lcd panel backlighting free sample

This graphic LCD module acts as a shield for Arduino Uno-style microcontrollers. The pins on the carrier board match up to the Arduino Uno"s ports, so the module simply presses on and is fully and correctly connected. Plus, this carrier board is able to be connected to either a 3.3v logic level or a 5v logic level device. (Read our blog post if you have questions about logic level.)

lcd panel backlighting free sample

LCD displays don’t emit light by themselves. They need a light source, and LED backlights are now dominating the market. In this article, Orient Display’s Bill Cheung provides a complete overview of LED backlight technology, discussing different types, driver technologies, color deviation, brightness options and more.

LCD (liquid crystal display) has long been the dominant technology in the display world. Certainly, there are some emerging competing display technologies—such as OLED (Organic Light Emitting Diode) [1] and micro-LED—that have the potential to threaten LCD’s position in the market. But both are currently only used for niche and high-end markets.

An LCD display can’t emit light by itself. In order to have an LCD display [2] used in a dim environment, a backlight has to be used as the light source. There are a few different technologies that are able to produce backlight ranging from EL (electroluminescent), CCFL (cold cathode fluorescent lamps) and LED (light emitting diode). However, a breakthrough in blue LED technology by Shuji Nakamura [3] led to LED backlights dominating the market.

One of the greatest benefits of LED backlighting is its long lifetime. Normally, LED lifetime can be measured with half-life when the original brightness decreases by 50%. With different LED chip manufacturing materials, technologies and environment used, the LED life can vary from 20,000 hours to well over 100,000 hours.

LED backlight can be classified as bottom (array) lit and side (edge) lit backlights, and each have their plusses and minuses. The advantages of the bottom lit (array) backlight are that it is uniform and bright. Its disadvantage is high current draw, thickness, heat dissipation and cost. Meanwhile, the advantages of the side lit backlight are its thinness, flexibility in design, low current and lower cost. The main disadvantage of the side lit backlight is its non-uniformity—hot spots can be seen from most of the side lit backlight from certain angle. Figure 4 compares the bottom lit and side (edge) lit backlight LCD types.

Now let’s look at LED backlight structures. An LED backlight can be simplified into layers starting with a LED chip, light guide, diffusor and reflector (Figure 5). This is the lowest cost structure. Except for some very low current efficiency LCD displays—such as utility meters, battery-powered clock, watch, GPS and so on—most LCD displays need backlights to be visible in the dim lighting. Most often the backlight is actually at the back of the LCD. In rare cases, this light can be done as front light. The traditional LCD structure with LED backlight shown in Figure 6.

There are a variety of ways to connect a backlight and LCD module electrically. It can be done with wires that are soldered on the LCD or LCD module. It can be connected using pins, which can be soldered onto the LCD or LCD module. A third way is to use a FPC (flexible printed circuit), which can be soldered or plugged in a ZIF (zero insertion force) connector. And finally, there is the connector method. With this method you use connectors which can be plugged into mating connectors.

To test the LED life is also very time consuming, requiring at least 1,000 hours. That’s the reason why no LED manufacturers can guarantee LED backlight life and most backlight manufacturers also are reluctant to provide lifespan data. As for LCD manufacturers, they need to discuss it with the customer to understand the applications and provide suggestions. It is normal that the LCD datasheet lists the typical life time and avoids providing a minimum lifetime. From Figure 10, we can see that over room temperature, the current needs to decrease as the temperature increases. At over 85°C, the LED is not usable.

For the LCD module side, using better aperture opening ratio, anti-reflection coating on surface, optical bonding. This results in higher cost. Actually, this measure is not to increase LED backlight brightness directly but to increase to the visibility to users.

Bill Cheung is an engineering lead and marketing manager at Orient Display, an LCD and display technology provider with over two decades of industry experience in delivering cutting edge display solutions. You can browse Orient Display"s knowledge base [7] to learn more about LCDs.

lcd panel backlighting free sample

We manufacture and stock backlight assemblies for many Chunghwa LCD panels. We produce premium quality replacements to extend the life of your flat panel screen devices.  If you do not see your panel model listed here, please contact us to learn about our cost effective design and manufacturing process.  Simply mail us a sample of the backlight you are looking to replace, and we can recreate and supply you with what you need to meet you needs.

lcd panel backlighting free sample

We manufacture and stock backlight assemblies for many CMO Chi Mei LCD panels. We produce premium quality replacements to extend the life of your flat panel screen devices.  If you do not see your panel model listed here, please contact us to learn about our cost effective design and manufacturing process.  Simply mail us a sample of the backlight you are looking to replace, and we can recreate and supply you with what you need to meet you needs.

lcd panel backlighting free sample

You can get custom made lcd backlight with an operation range that suits your specific application, choosing from a wide selection of suppliers. Source wholesale custom made lcd backlight on Alibaba.com for your business and enjoy a wide variety and great deals.

custom made lcd backlight (Liquid crystal display) are made of liquid crystals that form digital images made visible through ambient light or through LED backlight. LCDs are used in the place of other displays that are less efficient such as cathode ray tubes (CRTs) and have become the most popular display type on the market.

custom made lcd backlight enable metal and position detection without having to physically contact the metal object. They offer a wide range of applications in robotics, rail, material handling, aerospace, military, as well as heavy machinery. Choose from different custom made lcd backlight types, from the shielded versions that have electromagnetic fields concatenated in the front and unshieldated versions that allow wider sensing distances. Whether you want to use your sensors for industrial purposes or source for your brand, there is a wide selection of wholesale custom made ledcd backlights to choose from that will suit different applications.

lcd panel backlighting free sample

A:We are professional manufactory, which specializes in TN, HTN, FSTN, STN monochrome LCD, LED backlights, LCD modules more than 10 years in Shenzhen!

lcd panel backlighting free sample

Traditional LCDs use CCFLs, or cold-cathode florescent lamps, as their backlight. While cheap, they"re not as energy efficient as LEDs. More importantly, all contain mercury, and aren"t able to do some of the fancy area-lighting of which some LED backlit models are capable. Because of these issues and the falling prices of LEDs, CCFL backlit LCD TVs will disappear entirely very soon. In 2013

Most LED LCDs on the market today are edge-lit, which means the LEDs are in the sides of the TV, facing in toward the screen. In the image at the top, the LED strips are above and to the side of this exploded-view of an LCD panel. There"s a close-up view here (full article with more images

There are a few models that are have their LEDs arrayed on the back of the TV, facing you. These are less common, though are making a comeback in the form of cheaper, but thicker, mostly low-end LED LCDs. There are a handful of high-end TVs that use full-array LED backlighting in a slightly different way, which we"ll discuss later.

Because the light is brightest nearest the LEDs, it"s common for edge-lit LED LCDs to have poor uniformity. This is especially noticeable on dark scenes, where areas of the screen will appear brighter than others. Corners or edges can have what looks like tiny flashlights shining on the screen. Check out

Each manufacturer has a preferred method for edge-lighting, but some models may feature one type, while other models feature another type. Generally speaking, the fewer LEDs the cheaper the TV is to produce. Fewer LEDs also mean better energy efficiency, but LED LCDs are already so efficient that this is a tiny improvement. Unfortunately, specific details about where a TV"s LEDs are located (beyond "direct" or "edge"), the number of LEDs, and other useful information about the backlighting, are rarely listed on a TV"s spec sheet.

All Sides used to be the most common edge-lighting method. But as the light guides improved, and costs had to come down (to make cheaper LED LCDs), this method became fairly rare.

Nearly all "backlit" LED LCDs use this method. The LEDs are arrayed on the back of the TV, facing you, but there is no processing to dim them individually. They work instead as a uniform backlight, like most CCFL LCDs. The least expensive LED LCDs use this method, as do most of Sharp"s

This is the ultimate LED LCD, offering performance that rivals the better plasmas. Like the "direct-lit" TVs, these have their LEDs behind the screen (the image above for direct-lit works as a visual aid for this type as well). The full local-dimming aspect means the TV is able to dim zones behind the dark areas of the screen in fairly specific areas to make the image really pop, drastically increasing the apparent contrast ratio.

However, they basically don"t exist. The LG LM9600 wasn"t great last year, and LG has yet to announce any full-array local-dimming TVs for 2013. The only other local-dimming LED LCD was the Sony HX950, which was excellent, and is still current. In his review David Katzmaier called

As I mentioned at the top, there"s no easy way to tell, just by looking at a spec sheet, what kind of backlight a TV has. By extension, there"s no way to tell how good its local dimming will be. Bad local dimming can, at worst, just be marketing hyperbole. At best, it does little to improve the picture. Good local dimming, however, can make a punchy image, with lots of apparent depth and realism. Or to put it differently, the best LCDs on the market have the best local dimming, allowing them to rival plasmas on the picture quality front. The better TV reviews, like ahem those here on CNET, will talk about all this, so you"re not duped into paying for a "feature" that"s little more than a check mark on a spec sheet.

lcd panel backlighting free sample

LED LCD backlights are small light strips, or light sources, contained inside a display, TV, or monitor to provide lighting for the screen. All LED TVs are LCD panels with LED backlighting. A common misconception is that LED displays are different from LCD when fundamentally they are the same. LED is better described as a sub-set of LCD devices.

LCD is an acronym for Liquid Crystal Display, which is a type of monitor or screen—and flat-panel technology—that relies on thousands or millions of pixels, arranged in a rectangular grid. When an LCD is turned on, each pixel takes on a red, green, or blue sub-pixel (RGB) that is either enabled or disabled. When the pixels are off, the individual section appears black, and when all of the sub-pixels are on, it appears white. Collectively, the arranged pixels provide the sharp image on the display by being in either an on or off configuration.

The LED backlight illuminates the pixels, from behind, making them appear richer and brighter. Not all LCDs have a backlight, and for those that do, not all of them utilize LED backlighting. Some displays also use CCFL lighting or Cold-Cathode Fluorescent Lamps. Although, it should be noted that CCFL displays are being phased out in favor of LED-backlit panels.

The liquid crystals inside an LCD panel don’t have any illumination on their own and require the light to come from a separate component, which, in this case, is provided by the LED backlighting.

Older display types, such as cathode ray tubes (CRT) produce illumination already and so they do not need an additional light source like LCD devices.

While it can be confusing at first, LED-backlit panels are different from a full LED. LED-backlit panels have LED strips lining the edges of the screen whereas full HD illuminates the entirety of the display often with higher brightness and color accuracy. Full LED panels achieve this thanks to an evenly distributed light source across the rear of the set.

Full LEDs, on the other hand, can achieve true blacks, with even brightness levels because the light spreads across the entire panel accurately. That also means the lights in the full-LED panel can be disabled or turned off individually to create a darker image.

Because both types are fundamentally LCD panels, both LED and LED-backlit displays produce bright and vivid pictures. However, scenes may appear brighter or slightly washed out, depending on how the light source is distributed, such as from edge backlighting versus evenly distributed lighting. If you prefer a more accurate picture, full LED panels are the way to go, but they are more expensive.

Similar to TVs and other displays, an LED-backlit LCD monitor is an LCD panel with LED backlights. What often sets a monitor or computer monitor apart from standard displays is they don’t include a built-in tuner, which is needed to access cable. They often include different video or display ports, such as HDMI, DisplayPort, VGA, and so on. They"re designed to be used as a primary or secondary display for desktop computers, laptops, and beyond.

Monitors are generally full LED panels with a fully distributed light source. This allows them to provide a brighter and sharper image overall, which is ideal for computer-related activities and media.

While all LED TVs are LCD TVs, not all LCD TVs are LED TVs. If a TV is marketed as LCD with no mention of LED, then it probably uses a different type of backlighting such as CCFL.

lcd panel backlighting free sample

This article is about backlights in liquid crystal displays. For the rear window of an automobile, see Car glass. For the lighting design practice, see Backlighting (lighting design). For other uses, see Backlight (disambiguation).

A backlight is a form of illumination used in liquid crystal displays (LCDs). As LCDs do not produce light by themselves—unlike, for example, cathode ray tube (CRT), plasma (PDP) or OLED displays—they need illumination (ambient light or a special light source) to produce a visible image. Backlights illuminate the LCD from the side or back of the display panel, unlike frontlights, which are placed in front of the LCD. Backlights are used in small displays to increase readability in low light conditions such as in wristwatches,smart phones, computer displays and LCD televisions to produce light in a manner similar to a CRT display. A review of some early backlighting schemes for LCDs is given in a report Engineering and Technology History by Peter J. Wild.

Simple types of LCDs such as in pocket calculators are built without an internal light source, requiring external light sources to convey the display image to the user. Most LCD screens, however, are built with an internal light source. Such screens consist of several layers. The backlight is usually the first layer from the back. Light valves then vary the amount of light reaching the eye, by blocking its passage in some way. Most use a fixed polarizing filter and a switching one, to block the undesired light.

Backlights come in many colors. Monochrome LCDs typically have yellow, green, blue, or white backlights, while color displays use white backlights that cover most of the color spectrum.

Colored LED backlighting is most commonly used in small, inexpensive LCD panels. White LED backlighting is becoming dominant. ELP backlighting is often used for larger displays or when even backlighting is important; it can also be either colored or white. An ELP must be driven by relatively highAC power, which is provided by an inverter circuit. CCFL backlights are used on larger displays such as computer monitors, and are typically white in color; these also require the use of an inverter and diffuser. Incandescent backlighting was used by early LCD panels to achieve high brightness, but the limited life and excess heat produced by incandescent bulbs were severe limitations. The heat generated by incandescent bulbs typically requires the bulbs to be mounted away from the display to prevent damage.

For several years (until about 2010), the preferred backlight for matrix-addressed large LCD panels such as in monitors and TVs was based on a cold-cathode fluorescent lamp (CCFL) by using two CCFLs at opposite edges of the LCD or by an array of CCFLs behind the LCD (see picture of an array with 18 CCFLs for a 40-inch LCD TV). Due to the disadvantages in comparison with LED illumination (higher voltage and power needed, thicker panel design, no high-speed switching, faster aging), LED backlighting is becoming more popular.

LED backlighting in color screens comes in two varieties: white LED backlights and RGB LED backlights.blue LED with broad spectrum yellow phosphor to result in the emission of white light. However, because the spectral curve peaks at yellow, it is a poor match to the transmission peaks of the red and green color filters of the LCD. This causes the red and green primaries to shift toward yellow, reducing the color gamut of the display.a red, a blue, and a green LED and can be controlled to produce different color temperatures of white. RGB LEDs for backlighting are found in high end color proofing displays such as the HP DreamColor LP2480zx monitor or selected HP EliteBook notebooks, as well as more recent consumer-grade displays such as Dell"s Studio series laptops which have an optional RGB LED display.

RGB LEDs can deliver an enormous color gamut to screens.additive color) the backlight can produce a color spectrum that closely matches the color filters in the LCD pixels themselves. In this way, the filter passband can be narrowed so that each color component lets only a very narrow band of spectrum through the LCD. This improves the efficiency of the display since less light is blocked when white is displayed. Also, the actual red, green, and blue points can be moved farther out so that the display is capable of reproducing more vivid colors.

A newNanosys, claims that the color output of the dots can be tuned precisely by controlling the size of the nanocrystals. Other companies pursuing this method are Nanoco Group PLC (UK), QD Vision, 3M a licensee of Nanosys and Avantama of Switzerland.Sony has adapted Quantum Dot technology from the US company QD Visionedge-lit LED backlight marketed under the term Triluminos in 2013. With a blue LED and optimized nanocrystals for green and red colors in front of it, the resulting combined white light allows for an equivalent or better color gamut than that emitted by a more expensive set of three RGB LEDs. At the Consumer Electronics Show 2015, Samsung Electronics, LG Electronics, the Chinese TCL Corporation and Sony showed QD-enhanced LED-backlighting of LCD TVs.

CCFL backlighting has also improved in this respect. Many LCD models, from cheap TN-displays to color proofing S-IPS or S-PVA panels, have wide gamut CCFLs representing more than 95% of the NTSC color specification.

The use of LED backlights in notebook computers has been growing. Sony has used LED backlights in some of its higher-end slim VAIO notebooks since 2005, and Fujitsu introduced notebooks with LED backlights in 2006. In 2007, Asus, Dell, and Apple introduced LED backlights into some of their notebook models. As of 2008Lenovo has also announced LED-backlit notebooks. In October 2008, Apple announced that it would be using LED backlights for all of its notebooks and new 24-inch Apple Cinema Display, and one year later it introduced a new LED iMac, meaning all of Apple"s new computer screens are now LED. Almost every laptop with a 16:9 display introduced since September 2009 uses LED-backlit panels. This is also the case for most LCD television sets, which are marketed in some countries under the misleading name LED TV, although the image is still generated by an LCD panel.

Most LED backlights for LCDs are edge-lit, i.e. several LEDs are placed at the edges of a lightguide (Light guide plate, LGP), which distributes the light behind the LC panel. Advantages of this technique are the very thin flat-panel construction and low cost. A more expensive version is called full-array or direct LED and consists of many LEDs placed behind the LC panel (an array of LEDs), such that large panels can be evenly illuminated. This arrangement allows for local dimming to obtain darker black pixels depending on the image displayed.

For a non-ELP backlight to produce even lighting, which is critical for displays, the light is first passed through a lightguide (Light guide plate, LGP) - a specially designed layer of plastic that diffuses the light through a series of unevenly spaced bumps. The density of bumps increases further away from the light source according to a diffusion equation. The diffused light then travels to either side of the diffuser; the front faces the actual LCD panel, the back has a reflector to guide otherwise wasted light back toward the LCD panel. The reflector is sometimes made of aluminum foil or a simple white-pigmented surface.

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

Dimming options for LCD brightness; J. Moronski; Electronicproducts.com; 3 Januari 2004; "Dimming options for LCD brightness control". March 2004. Archived from the original on 2017-07-28. Retrieved 2017-11-20.

LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; "Archived copy" (PDF). Archived from the original (PDF) on 2017-08-01. Retrieved 2017-11-20.link)

lcd panel backlighting free sample

NHD-C12864A1Z-FSB-FBW-HTT | Monochrome Graphic COG | 128x64 Pixels | Transflective LCD | Side Blue Backlight | FSTN (+) Positive Display | Built-in 12V Heater & Temp Comp Circuit

Newhaven 128x64 graphic Chip-On-Glass (COG) Liquid Crystal Display shows dark pixels on a blue background. This transflective LCD Display is visible with ambient light or a backlight while offering a wide operating temperature range from -40 to 70 degrees Celsius. This NHD-C12864A1Z-FSB-FBW-HTT display includes a built-in 12V heater, and temperature compensation circuit. It has an optimal view of 6:00, operates at 3V supply voltage and is RoHS compliant.