the robustness can be broken down into three subparameters; lifetime, operating conditions, and ruggedness. We all know that seven segment displays have been around for a long time. Segment LCDs and LEDs are very mature and optimized. Typical operating conditions range from at least -40 °C to +85 °C, and the display lifetime will exceed almost all expected product lifetimes. Put simply, they are extremely robust. However, they do have one problem. They are fabricated on glass, meaning that they can crack or shatter. The typical solution to make them more rugged is through making the substrates thicker and also to add other safety measures in the display-device integration. This is the reason why there’s often a significant distance from the surface of the device to the display.
The Rdot display is fabricated on a flexible substrate that will not crack or shatter. E Ink also offers some flexible displays with similar properties. Both E Ink and Rdot will not yet compete on robustness in all environments. The operating temperature range spans from 0 °C to 50 °C for the majority of E Ink films, while the Rdot can guarantee -5 °C to 40 °C to this date. Lifetime is also slightly limited for the two seven segment technologies. The lifetime will depend on the number of display updates that are performed. E Ink suppliers communicate a lifetime number ranging from 1 million up to 10 million display updates. The Rdot display has a lifetime that is currently below 1 million updates.
The rdot display is most likely the best choice. It is very low cost, ultra low powered, and very environmentally friendly since it utilizes resource-efficient screen printing production and can be constructed with only organic materials.
If you"re looking for lifespan, CRTs are the way to go. The reason CRTs dim is that the phosphors in the tube slowly escape as they are bombarded by current. Yes, mikef, they dim. But very slowly. However, with a CRT, you"re looking at all kinds of other problems like heat and inconsistency. A flicker is also noticeable in low-end CRTs.
LCDs have a much shorter lifespan, for the same reason as everyone else has said -- The backlight grows dimmer. To answer your question, most modern LCD monitors will be at half brightness after about 60,000 hours, about 5 years for many computer users. But in the past 2 years, their performance has begun to blow away CRT monitors, which were traditionally much better in terms of quality. Also, LCDs are much easier to dispose of.
If you"re looking for lifespan, CRTs are the way to go. The reason CRTs dim is that the phosphors in the tube slowly escape as they are bombarded by current. Yes, mikef, they dim. But very slowly. However, with a CRT, you"re looking at all kinds of other problems like heat and inconsistency. A flicker is also noticeable in low-end CRTs.
LCDs have a much shorter lifespan, for the same reason as everyone else has said -- The backlight grows dimmer. To answer your question, most modern LCD monitors will be at half brightness after about 60,000 hours, about 5 years for many computer users. But in the past 2 years, their performance has begun to blow away CRT monitors, which were traditionally much better in terms of quality. Also, LCDs are much easier to dispose of.
Of course, everyone is aware of televisions and monitors, but what about the low-level radiation from LCD monitors? Are there reliable studies on this?
Oh boy, this will certainly NOT prolong the life span of the background lighting. Don"t do this as constantly switching the lamps on and off wears them out VERY quickly. This results in the lamps needing more and more time to reach full brightness when switching the display on. The effect can already be seen after less than one year!
Good advice, or do the following: whenever you leave your computer for more than five minutes, turn the display off manually (if you have an external one) and don"t use the timed switch-off function.
What happened to me constantly: whenever I came back to my desktop, the display would switch itself off JUST at the time I came back. Then waking the screen could destroy it very quickly...
What I"m curious about is where you got this idea that LCD monitors even would produce any appreciable amount of low-level radiation. I don"t mean any offense, and I could be wrong without doing any research on it, but it seems rather absurd to me.
I cannot think of any major components in an LCD TV/Monitor that would even produce such radiation. As far as I know, they hardly produce any radiation but that on the visible spectrum, which is obviously necessary.
TFT monitors do not emit radiation at all (compared to CRT monitors). The TCO standard was developed for CRT monitors first, then TCO-99 added TFT / LCD monitors as well.
LCD stands for “liquid crystal display” and technically, both LED and LCD TVs are liquid crystal displays. The basic technology is the same in that both television types have two layers of polarized glass through which the liquid crystals both block and pass light. So really, LED TVs are a subset of LCD TVs.
LED, which stands for “light emitting diodes,” differs from general LCD TVs in that LCDs use fluorescent lights while LEDs use those light emitting diodes. Also, the placement of the lights on an LED TV can differ. The fluorescent lights in an LCD TV are always behind the screen. On an LED TV, the light emitting diodes can be placed either behind the screen or around its edges. The difference in lights and in lighting placement has generally meant that LED TVs can be thinner than LCDs, although this is starting to change. It has also meant that LED TVs run with greater energy efficiency and can provide a clearer, better picture than the general LCD TVs.
LED TVs provide a better picture for two basic reasons. First, LED TVs work with a color wheel or distinct RGB-colored lights (red, green, blue) to produce more realistic and sharper colors. Second, light emitting diodes can be dimmed. The dimming capability on the back lighting in an LED TV allows the picture to display with a truer black by darkening the lights and blocking more light from passing through the panel. This capability is not present on edge-lit LED TVs; however, edge-lit LED TVs can display a truer white than the fluorescent LED TVs.
Because all these LCD TVs are thin-screen, each has particular angle-viewing and anti-glare issues. The backlit TVs provide better, cleaner angle viewing than the edge-lit LED TV. However, the backlit LED TV will usually have better angle viewing than the standard LCD TV. Both LED and LCD TVs have good reputations for their playback and gaming quality.