uctronics 3.5 inch hdmi tft lcd display manufacturer

The UCTRONICS 3.5 Inch touch screen is the same size as the standard Raspberry Pi model B/B+, and well-mates with the Raspberry Pi boards. With a tiny size, vivid image, and responsive touchscreen, it is definitely ideal for portable devices and multimedia projects. It is a great replacement for a heavy and bulky HDMI monitor, keyboard, and mouse

Step1: Align the pin 1 of the edge connector between the LCD display and Raspberry pi board, connect the pin 1,2,3,4 then pin 19,20,21,22,23,24,25,26.

Attention: If you use this display without a Pi, the touch function is not available because the touch function of this display just supports the Raspbian system. Meanwhile, an extra HDMI cable also is required for the video transmission.

uctronics 3.5 inch hdmi tft lcd display manufacturer

Sometimes you want to test, measure or inspect what is going on in a electrical system, and displays and meters are needed. UCTRONICS have different kinds of displays, multimeters, voltage meters, frequence counters and so on. Some displays also works as monitors for a small computer.

uctronics 3.5 inch hdmi tft lcd display manufacturer

The UCTRONICS 3.5-Inch TFT LCD Touch Screen w/ Pen for Raspberry Pi is the same size as the standard Raspberry Pi model B/B+, and well mates with the Raspberry Pi boards. With its touch screen and split audio from the HDMI input, it is ideal for portable devices and multimedia projects, and it is a replacement for a heavy and bulky HDMI monitor, keyboard and mice.

uctronics 3.5 inch hdmi tft lcd display manufacturer

Frequently Asked Questions About UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ in INDIA

Where can I buy UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ online at the best price in the INDIA?

desertcart is the best online shopping platform where you can buy UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.

Is UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ available and ready for delivery in INDIA?

desertcart ships the UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ to and more cities in INDIA. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ speedily without the hassle of shipping, customs or duties.

Does desertcart have 100% authentic UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ online?

desertcart buys UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ directly from the authorized agents and verifies the authenticity of all the products. We have a dedicated team who specialize in quality control and efficient delivery. We also provide a free 14 days return policy along with 24/7 customer support experience.

Is it safe to buy UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ on desertcart?

Yes, it is absolutely safe to buy UCTRONICS 3.5 Inch HDMI TFT LCD Display with Touch Screen, Touch Pen, 3 Heat Sinks for Raspberry Pi 3 Model B, Pi 2 Model B, Pi B+ from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.

uctronics 3.5 inch hdmi tft lcd display manufacturer

The 3.5 inch touch screen is the same size as the standard Raspberry Pi model B/B+, and well mates with the Raspberry Pi boards. With its touch screen and split audio from the HDMI input, it is ideal for portable devices and multimedia projects, and it is a replacement for a heavy and bulky HDMI monitor, keyboard and mice.

1pcs 3.5 inch HDMI touch screen1pcs touch pen1pcs HDMI to HDMI converter3pcs heat sinks for Raspberry Pi board1pcs Micro HDMI to HDMI AdapterNote: The raspberry pi shown in the picture is not included!

Features: 480 x 320 display resolution (HDMI input resolution supports 480*320 to 1920*1280); Refreshes up to 30 frames per second; 3.5mm audio/headphone jack; The backlight can be adjusted and turned on/off.

Effective Cooling Design: It comes with a copper heatsink for the CPU, the display board is mounted a 25mm×25mm brushless quiet fan, and cuts for air outlets, all of them cool your pi 4 effectively.

Plug & Play: Don"t need to reboot the Pi when connected, it doesn"t require any external power supply, and it displays with no need for the driver. Please note the touch function needs to install the driver.

uctronics 3.5 inch hdmi tft lcd display manufacturer

Video-Audio Joy: 480 x 320 display resolution (HDMI input resolution supports 480*320 to 1920*1280 any resolution); 3.5mm audio/headphone jack makes the display no longer silent. | Perfect for Raspberry Pi 4: Micro HDMI adapter included, hassle-free connection to Raspberry Pi 4; Also compatible with all other Model A&B series. | More Features: Supports HDMI audio split; Refreshes up to 60 frames per second; The backlight can be turned on/off | Plug & Play: Don’t need to reboot the Pi when connected and it doesn’t require any external power supply. | Portable Touchscreen: the overall dimension of this tiny screen is 3.38”×2.20” (86mm×56mm), and the included stylus, heatsinks, and HDMI adapters make this kit completed and convenient to use.

uctronics 3.5 inch hdmi tft lcd display manufacturer

In order to create a small computer of your own, all you need to have is a raspberry pi board, a display unit and a keyboard (optional). If you are able to find the perfect touch screen, you can create a great DIY computer of your own.

Today, we are going to list down all of the best Raspberry Pi compatible LCD screens available online. These screens are ranked and rated based on the following factors.

Rule of thumb, larger the better. The best of the LCD screens for a Raspberry Pi we got here have a 1080P high resolution and is a full touch screen. There are higher variants available as well but we believe that this is a standard benchmark.

This refers to the ports and other connectivity options through which you can set up the screen to the board. It includes the standard HDMI pots to USB ports and even WiFi compatibility as well. Higher the number of I/O ports, the better

First on our list is an LCD touch screen straight from the official house of Raspberry Pi. It is a 7 inches large touch display that is specifically created for the Raspberry Pi board.

Next on our list is a screen by Kuman, one of the top manufacturer’s in the realm of hobby electronics. This one too is a 7 inches large TFT capacitative touch screen.

Yet another Kuman 7 inches HD Display Screen, this one is quite different from the previous Kuman display screen. That difference is not just in the screen resolution but in a wide range of other things as well.

Next on our list is 1 large 10.1 inches LED Display. The Elecrow HDMI supported LED display monitor supports all the old and new Raspberry Pi models like the Pi 4, 3, 2, and B, B+ models as well.

Apart from Raspberry Pi models, it is also compatible with PS3, PS4, WiiU and XBOX360 and can also be used for video, for car headrest and as a small display for medical equipment too

In this entry, SunFounder comes with a 10.1 inches large HDMI supported IPS LCD display monitor. It has a high resolution of 1280 X 800 pixels and also comes with a camera holder stand.

Next on our list is another SunFounder Raspberry Pi Compatible screen. This one is a simple 7 inches large LCD Display screen with built-in speakers too.

Next product on our list is from a brand called ELECROW. Their LCD screen comes with 5-inches size display and high-resolution picture. It is a resistive touchscreen monitor and comes with a touch pen for easy use.

This LCD touch screen is from SunFounder which has similar dimensions and aesthetical aspect as the previous 10.1 inches Screen by SunFounder and are essentially the same. This is just an older model of the same product.

The last but not least product from our list is a 7-inch LDC touch screen for Raspberry Pi. It supports mini PC like Raspberry 1B+ / 2B / 3B / 3A+/ 3B+/ 4B.

Given below are some of the factors that most of the people ask for while purchasing the Raspberry Pi display kits. Get to know about them in detail to make a good choice.

The very first one in the buying guide list is the Price. The price of the displays tends to be more expensive because it comes with the number of features like resolution, size and many more.

But the problem arises when you are unable to afford the money or willing to use the item to fulfill your basic needs. For them, we provided the raspberry pi display kits that come with amazing features at very low prices. Read the product information to know which product best suits your requirements.

Brightness refers to the quality or state of reflecting a light. In other words, brightness can be expressed as the perception elicited by laminating a visual target. It can also be expressed by considering power over a specific area on the monitor. Most of the displays have 200cd/sq.m which is sufficient for a normal usage.

Contrast Ratiodefines the ratio of luminance of the brightest to the darkest color. Generally, the displays are capable of producing high contrast ratio as per the desired. You should also know that there are no specific standards to measure the contrast ratio.

Display resolution or the modes is the number of distinct pixels in each dimension that can be displayed. It is controlled by many of the factors like CRT, flat-panel displays, and LCDs. If the resolution you opt is not compatible then the monitors will stretch and shrink to fit in the specified. It turns result in a great loss of the signal and quality.

Like regular displays, the raspberry pi displays make effective communication between the peripheral devices. For this, it makes use of the connectors. The most common connectors are HDMI, VGA & AV-input. Each of them is illustrated below.

HDMI port is an interface of audio-video for transmitting the data from uncompressed data to compressed data from an HDMI source device. It can just transmit the mid-range data of audio/video signals.

A VGA is a 3-row connector that is provided on many of the display devices like computers, TVs, laptops, and projectors. It is a good quality cable that supports the signal within the bandwidth range of (2-MHz-500MHz).

In this section, we are going to show you exactly how you can connect your Raspberry Pi to an external display screen. First, let us look at how to connect it using an HDMI port

Using the HDMI port to connect a Raspberry Pi to the LCD screen is one of the simplest and easiest ways to go. Here, all you need to do is to take an HDMI cable and plug it on both sides of the devices. One end goes into the HDMI port of the LCD screen and the other one will go right into the Raspberry Pi’s HDMI port. This set up does not require any special drivers software nor does it require any format of post plugin set up.

Raspberry Pi comes with a tiny 15 pin ribbon cable connector that can support a Display Serial Interface or a DSI standard. This enables fast communication between an LCD screen and the chip.

You can use the Raspberry Pi 7 inch touchscreen display by connecting it with the Raspberry Pi board. All you need to do is to first attach the raspberry pi to the back of the display screen using standoffs and screws that come with the kit.

Now connect the Pi board to the ribbon cable and the display control board. Note the ribbon cable pin orientation is proper or not. After this, carefully release the tabs on both sides of the socket so that the cable slides all way. Now secure this by pressing down on the tabs till you hear a click of a lock. Make sure you are not forcing the cable to lock.

If the screen does not automatically turn on when the power source is connected, you may have to connect an existing HDMI display for updating your Raspberry Pi board and then reboot the device.

The Raspberry Pi 7″ Touch Screen Display from the house of Raspberry has a great colour output of 800 x 400 pixels and its capacitive touch is multi-fingered up to 10 fingers. That and the fact that it is specifically built for Raspberry pi Boards by the Raspberry company makes it the best Raspberry Pi LCD screen for your DIY Raspberry pi kit.

uctronics 3.5 inch hdmi tft lcd display manufacturer

Frequently Asked Questions About UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ in Seychelles

Where can I buy UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ online at the best price in the Seychelles?

desertcart is the best online shopping platform where you can buy UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ from renowned brand(s). desertcart delivers the most unique and largest selection of products from across the world especially from the US, UK and India at best prices and the fastest delivery time.

Is UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ available and ready for delivery in Seychelles?

desertcart ships the UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ to and more cities in Seychelles. Get unlimited free shipping in 164+ countries with desertcart Plus membership. We can deliver the UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ speedily without the hassle of shipping, customs or duties.

Does desertcart have 100% authentic UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ online?

desertcart buys UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ directly from the authorized agents and verifies the authenticity of all the products. We have a dedicated team who specialize in quality control and efficient delivery. We also provide a free 14 days return policy along with 24/7 customer support experience.

Yes, it is absolutely safe to buy UCTRONICS 3.5 Inch Touch Screen for Raspberry Pi 4, HDMI TFT LCD Mini Display with Stylus Pen for Pi 4 B, 3 B+ from desertcart, which is a 100% legitimate site operating in 164 countries. Since 2014, desertcart has been delivering a wide range of products to customers and fulfilling their desires. You will find several positive reviews by desertcart customers on portals like Trustpilot, etc. The website uses an HTTPS system to safeguard all customers and protect financial details and transactions done online. The company uses the latest upgraded technologies and software systems to ensure a fair and safe shopping experience for all customers. Your details are highly secure and guarded by the company using encryption and other latest softwares and technologies.

uctronics 3.5 inch hdmi tft lcd display manufacturer

Color:3.5 inch HDMI LCD Display with SD card The 3.5 inch touch screen is the same size as the standard Raspberry Pi model B/B+, and well mates with the Raspberry Pi boards. With its touch screen and split audio from the HDMI input, it is ideal for portable devices and multimedia projects, and it is a replacement for a heavy and bulky HDMI monitor, keyboard and mice. FeaturesTouch function support system: Raspbian. Display function support system: Raspbian, kali, ubuntu, Retropie, PiPlayer, windows10 etcLCD Display Resolution: 480 x 320 pixelsHDMI Input Resolution support: 480x320 ~ 1920x1280Dimension: 55.98 x 85.60 mmSupport plug and play, touch screen, game and videoAutomatic driver installation scriptHeat sinks will protect your motherboard from overheating.Package Including1pcs 3.5 inch HDMI touch screen1pcs touch pen1pcs 16GB SD card1pcs HDMI to HDMI converter3pcs heat sinksNote: 1. The raspberry pi shown in the picture is not included.2. Recommend resolution: 480 * 320, 800 * 480, 800 * 600. Those resolutions higher than 480*320 will be compressed to 480*320 in LCD display. When resolution is compressed, the screen display ratio might be changed accordingly.Too High resolution will cause module power consumption rises.3. Please use the SD card which is with pre-installed driver and system directly.4. For the Male to Female Ribbon GPIO Cable to connect Raspberry Pi and 3.5inch Touch Screen, check ASIN: B07D991KMR.

uctronics 3.5 inch hdmi tft lcd display manufacturer

In these videos, the SPI (GPIO) bus is referred to being the bottleneck. SPI based displays update over a serial data bus, transmitting one bit per clock cycle on the bus. A 320x240x16bpp display hence requires a SPI bus clock rate of 73.728MHz to achieve a full 60fps refresh frequency. Not many SPI LCD controllers can communicate this fast in practice, but are constrained to e.g. a 16-50MHz SPI bus clock speed, capping the maximum update rate significantly. Can we do anything about this?

The fbcp-ili9341 project started out as a display driver for the Adafruit 2.8" 320x240 TFT w/ Touch screen for Raspberry Pi display that utilizes the ILI9341 controller. On that display, fbcp-ili9341 can achieve a 60fps update rate, depending on the content that is being displayed. Check out these videos for examples of the driver in action:

Given that the SPI bus can be so constrained on bandwidth, how come fbcp-ili9341 seems to be able to update at up to 60fps? The way this is achieved is by what could be called adaptive display stream updates. Instead of uploading each pixel at each display refresh cycle, only the actually changed pixels on screen are submitted to the display. This is doable because the ILI9341 controller, as many other popular controllers, have communication interface functions that allow specifying partial screen updates, down to subrectangles or even individual pixel levels. This allows beating the bandwidth limit: for example in Quake, even though it is a fast pacing game, on average only about 46% of all pixels on screen change each rendered frame. Some parts, such as the UI stay practically constant across multiple frames.

Good old interlacing is added into the mix: if the amount of pixels that needs updating is detected to be too much that the SPI bus cannot handle it, the driver adaptively resorts to doing an interlaced update, uploading even and odd scanlines at subsequent frames. Once the number of pending pixels to write returns to manageable amounts, progressive updating is resumed. This effectively doubles the maximum display update rate. (If you do not like the visual appearance that interlacing causes, it is easy to disable this by uncommenting the line #define NO_INTERLACING in file config.h)

A number of other micro-optimization techniques are used, such as batch updating rectangular spans of pixels, merging disjoint-but-close spans of pixels on the same scanline, and latching Column and Page End Addresses to bottom-right corner of the display to be able to cut CASET and PASET messages in mid-communication.

This driver does not utilize the notro/fbtft framebuffer driver, so that needs to be disabled if active. That is, if your /boot/config.txt file has lines that look something like dtoverlay=pitft28r, ..., dtoverlay=waveshare32b, ... or dtoverlay=flexfb, ..., those should be removed.

If you have been running existing fbcp driver, make sure to remove that e.g. via a sudo pkill fbcp first (while running in SSH prompt or connected to a HDMI display), these two cannot run at the same time. If /etc/rc.local or /etc/init.d contains an entry to start up fbcp at boot, that directive should be deleted.

When using one of the displays that stack on top of the Pi that are already recognized by fbcp-ili9341, you don"t need to specify the GPIO pin assignments, but fbcp-ili9341 code already has those. Pass one of the following CMake directives for the hats:

-DPIRATE_AUDIO_ST7789_HAT=ON: If specified, targets a Pirate Audio 240x240, 1.3inch IPS LCD display HAT for Raspberry Pi with ST7789 display controller

-DKEDEI_V63_MPI3501=ON: If specified, targets a KeDei 3.5 inch SPI TFTLCD 480*320 16bit/18bit version 6.3 2018/4/9 display with MPI3501 display controller.

If you connected wires directly on the Pi instead of using a Hat from the above list, you will need to use the configuration directives below. In addition to specifying the display, you will also need to tell fbcp-ili9341 which GPIO pins you wired the connections to. To configure the display controller, pass one of:

-DILI9341=ON: If you are running on any other generic ILI9341 display, or on Waveshare32b display that is standalone and not on the FreeplayTech CM3/Zero device, pass this flag.

-DILI9340=ON: If you have a ILI9340 display, pass this directive. ILI9340 and ILI9341 chipsets are very similar, but ILI9340 doesn"t support all of the features on ILI9341 and they will be disabled or downgraded.

-DILI9486L=ON: If you have a ILI9486L display, pass this directive. Note that ILI9486 and ILI9486L are quite different, mutually incompatible controller chips, so be careful here identifying which one you have. (or just try both, should not break if you misidentified)

-DGPIO_TFT_DATA_CONTROL=number: Specifies/overrides which GPIO pin to use for the Data/Control (DC) line on the 4-wire SPI communication. This pin number is specified in BCM pin numbers. If you have a 3-wire SPI display that does not have a Data/Control line, set this value to -1, i.e. -DGPIO_TFT_DATA_CONTROL=-1 to tell fbcp-ili9341 to target 3-wire ("9-bit") SPI communication.

-DGPIO_TFT_RESET_PIN=number: Specifies/overrides which GPIO pin to use for the display Reset line. This pin number is specified in BCM pin numbers. If omitted, it is assumed that the display does not have a Reset pin, and is always on.

-DGPIO_TFT_BACKLIGHT=number: Specifies/overrides which GPIO pin to use for the display backlight line. This pin number is specified in BCM pin numbers. If omitted, it is assumed that the display does not have a GPIO-controlled backlight pin, and is always on. If setting this, also see the #define BACKLIGHT_CONTROL option in config.h.

fbcp-ili9341 always uses the hardware SPI0 port, so the MISO, MOSI, CLK and CE0 pins are always the same and cannot be changed. The MISO pin is actually not used (at the moment at least), so you can just skip connecting that one. If your display is a rogue one that ignores the chip enable line, you can omit connecting that as well, or might also be able to get away by connecting that to ground if you are hard pressed to simplify wiring (depending on the display).

To get good performance out of the displays, you will drive the displays far out above the rated speed specs (the rated specs yield about ~10fps depending on display). Due to this, you will need to explicitly configure the target speed you want to drive the display at, because due to manufacturing variances each display copy reaches a different maximum speed. There is no "default speed" that fbcp-ili9341 would use. Setting the speed is done via the option

-DSPI_BUS_CLOCK_DIVISOR=even_number: Sets the clock divisor number which along with the Pi core_freq= option in /boot/config.txt specifies the overall speed that the display SPI communication bus is driven at. SPI_frequency = core_freq/divisor. SPI_BUS_CLOCK_DIVISOR must be an even number. Default Pi 3B and Zero W core_freq is 400MHz, and generally a value -DSPI_BUS_CLOCK_DIVISOR=6 seems to be the best that a ILI9341 display can do. Try a larger value if the display shows corrupt output, or a smaller value to get higher bandwidth. See ili9341.h and waveshare35b.h for data points on tuning the maximum SPI performance. Safe initial value could be something like -DSPI_BUS_CLOCK_DIVISOR=30.

-DBACKLIGHT_CONTROL=ON: If set, enables fbcp-ili9341 to control the display backlight in the given backlight pin. The display will go to sleep after a period of inactivity on the screen. If not, backlight is not touched.

-DDISPLAY_CROPPED_INSTEAD_OF_SCALING=ON: If set, and source video frame is larger than the SPI display video resolution, the source video is presented on the SPI display by cropping out parts of it in all directions, instead of scaling to fit.

-DDISPLAY_BREAK_ASPECT_RATIO_WHEN_SCALING=ON: When scaling source video to SPI display, scaling is performed by default following aspect ratio, adding letterboxes/pillarboxes as needed. If this is set, the stretching is performed breaking aspect ratio.

-DDISPLAY_SWAP_BGR=ON: If this option is passed, red and blue color channels are reversed (RGB<->BGR) swap. Some displays have an opposite color panel subpixel layout that the display controller does not automatically account for, so define this if blue and red are mixed up.

-DDISPLAY_INVERT_COLORS=ON: If this option is passed, pixel color value interpretation is reversed (white=0, black=31/63). Default: black=0, white=31/63. Pass this option if the display image looks like a color negative of the actual colors.

-DLOW_BATTERY_PIN=: Specifies a GPIO pin that can be polled to get the battery state. By default, when this is set, a low battery icon will be displayed if the pin is pulled low (see config.h for ways in which this can be tweaked).

Here is a full example of what to type to build and run, if you have the Adafruit 2.8" 320x240 TFT w/ Touch screen for Raspberry Pi with ILI9341 controller:

If the above does not work, try specifying -DSPI_BUS_CLOCK_DIVISOR=8 or =10 to make the display run a little slower, or try with -DUSE_DMA_TRANSFERS=OFF to troubleshoot if DMA might be the issue. If you are using another display controller than ILI9341, using a much higher value, like 30 or 40 may be needed. When changing CMake options, you can reissue the CMake directive line without having to reclone or recreate the build directory. However you may need to manually delete file CMakeCache.txt between changing options to avoid CMake remembering old settings.

If the size of the default HDMI output /dev/fb0 framebuffer differs from the resolution of the display, the source video size will by default be rescaled to fit to the size of the SPI display. fbcp-ili9341 will manage setting up this rescaling if needed, and it will be done by the GPU, so performance should not be impacted too much. However if the resolutions do not match, small text will probably appear illegible. The resizing will be done in aspect ratio preserving manner, so if the aspect ratios do not match, either horizontal or vertical black borders will appear on the display. If you do not use the HDMI output at all, it is probably best to configure the HDMI output to match the SPI display size so that rescaling will not be needed. This can be done by setting the following lines in /boot/config.txt:

These lines hint native applications about the default display mode, and let them render to the native resolution of the TFT display. This can however prevent the use of the HDMI connector, if the HDMI connected display does not support such a small resolution. As a compromise, if both HDMI and SPI displays want to be used at the same time, some other compatible resolution such as 640x480 can be used. See Raspberry Pi HDMI documentation for the available options to do this.

The refresh speed of the display is dictated by the clock speed of the SPI bus that the display is connected to. Due to the way the BCM2835 chip on Raspberry Pi works, there does not exist a simple speed=xxx Mhz option that could be set to define the bus speed. Instead, the SPI bus speed is derived from two separate parameters: the core frequency of the BCM2835 SoC in general (core_freq in /boot/config.txt), and the SPI peripheral CDIV (Clock DIVider) setting. Together, the resulting SPI bus speed is then calculated with the formula SPI_speed=core_freq/CDIV.

Adjust the CDIV value by passing the directive -DSPI_BUS_CLOCK_DIVISOR=number in CMake command line. Possible values are even numbers 2, 4, 6, 8, .... Note that since CDIV appears in the denominator in the formula for SPI_speed, smaller values result in higher bus speeds, whereas higher values make the display go slower. Initially when you don"t know how fast your display can run, try starting with a safe high setting, such as -DSPI_BUS_CLOCK_DIVISOR=30, and work your way to smaller numbers to find the maximum speed the display can cope with. See the table at the end of the README for specific observed maximum bus speeds for different displays.

Perhaps a bit counterintuitively, underclock the core. Setting a smaller core frequency than the default turbo 400MHz can enable using a smaller clock divider to get a higher resulting SPI bus speed. For example, if with default core_freq=400 SPI CDIV=8 works (resulting in SPI bus speed 400MHz/8=50MHz), but CDIV=6 does not (400MHz/6=66.67MHz was too much), you can try lowering core_freq=360 and set CDIV=6 to get an effective SPI bus speed of 360MHz/6=60MHz, a middle ground between the two that might perhaps work. Balancing core_freq= and CDIV options allows one to find the maximum SPI bus speed up to the last few kHz that the display controller can tolerate. One can also try the opposite direction and overclock, but that does then of course have all the issues that come along when overclocking. Underclocking does have the drawback that it makes the Pi run slower overall, so this is certainly a tradeoff.

On the other hand, it is desirable to control how much CPU time fbcp-ili9341 is allowed to use. The default build settings are tuned to maximize the display refresh rate at the expense of power consumption on Pi 3B. On Pi Zero, the opposite is done, i.e. by default the driver optimizes for battery saving instead of maximal display update speed. The following options can be controlled to balance between these two:

If your SPI display bus is able to run really fast in comparison to the size of the display and the amount of content changing on the screen, you can try enabling #define UPDATE_FRAMES_IN_SINGLE_RECTANGULAR_DIFF option in config.h to reduce CPU usage at the expense of increasing the number of bytes sent over the bus. This has been observed to have a big effect on Pi Zero, so is worth checking out especially there.

If the SPI display bus is able to run really really really fast (or you don"t care about frame rate, but just about low CPU usage), you can try enabling #define UPDATE_FRAMES_WITHOUT_DIFFING option in config.h to forgo the adaptive delta diffing option altogether. This will revert to naive full frame updates for absolutely minimum overall CPU usage.

In display.h there is an option #define TARGET_FRAME_RATE . Setting this to a smaller value, such as 30, will trade refresh rate to reduce CPU consumption.

A pleasing aspect of fbcp-ili9341 is that it introduces very little latency overhead: on a 119Hz refreshing ILI9341 display, fbcp-ili9341 gets pixels as response from GPIO input to screen in well less than 16.66 msecs time. I only have a 120fps recording camera, so can"t easily measure delays shorter than that, but rough statistical estimate of slow motion video footage suggests this delay could be as low as 2-3 msecs, dominated by the ~8.4msecs panel refresh rate of the ILI9341.

This does not mean that overall input to display latency in games would be so immediate. Briefly testing a NES emulated game in Retropie suggests a total latency of about 60-80 msecs. This latency is caused by the NES game emulator overhead and extra latency added by Linux, DispmanX and GPU rendering, and GPU framebuffer snapshotting. (If you ran fbcp-ili9341 as a static library bypassing DispmanX and the GPU stack, directly linking your GPIO input and application logic into fbcp-ili9341, you would be able to get down to this few msecs of overall latency, like shown in the above GPIO input video)

Interestingly, fbcp-ili9341 is about ~33msecs faster than a cheap 3.5" KeDei HDMI display. I do not know if this is a result of the KeDei HDMI display specifically introducing extra latency, or if all HDMI displays connected to the Pi would have similar latency overhead. An interesting question is also how SPI would compare with DPI connected displays on the Pi.

Unfortunately a limitation of SPI connected displays is that the VSYNC line signal is not available on the display controllers when they are running in SPI mode, so it is not possible to do vsync locked updates even if the SPI bus bandwidth on the display was fast enough. For example, the 4 ILI9341 displays I have can all be run faster than 75MHz so SPI bus bandwidth-wise all of them would be able to update a full frame in less than a vsync interval, but it is not possible to synchronize the updates to vsync since the display controllers do not report it. (If you do know of a display that does actually expose a vsync clock signal even in SPI mode, you can try implementing support to locking on to it)

You can however choose between two distinct types of tearing artifacts: straight line tearing and diagonal tearing. Whichever looks better is a bit subjective, which is why both options exist. I prefer the straight line tearing artifact, it seems to be less intrusive than the diagonal tearing one. To toggle this, edit the option #define DISPLAY_FLIP_ORIENTATION_IN_SOFTWARE in config.h. When this option is enabled, fbcp-ili9341 produces straight line tearing, and consumes a tiny few % more CPU power. By default Pi 3B builds with straight line tearing, and Pi Zero with the faster diagonal tearing. Check out the video Latency and tearing test #2: GPIO input to display latency in fbcp-ili9341 and tearing modes to see in slow motion videos how these two tearing modes look like.

Another option that is known to affect how the tearing artifact looks like is the internal panel refresh rate. For ILI9341 displays this refresh rate can be adjusted in ili9341.h, and this can be set to range between ILI9341_FRAMERATE_61_HZ and ILI9341_FRAMERATE_119_HZ (default). Slower refresh rates produce less tearing, but have higher input-to-display latency, whereas higher refresh rates will result in the opposite. Again visually the resulting effect is a bit subjective.

To get tearing free updates, you should use a DPI display, or a good quality HDMI display. Beware that cheap small 3.5" HDMI displays such as KeDei do also tear - that is, even if they are controlled via HDMI, they don"t actually seem to implement VSYNC timed internal operation.

Having no vsync is not all bad though, since with the lack of vsync, SPI displays have the opportunity to obtain smoother animation on content that is not updating at 60Hz. It is possible that content on the SPI display will stutter even less than what DPI or HDMI displays on the Pi can currently provide (although I have not been able to test this in detail, except for the KeDei case above).

The main option that affects smoothness of display updates is the #define USE_GPU_VSYNC line in config.h. If this is enabled, then the internal Pi GPU HDMI vsync clock is used to drive frames onto the display. The Pi GPU clock runs at a fixed rate that is independent of the content. This rate can be discovered by running tvservice -s on the Pi console, and is usually 59Hz or 60Hz. If your application renders at this rate, animation will look smooth, but if not, there will be stuttering. For example playing a PAL NES game that updates at 50Hz with HDMI clock set at 60Hz will cause bad microstuttering in video output if #define USE_GPU_VSYNC is enabled.

If USE_GPU_VSYNC is disabled, then a busy spinning GPU frame snapshotting thread is used to drive the updates. This will produce smoother animation in content that does not maintain a fixed 60Hz rate. Especially in OpenTyrian, a game that renders at a fixed 36fps and has slowly scrolling scenery, the stuttering caused by USE_GPU_VSYNC is particularly visible. Running on Pi 3B without USE_GPU_VSYNC enabled produces visually smoother looking scrolling on an Adafruit 2.8" ILI9341 PiTFT set to update at 119Hz, compared to enabling USE_GPU_VSYNC on the same setup. Without USE_GPU_VSYNC, the dedicated frame polling loop thread "finds" the 36Hz update rate of the game, and then pushes pixels to the display at this exact rate. This works nicely since SPI displays disregard vsync - the result is that frames are pushed out to the SPI display immediately as they become available, instead of pulling them at a fixed 60Hz rate like HDMI does.

The codebase captures screen framebuffers by snapshotting via the VideoCore vc_dispmanx_snapshot() API, and the obtained pixels are then routed on to the SPI-based display. This kind of polling is performed, since there does not exist an event-based mechanism to get new frames from the GPU as they are produced. The result is inefficient and can easily cause stuttering, since different applications produce frames at different paces. Ideally the code would ask the VideoCore API to receive finished frames in callback notifications immediately after they are rendered, but this kind of functionality does not exist in the current GPU driver stack. In the absence of such event delivery mechanism, the code has to resort to polling snapshots of the display framebuffer using carefully timed heuristics to balance between keeping latency and stuttering low, while not causing excessive power consumption. These heuristics keep continuously guessing the update rate of the animation on screen, and they have been tuned to ensure that CPU usage goes down to 0% when there is no detected activity on screen, but it is certainly not perfect. This GPU limitation is discussed at raspberrypi/userland#440. If you"d like to see fbcp-ili9341 operation reduce latency, stuttering and power consumption, please throw a (kind!) comment or a thumbs up emoji in that bug thread to share that you care about this, and perhaps Raspberry Pi engineers might pick the improvement up on the development roadmap. If this issue is resolved, all of the #define USE_GPU_VSYNC, #define SAVE_BATTERY_BY_PREDICTING_FRAME_ARRIVAL_TIMES and #define SELF_SYNCHRONIZE_TO_GPU_VSYNC_PRODUCED_NEW_FRAMES hacks from the previous section could be deleted from the driver, hopefully leading to a best of all worlds scenario without drawbacks.

The speed of the SPI bus is linked to the BCM2835 core frequency. This frequency is at 250MHz by default (on e.g. Pi Zero, 3B and 3B+), and under CPU load, the core turbos up to 400MHz. This turboing directly scales up the SPI bus speed by 400/250=+60% as well. Therefore when choosing the SPI CDIV value to use, one has to pick one that works for both idle and turbo clock speeds. Conversely, the BCM core reverts to non-turbo speed when there is only light CPU load active, and this slows down the display, so if an application is graphically intensive but light on CPU, the SPI display bus does not get a chance to run at maximum speeds. A way to work around this is to force the BCM core to always stay in its turbo state with force_turbo=1 option in /boot/config.txt, but this has an unfortunate effect of causing the ARM CPU to always run in turbo speed as well, consuming excessive amounts of power. At the time of writing, there does not yet exist a good solution to have both power saving and good performance. This limitation is being discussed in more detail at raspberrypi/firmware#992.

By default fbcp-ili9341 builds with a statistics overlay enabled. See the video fbcp-ili9341 ported to ILI9486 WaveShare 3.5" (B) SpotPear 320x480 SPI display to find details on what each field means. Build with CMake option -DSTATISTICS=0 to disable displaying the statistics. You can also try building with CMake option -DSTATISTICS=2 to show a more detailed frame delivery timings histogram view, see screenshot and video above.

The fbcp part in the name means framebuffer copy; specifically for the ILI9341 controller. fbcp-ili9341 is not actually a framebuffer copying driver, it does not create a secondary framebuffer that it would copy bytes across to from the primary framebuffer. It is also no longer a driver only for the ILI9341 controller. A more appropriate name might be userland-raspi-spi-display-driver or something like that, but the original name stuck.

Edit the file config.h and comment out the line #define DISPLAY_OUTPUT_LANDSCAPE. This will make the display output in portrait mode, effectively rotating it by 90 degrees. Note that this only affects the pixel memory reading mode of the display. It is not possible to change the panel scan order to run between landscape and portrait, the SPI displays typically always scan in portrait mode. The result is that it will change the panel vsync tearing mode from "straight line tearing" over to "diagonal tearing" (see the section About Tearing above).

If you do not want to have diagonal tearing, but would prefer straight line tearing, then additionally enable the option #define DISPLAY_FLIP_ORIENTATION_IN_SOFTWARE in config.h. That will restore straight line tearing, but it will also increase overall CPU consumption.

Enable the option #define DISPLAY_ROTATE_180_DEGREES in config.h. This should rotate the SPI display to show up the other way around, while keeping the HDMI connected display orientation unchanged. Another option is to utilize a /boot/config.txt option display_rotate=2, which rotates both the SPI output and the HDMI output.

Note that the setting DISPLAY_ROTATE_180_DEGREES only affects the pixel memory reading mode of the display. It is not possible to flip the panel scan to run inverted by 180 degrees. This means that adjusting these settings will also have effects of changing the visual appearance of the vsync tearing artifact. If you have the ability to mount the display 180 degrees around in your project, it is recommended to do that instead of using the DISPLAY_ROTATE_180_DEGREES option.

If the display controller is one of the currently tested ones (see the list above), and it is wired up to run using 4-line SPI, then it should work. Pay attention to configure the Data/Control GPIO pin number correctly, and also specify the Reset GPIO pin number if the device has one.

If the display controller is not one of the tested ones, it may still work if it is similar to one of the existing ones. For example, ILI9340 and ILI9341 are practically the same controller. You can just try with a specific one to see how it goes.

If fbcp-ili9341 does not support your display controller, you will have to write support for it. fbcp-ili9341 does not have a "generic SPI TFT driver routine" that might work across multiple devices, but needs specific code for each. If you have the spec sheet available, you can ask for advice, but please do not request to add support to a display controller "blind", that is not possible.

Perhaps. This is a more recent experimental feature that may not be as stable, and there are some limitations, but 3-wire ("9-bit") SPI display support is now available. If you have a 3-wire SPI display, i.e. one that does not have a Data/Control (DC) GPIO pin to connect, configure it via CMake with directive -DGPIO_TFT_DATA_CONTROL=-1 to tell fbcp-ili9341 that it should be driving the display with 3-wire protocol.

The performance option ALL_TASKS_SHOULD_DMA is currently not supported, there is an issue with DMA chaining that prevents this from being enabled. As result, CPU usage on 3-wire displays will be slightly higher than on 4-wire displays.

The performance option OFFLOAD_PIXEL_COPY_TO_DMA_CPP is currently not supported. As a result, 3-wire displays may not work that well on single core Pis like Pi Zero.

This has only been tested on my Adafruit SSD1351 128x96 RGB OLED display, which can be soldered to operate in 3-wire SPI mode, so testing has not been particularly extensive.

Displays that have a 16-bit wide command word, such as ILI9486, do not currently work in 3-wire ("17-bit") mode. (But ILI9486L has 8-bit command word, so that does work)

I have done close to everything possible to my displays - cut power in middle of operation, sent random data and command bytes, set their operating voltage commands and clock timings to arbitrary high and low values, tested unspecified and reserved command fields, and driven the displays dozens of MHz faster than they managed to keep up with, and I have not yet done permanent damage to any of my displays or Pis.

Easiest way to do permanent damage is to fail at wiring, e.g. drive 5 volts if your display requires 3.3v, or short a connection, or something similar.

The one thing that fbcp-ili9341 stays clear off is that it does not program the non-volatile memory areas of any of the displays. Therefore a hard power off on a display should clear all performed initialization and reset the display to its initial state at next power on.

Yes, fbcp-ili9341 shows the output of the HDMI display on the SPI screen, and both can be attached at the same time. A HDMI display does not have to be connected however, although fbcp-ili9341 operation will still be affected by whatever HDMI display mode is configured. Check out tvservice -s on the command line to check what the current DispmanX HDMI output mode is.

At the moment fbcp-ili9341 has been developed to only display the contents of the main DispmanX GPU framebuffer over to the SPI display. That is, the SPI display will show the same picture as the HDMI output does. There is no technical restriction that requires this though, so if you know C/C++ well, it should be a manageable project to turn fbcp-ili9341 to operate as an offscreen display library to show a completely separate (non-GPU-accelerated) image than what the main HDMI display outputs. For example you could have two different outputs, e.g. a HUD overlay, a dashboard for network statistics, weather, temps, etc. showing on the SPI while having the main Raspberry Pi desktop on the HDMI.

double check that the display controller is really what you expected. Trying to drive with the display with wrong initialization code usually results in the display not reacting, and the screen stays white,

shut down and physically power off the Pi and the display in between multiple tests. Driving a display with a wrong initialization routine may put it in a bad state that needs a physical power off for it to reset,

if there is a reset pin on the display, make sure to pass it in CMake line. Or alternatively, try driving fbcp-ili9341 without specifying the reset pin,

make sure the display is configured to run 4-wire SPI mode, and not in parallel mode or 3-wire SPI mode. You may need to solder or desolder some connections or set a jumper to configure the specific driving mode. Support for 3-wire SPI displays does exist, but it is more limited and a bit experimental.

This suggests that the power line or the backlight line might not be properly connected. Or if the backlight connects to a GPIO pin on the Pi (and not a voltage pin), then it may be that the pin is not in correct state for the backlight to turn on. Most of the LCD TFT displays I have immediately light up their backlight when they receive power. The Tontec one has a backlight GPIO pin that boots up high but must be pulled low to activate the backlight. OLED displays on the other hand seem to stay all black even after they do get power, while waiting for their initialization to be performed, so for OLEDs it may be normal for nothing to show up on the screen immediately after boot.

If the backlight connects to a GPIO pin, you may need to define -DGPIO_TFT_BACKLIGHT= in CMake command line or config.h, and edit config.h to enable #define BACKLIGHT_CONTROL.

fbcp-ili9341 runs a clear screen command at low speed as first thing after init, so if that goes through, it is a good sign. Try increasing -DSPI_BUS_CLOCK_DIVISOR= CMake option to a higher number to see if the display driving rate was too fast. Or try disabling DMA with -DUSE_DMA_TRANSFERS=OFF to see if this might be a DMA conflict.

This suggests same as above, increase SPI bus divisor or troubleshoot disabling DMA. If DMA is detected to be the culprit, try changing up the DMA channels. Double check that /boot/config.txt does not have any dtoverlays regarding other SPI display drivers or touch screen controllers, and that it does NOT have a dtparam=spi=on line in it - fbcp-ili9341 does not use the Linux kernel SPI driver.

Check that the Pi is powered off of a power supply that can keep up with the voltage, and the low voltage icon is not showing up. (remove any avoid_warnings=1/2 directive from /boot/config.txt if that was used to get rid of warnings overlay, to check that voltage is good) It has been observed that if there is not enough power supplied, the display can be the first to starve, while the Pi might keep on running fine. Try removing turbo settings or lowering the clock speed if you have overclocked to verify that the display crash is not power usage related.

If the color channels are mixed (red is blue, blue is red, green is green) like shown on the left image, pass the CMake option -DDISPLAY_SWAP_BGR=ON to the build.

If the color intensities look wrong (white is black, black is white, color looks like a negative image) like seen in the middle image, pass the CMake option -DDISPLAY_INVERT_COLORS=ON to the build.

If the colors looks off in some other fashion, it is possible that the display is just being driven at a too high SPI bus speed, in which case try making the display run slower by choosing a higher -DSPI_BUS_CLOCK_DIVISOR= option to CMake. Especially on ILI9486 displays it has been observed that the colors on the display can become distorted if the display is run too fast beyond its maximum capability.

fbcp-ili9341 needs a few megabytes of GPU memory to function if DMA transfers are enabled. The gpu_mem boot config option dictates how much of the Pi"s memory area is allocated to the GPU. By default this is 64MB, which has been observed to not leave enough memory for fbcp-ili9341 if HDMI is run at 1080p. If this error happens, try increasing GPU memory to e.g. 128MB by adding a line gpu_mem=128 in /boot/config.txt.

As the number of supported displays, Raspberry Pi device models, Raspbian/Retropie/Lakka OS versions, accompanied C++ compiler versions and fbcp-ili9341 build options have grown in number, there is a combinatorial explosion of all possible build modes that one can put the codebase through, so it is not easy to keep every possible combo tested all the time. Something may have regressed or gotten outdated. Stay calm, and report a bug.

First, make sure the display is a 4-wire SPI and not a 3-wire one. A display is 4-wire SPI if it has a Data/Control (DC) GPIO line that needs connecting. Sometimes the D/C pin is labeled RS (Register Select). Support for 3-wire SPI displays does exist, but it is experimental and not nearly as well tested as 4-wire displays.

Second is the consideration about display speed. Below is a performance chart of the different displays I have tested. Note that these are sample sizes of one, I don"t know how much sample variance there exists. Also I don"t know if it is likely that there exists big differences between displays with same controller from different manufacturers. At least the different ILI9341 displays that I have are all quite consistent on performance, whether they are from Adafruit or WaveShare or from BuyDisplay.com.

In this list, Rated SPI Bus Speed is the maximum clock speed that the display controller is rated to run at. The Obtained Bus Speed column lists the fastest SPI bus speed that was achieved in practice, and the core_freq BCM Core speed and SPI Clock Divider CDIV setting that was used to achieve that rate. Note how most display controllers can generally be driven much faster than what they are officially rated at in their spec sheets.

The Frame Rate column shows the worst case frame rate when full screen updates are being performed. This occurs for example when watching fullscreen video (that is not a flat colored cartoon). Because fbcp-ili9341 only sends over the pixels that have changed, displays such as HX8357D and ILI9486 can still be used to play many games at 60fps. Retro games work especially well.

All the ILI9341 displays work nice and super fast at ~70-80MHz. My WaveShare 3.5" 320x480 ILI9486 display runs really slow compared to its pixel resolution, ~32MHz only. See fbcp-ili9341 ported to ILI9486 WaveShare 3.5" (B) SpotPear 320x480 SPI display for a video of this display in action. Adafruit"s 320x480 3.5" HX8357D PiTFTs is ~64% faster in comparison.

The ILI9486L controller based maithoga display runs a bit faster than ILI9486 WaveShare, 50MHz versus 31.88MHz, i.e. +56.8% bandwidth increase. However fps-wise maithoga reaches only 13.56 vs WaveShare 12.97 fps, because the bandwidth advantage is fully lost in pixel format differences: ILI9486L requires transmitting 24 bits per each pixel (R6G6B6 mode), whereas ILI9486 supports 16 bits per pixel R5G6B5 mode. This is reflected in the above chart refresh rate for the maithoga display (marked with a star).

If manufacturing variances turn out not to be high between copies, and you"d like to have a bigger 320x480 display instead of a 240x320 one, then it is recommended to avoid ILI9486, they indeed are slow.

The KeDei v6.3 display with MPI3501 controller takes the crown of being horrible, in all aspects imaginable. It is able to run at 33.33 MHz, but due to technical design limitations of the display (see #40), effective bus speed is halved, and only about 72% utilization of the remaining bus rate is achieved. DMA cannot be used, so CPU usage will be off the charts. Even though fbcp-ili9341 supports this display, level of support is expected to be poor, because the hardware design is a closed secret without open documentation publicly available from the manufacturer. Stay clear of KeDei or MPI3501 displays.

The Tontec MZ61581 controller based 320x480 3.5" display on the other hand can be driven insanely fast at up to 140MHz! These seem to be quite hard to come by though and they are expensive. Tontec seems to have gone out of business and for example the domain itontec.com from which the supplied instructions sheet asks to download original drivers from is no longer registered. I was able to find one from eBay for testing.

Search around, or ask the manufacturer of the display what the maximum SPI bus speed is for the device. This is the most important aspect to getting good frame rates, but unfortunately most web links never state the SPI speed rating, or they state it ridiculously low like in the spec sheets. Try and buy to see, or ask in some community forums from people who already have a particular display to find out what SPI bus speed it can achieve.

One might think that since Pi Zero is slower than a Pi 3, the SPI bus speed might not matter as much when running on a Pi Zero, but the effect is rather the opposite. To get good framerates on a Pi Zero, it should be paired with a display with as high SPI bus speed capability as possible. This is because the higher the SPI bus speed is, the more autonomously a DMA controller can drive it without CPU intervention. For the same reason, the interlacing technique does not (currently at least) perform well on a Pi Zero, so it is disabled there by default. ILI9341s run well on Pi Zero, ILI9486 on the other hand is quite difficult to combine with a Pi Zero.

Ultimately, it should be noted that parallel displays (DPI) are the proper method for getting fast framerates easily. SPI displays should only be preferred if display form factor is important and a desired product might only exist as SPI and not as DPI, or the number of GPIO pins that are available on the Pi is scarce that sacrificing dozens of pins to RGB data is not feasible.

Displays are generally manufactured to utilize one specific interfacing method, with the exception that some displays have a both I²C and SPI modes that can be configured via soldering.

If you would like to help push Raspberry Pi SPI display support further, there are always more things to do in the project. Here is a list of ideas and TODOs for recognized work items to contribute, roughly rated in order of increasing difficulty.

Vote up issue raspberrypi/userland/#440 if you would like to see Raspberry Pi Foundation improve CPU performance and reduce latency of the Pi when used with SPI displays.

Do you have a display with an unlisted or unknown display controller? Post close up photos of it to an issue in the tracker, and report if you were able to make it work with fbcp-ili9341?

Port fbcp-ili9341 to work as a static code library that one can link to another application for CPU-based drawing directly to display, bypassing inefficiencies and latency of the general purpose Linux DispmanX/graphics stack.

Improve existing display initialization routines with options to control e.g. gamma curves, color saturation, driving voltages, refresh rates or other potentially useful features that the display controller protocols expose.

Implement support for reading the MISO line for display identification numbers/strings for potentially interesting statistics (could some of the displays be autodetected this way?)

Improve support for 3-wire displays, e.g. for 1) "17-bit" 3-wire communication, 2) fix up SPI_3WIRE_PROTOCOL + ALL_TASKS_SHOULD_DMA to work together, or 3) fix up SPI_3WIRE_PROTOCOL + OFFLOAD_PIXEL_COPY_TO_DMA_CPP to work together.