common lcd panel resolutions manufacturer

LCD display doesn’t operate the same way as CRT displays , which fires electrons at a glass screen, a LCD display has individual pixels arranged in a rectangular grid. Each pixel has RGB(Red, Green, Blue) sub-pixel that can be turned on or off. When all of a pixel’s sub-pixels are turned off, it appears black. When all the sub-pixels are turned on 100%, it appears white. By adjusting the individual levels of red, green, and blue light, millions of color combinations are possible

The pixels of the LCD screen were made by circuitry and electrodes of the backplane. Each sub-pixel contains a TFT (Thin Film Transistor) element.  These structures are formed by depositing various materials (metals and silicon) on to the glass substrate that will become one part of the complete display “stack,” and then making them through photolithography. For more information about TFT LCDs, please refer to “

The etched pixels by photolith process are the Native Resolution. Actually, all the flat panel displays, LCD, OLED, Plasma etc.) have native resolution which are different from CRT monitors

Although we can define a LCD display with resolution, a Full HD resolution on screen size of a 15” monitor or a 27” monitor will show different. The screen “fineness” is very important for some application, like medical, or even our cell phone. If the display “fineness” is not enough, the display will look “pixelized” which is unable to show details.

But you see other lower resolution available, that is because video cards are doing the trick. A video card can display a lower LCD screen resolution than the LCD’s built-in native resolution. The video cards can combine the pixels and turn a higher resolution into lower resolution, or just use part of the full screen. But video cards can’t do the magic to exceed the native resolution.

common lcd panel resolutions manufacturer

Flat-panel displays are thin panels of glass or plastic used for electronically displaying text, images, or video. Liquid crystal displays (LCD), OLED (organic light emitting diode) and microLED displays are not quite the same; since LCD uses a liquid crystal that reacts to an electric current blocking light or allowing it to pass through the panel, whereas OLED/microLED displays consist of electroluminescent organic/inorganic materials that generate light when a current is passed through the material. LCD, OLED and microLED displays are driven using LTPS, IGZO, LTPO, and A-Si TFT transistor technologies as their backplane using ITO to supply current to the transistors and in turn to the liquid crystal or electroluminescent material. Segment and passive OLED and LCD displays do not use a backplane but use indium tin oxide (ITO), a transparent conductive material, to pass current to the electroluminescent material or liquid crystal. In LCDs, there is an even layer of liquid crystal throughout the panel whereas an OLED display has the electroluminescent material only where it is meant to light up. OLEDs, LCDs and microLEDs can be made flexible and transparent, but LCDs require a backlight because they cannot emit light on their own like OLEDs and microLEDs.

Liquid-crystal display (or LCD) is a thin, flat panel used for electronically displaying information such as text, images, and moving pictures. They are usually made of glass but they can also be made out of plastic. Some manufacturers make transparent LCD panels and special sequential color segment LCDs that have higher than usual refresh rates and an RGB backlight. The backlight is synchronized with the display so that the colors will show up as needed. The list of LCD manufacturers:

Organic light emitting diode (or OLED displays) is a thin, flat panel made of glass or plastic used for electronically displaying information such as text, images, and moving pictures. OLED panels can also take the shape of a light panel, where red, green and blue light emitting materials are stacked to create a white light panel. OLED displays can also be made transparent and/or flexible and these transparent panels are available on the market and are widely used in smartphones with under-display optical fingerprint sensors. LCD and OLED displays are available in different shapes, the most prominent of which is a circular display, which is used in smartwatches. The list of OLED display manufacturers:

MicroLED displays is an emerging flat-panel display technology consisting of arrays of microscopic LEDs forming the individual pixel elements. Like OLED, microLED offers infinite contrast ratio, but unlike OLED, microLED is immune to screen burn-in, and consumes less power while having higher light output, as it uses LEDs instead of organic electroluminescent materials, The list of MicroLED display manufacturers:

LCDs are made in a glass substrate. For OLED, the substrate can also be plastic. The size of the substrates are specified in generations, with each generation using a larger substrate. For example, a 4th generation substrate is larger in size than a 3rd generation substrate. A larger substrate allows for more panels to be cut from a single substrate, or for larger panels to be made, akin to increasing wafer sizes in the semiconductor industry.

"Samsung Display has halted local Gen-8 LCD lines: sources". THE ELEC, Korea Electronics Industry Media. August 16, 2019. Archived from the original on April 3, 2020. Retrieved December 18, 2019.

"TCL to Build World"s Largest Gen 11 LCD Panel Factory". www.businesswire.com. May 19, 2016. Archived from the original on April 2, 2018. Retrieved April 1, 2018.

"Panel Manufacturers Start to Operate Their New 8th Generation LCD Lines". 대한민국 IT포털의 중심! 이티뉴스. June 19, 2017. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"TCL"s Panel Manufacturer CSOT Commences Production of High Generation Panel Modules". www.businesswire.com. June 14, 2018. Archived from the original on June 30, 2019. Retrieved June 30, 2019.

"Samsung Display Considering Halting Some LCD Production Lines". 비즈니스코리아 - BusinessKorea. August 16, 2019. Archived from the original on April 5, 2020. Retrieved December 19, 2019.

Herald, The Korea (July 6, 2016). "Samsung Display accelerates transition from LCD to OLED". www.koreaherald.com. Archived from the original on April 1, 2018. Retrieved April 1, 2018.

"China"s BOE to have world"s largest TFT-LCD+AMOLED capacity in 2019". ihsmarkit.com. 2017-03-22. Archived from the original on 2019-08-16. Retrieved 2019-08-17.

common lcd panel resolutions manufacturer

This chart shows the most common display resolutions, with the color of each resolution type indicating the display ratio (e.g. red indicates a 4:3 ratio).

Variant used commonly for portable DVD players, digital photo frames, GPS receivers and devices such as the Kenwood DNX-5120 and Glospace SGK-70; often marketed as "16:9"

Many of these resolutions are also used for video files that are not broadcast. These may also use other aspect ratios by cropping otherwise black bars at the top and bottom which result from cinema aspect ratios greater than 16∶9, such as 1.85 or 2.35 through 2.40 (dubbed "Cinemascope", "21∶9" etc.), while the standard horizontal resolution, e.g. 1920 pixels, is usually kept. The vertical resolution is usually a multiple of 8 or 16 pixels due to most video codecs processing pixels on such sized blocks. A widescreen FHD video can be 1920 × 800 for a 12∶5 ratio or 1920 × 1040 for roughly 1.85 × 1, for instance.

LCD panels" resolutions are often quoted in terms of raw subpixels, misnamed "pixels" in manufacturer"s specifications. Each real pixel includes one subpixel for each of three colors, so calling subpixels "pixels" inflates the claimed resolution by a factor of three. This bit of marketing obfuscation is calculated as horizontal resolution × vertical resolution × 3. For example: 640 × 480 VGA is 921,600 subpixels, or 307,200 pixels, 800 × 600 SVGA is 1,440,000 subpixels, or 480,000 pixels, and 1024 × 768 XGA is 2,359,296 subpixels, but only 786,432 full-color pixels.

common lcd panel resolutions manufacturer

VGA was first released in 1987 by IBM as part of their PS/2 line of computers. Since its initial inception, VGA has taken on a few different meanings in recent years and is characterized by its 640×480 resolution. It also refers to the 15-pin D-subminiature VGA connector and the analog computer display standard. Currently, it’s used for high-definition resolutions of 1080p or higher.

Developed in 1988 (just one year after IBM introduced VGA) by NEC Home Electronics, SVGA was an improvement on its predecessor. It increased graphics display resolutions by up to 36%, which amounted to 800×600 pixels. SVGA was designed to be compatible with the IBM PC and eventually replace VGA.

If you’re not sure what XGA looks like, you’ve definitely seen it before. Most modern laptop computers—around 80% of the current market—use XGA, which is an LCD display that exhibits 1024×768 resolutions. Sizes range from 15.1 inches to 10.4 inches.

QXGA has a resolution of 2048×1536. This particular display mode is commonly used by graphics designers, computer engineers, and other users who require or prefer exact image details when using various programs for specific projects. It’s also ideal for users who use their devices to watch online videos.

With a resolution of 1600×21200, UXGA is also used by computer programmers, editors, and designers who require high definition and crystal clear images. It’s commonly used for watching TV shows, movies, and other forms of media or entertainment online to ensure an exceptional viewing quality.

WSXGA is basically a widescreen version of the original WXGA featuring a screen resolution of 1680×1050 with 32-bit pixels. It’s most commonly applied to wide screen LCD displays that are 15.4 inches diagonally.

common lcd panel resolutions manufacturer

US Micro Products manufactures a wide selection of TFT LCD (Active Matrix LCDs) displays to accommodate the needs of OEMs across many different industries, including medical, industrial, gaming, military and many more.

An array of available interfaces, brightness levels, and temperature ranges ensure that our TFT LCDs work well with your design and in the environment of your choice

common lcd panel resolutions manufacturer

TFT is an LCD Technology which adds a thin-film transistor at each pixel to supply common voltages to all elements. This voltage improves video content frame rates. Displays are predominantly utilizing color filter layers and white LED backlighting.

common lcd panel resolutions manufacturer

Mimo Monitors can create a custom-size LCD monitor to almost any specification. Whether it is a minor modification to an existing design, or by utilizing our extensive experience in the industry, we can almost always build what you need.

Aspect ratio - The ratio of the width of the display to the height. Current televisions are 16:9, Old televisions are 4:3 – 16:9, 16:10 and 4:3 are the most popular. Every other aspect ratio is less popular, but any aspect ratio can be created by resizing a panel.

Resolution - The number of pixels in the display – This will depend somewhat on the aspect ratio chosen. Higher resolution is better, but remember the pixel size on a 65” 1080p HDTV is actually 15x worse than on a 800x480 7” display. In other words, resolution doesn’t matter as much as sizes get smaller. Common resolutions are 800x480, 1024x600, 1280x800, 1366x768 1920x1080

Viewing Angle - This will depend on the technology of the LCD panel. TN vs. VA vs. IPS. More here (http://www.tnpanel.com/tn-vs-ips-va/) . In general, the better the viewing angle, the more expensive the resulting display. Typical are 150x140, 170x170 and 179x179. Or more commonly wide viewing angle or standard viewing angle.

Brightness or Luminance - It is the level of light emitted by an LCD display monitor. Luminance is reported in nits or cd/m2. They are actually the same thing.  This matters for indoor and outdoor viewing and also if you want to draw people toward the display for advertising. Typical indoor brightness is 150 nits, indoor advertising is 300, bright indoor advertising is 700 and outdoor panels are 1000+

Touch panel - Optional human interface for interactivity. Typical choices are Display Only, Resistive (4 or 5 wire), and Capacitive touch options. Our blog discusses the advantages and disadvantages of capacitive touchscreens. SAW is another touch technology that is becoming less and less common.

common lcd panel resolutions manufacturer

In days gone by, screen resolution (also called display resolution) wasn’t much of an issue. Windows came with a few preset options, and to get higher resolution or more colors (or both) you would install a driver for your video card. As time went on, you could choose better video cards and better monitors as well. Today we have lots of options when it comes to displays, their quality and the supported resolutions. In this article I would like to take you through a bit of history and explain all the important concepts.

I am sure some of you already know that the term "resolution" isn’t correct when it’s used to refer to the number of pixels on a screen. That says nothing about how densely the pixels are clustered. "Resolution" is technically the number of pixels per unit of area, rather than the total number of pixels. Here, I’ll be using the term as it’s commonly understood, rather than the absolutely technologically correct usage.

The resolutions built into Windows were very limited, so if you didn’t have the driver for your video card you’d be stuck with the lower-resolution screen that Windows provided. If you’ve watched Windows Setup or installed a newer version of a video driver, you may have seen the 640 x 480 low resolution screen for a moment or two. It was ugly even on CGA screens, but that was the Windows default.

Since the screen is being painted in alternate lines, flicker has always been a problem with interlaced scans. Manufacturers have tried to overcome this problem in various ways. The most common way is to increase the number of times a complete screen is painted in a second, which is called the refresh rate. The most common refresh rate was 60 times per second, which was acceptable for most people, but it could be pushed a bit higher to get rid of the flicker that some people perceived.

When high-definition TVs became the norm, manufacturers developed a shorthand to explain their display resolution. The most common numbers you will see are 720p, 1080p and 1080i. As we’ve seen, the "p" and "i" tell you whether it’s a progressive-scan or interlaced-scan display. And these shorthand numbers are sometimes used to describe computer monitors as well, even though in general a monitor is capable of a higher-definition display than a TV. The number always refers to the number of horizontal lines on the display.

As display technology improved, TV and monitor manufacturers began to move toward widescreen displays as well. Originally "widescreen" referred to anything wider than the common 4:3 display, but it quickly came to mean a 16:10 ratio and later 16:9. Nowadays, nearly all computer monitors and TVs are only available in widescreen, and TV broadcasts and web pages have adapted to match.

Until 2010, 16:10 was the most popular aspect ratio for widescreen computer displays. But with the rise in popularity of high definition televisions, which were using high definition resolutions such as 720p and 1080p and made this terms synonyms with high-definition, 16:9 has become the high-definition standard aspect ratio.Today, finding 16:10 displays is almost impossible.

Depending on the aspect ratio of your display, you are able to use only resolutions that are specific to its width and height. Some of the most common resolutions that can be used for each aspect ratio are the following:

If you are not very technical, it is very likely that you are confused by so many technicalities. Hopefully this article has managed to help in your understanding of the most important characteristics of a display: aspect ratio, resolutions or type. I won’t stop here however. In the next article, I’ll talk about how you can change your display resolution so it works best for you.

common lcd panel resolutions manufacturer

The display panels used in LCD displays have a fixed, predefined pixel format over a set area. For example, if the panel has a predefined area of 1,024 x 768, there are exactly 1,024 pixels in each horizontal line and 768 pixels in each vertical line or 786,432 total pixels.

Native resolution or optimal resolution occurs when the screen resolution in the display settings is the same as the predefined area of the display panel. Native resolution is typically the maximum display resolution, and HP recommends using LCD displays at the native resolution.

Scaling uses an expansion technique known as an interpolated algorithm to widen the resolution to fit the entire viewable area of the screen. Scaling requires the manipulation of pixels adjacent to the text to give individual letters a smoother look. The image remains equivalently sized, but the image might appear blurry due to the dithering and loss of data, color, or information. Scaling is the most common method to make full use of the entire screen when operating in a resolution lower than the native resolution.

common lcd panel resolutions manufacturer

As an Industrial LCD module distributor, we can supply a wide range of TFT LCDs in many sizes. Common resolutions are QVGA, VGA, SVGA and XGA. Wide aspect ratio displays are also available in many similar sizes and resolutions such as WQVGA, WVGA, WSVGA, and WXGA.

Our industrial LCD suppliers are manufacturers with different capabilities specially designed for a wide variety of industrial applications. High-brightness, sunlight readability and long life product guarantees are some of the special features available.

Get in touch to work closely with one of our LCD Solutions Specialists to determine the perfect display for your project. We can also recommend and supply the proper LCD controller board, inverter, LED driver, cables, touch screen, or other associated enhancement.

common lcd panel resolutions manufacturer

In the early days of LCD panel production, 1024 x 768 panels seemed to be the sweet spot for price to resolution value, representing a good tradeoff between profit and risk of possible manufacturing defects ruining the screen. As a bonus, just about all modern-at-that-time video hardware would support that resolution.

So my theory is that when a lot of LCD manufacturers needed to produce TV screens for a wide aspect ratio, they drew on the experience chain of the 1024 x 768 PC market since the 768-pixel tall form factor was the one with the most installed base.

Since 1366 x 768 displays widescreen video content well, those panels are heavily produced since video watching is an important PC use case. The 1080 pixel tall screens are becoming common now, to represent the 1080 pixel standard of backwards from the 1200 pixel standard found in high-end 4:3 VGA monitors of yesteryear.

common lcd panel resolutions manufacturer

New Vision Display is a custom LCD display manufacturer serving OEMs across diverse markets. One of the things that sets us apart from other LCD screen manufacturers is the diversity of products and customizations we offer. Our LCD portfolio ranges from low-cost monochrome LCDs to high-resolution, high-brightness color TFT LCDs – and pretty much everything in between. We also have extensive experience integrating LCD screen displays into complete assemblies with touch and cover lens.

Sunlight readable, ultra-low power, bistable (“paper-like”) LCDs. Automotive grade, wide operating/storage temperatures, and wide viewing angles. Low tooling costs.

Among the many advantages of working with NVD as your LCD screen manufacturer is the extensive technical expertise of our engineering team. From concept to product, our sales and technical staff provide expert recommendations and attentive support to ensure the right solution for your project.

As a leading LCD panel manufacturer, NVD manufactures custom LCD display solutions for a variety of end-user applications: Medical devices, industrial equipment, household appliances, consumer electronics, and many others. Our state-of-the-art LCD factories are equipped to build custom LCDs for optimal performance in even the most challenging environments. Whether your product will be used in the great outdoors or a hospital operating room, we can build the right custom LCD solution for your needs. Learn more about the markets we serve below.

common lcd panel resolutions manufacturer

Spectrum Displays designs, develops and manufactures custom displays to fit our client’s specific application. This includes custom resized LCD’s to full custom photomask displays that can be designed to meet specific application demands where there is not a display size available in the market. Today, we serve markets such as aerospace, transportation / digital signage and medical instrumentation with custom and standard sizes. In addition to our custom and off-the-shelf products, Spectrum Displays can provide a custom solution from early-stage concepts that allow our customers to develop unique products with the ability to be first in the market all the way to full volume production. These products are available worldwide in various markets and Spectrum Displays serves this custom-sized display industry.

Spectrum Displays understands every application is unique, the resizing technology allows for small-volume highly customized AMLCDs to fit into the space between the roof line and the door of a train car as an example. Each train, bus and even the stations have these space limitations where off the shelf displays are too large to fit. To build a fully custom photomask LCD to fit the application require millions of dollars in factory tooling investment and each new display design has exorbitant startup costs to support the custom design and tooling. The only viable way to make a custom single display affordable is to utilize displays that are already made in mass production and resize. These custom displays preserve all of the technical complexity of the original LCD. The resized modules include high resolutions, rich color gamut’s with wide-viewing angles, high-brightness backlighting and a variety of robust packaging options.

The custom resized LCD technology combined with the single board computer as smart display module system is a fully tested deliverable and ready for the deployers application software. These systems include the most modern sophisticated processing power, Ethernet connectivity, solid state memory and fan less enclosures. The complete Smart Display Module (SDM) displays can be manufactured to meet high shock, vibration and environmental standards needed for the application.

common lcd panel resolutions manufacturer

LCDs follow a different set of rules than CRT displays offering advantages in terms of bulk, power consumption and flicker, as well as perfect geometry. They have the disadvantage of a much higher price, a poorer viewing angle and less accurate colour performance.

While CRTs are capable are displaying a range of resolutions and scaling them to fit the screen, an LCD panel has a fixed number of liquid crystal cells and can display only one resolution at full-screen size using one cell per pixel. Lower resolutions can be displayed by using only a proportion of the screen. For example, a 1024×768 panel can display at resolution of 640×480 by using only 66% of the screen.

Most LCDs are capable of rescaling lower-resolution images to fill the screen through a process known as rathiomatic expansion. However, this works better for continuous-tone images like photographs than it does for text and images with fine detail, where it can result in badly aliased objects as jagged artefacts appear to fill in the extra pixels. The best results are achieved by LCDs that resample the screen when scaling it up, thereby anti-aliasing the image when filling in the extra pixels. Not all LCDs can do this, however.

While support for multiple resolutions may not be their strong point, the ability to pivot the screen from a landscape to a portrait orientation is a feature that is particularly suited to flat panels. The technology that accomplishes this has been around since the mid-1990s and is now licensed by leading monitor and notebook manufacturers worldwide. Portrait mode is particularly appropriate for a number of the most popular PC applications – such as word processing, browsing the web and DTP – and an increasing number of LCD panels come with a suitable base and the necessary software to support the feature.

By the early 2000s many flat panels supported SXGA as their native resolution. SXGA is interesting in that it uses a 5:4 aspect ratio, unlike the other standards display resolutions, which use 4:3. 1024×1280 is particularly appropriate mode for web browsing, since so many web sites are optimised for a 1024 horizontal resolution.

Unlike CRT monitors, the diagonal measurement of an LCD is the same as its viewable area, so there’s no loss of the traditional inch or so behind the monitor’s faceplate or Bezel. The combination makes any LCD a match for a CRT 2 to 3 inches larger:

By early 1999 a number of leading manufacturers had 18.1in TFT models on the market capable of a native resolution of 1280×1024, and as high definition video has emerged from 2003 onwards many flat panel monitors have so-called full HD resolutions of 1920×1080.

A CRT has three electron guns whose streams must converge faultlessly in order to create a sharp image. There are no convergence problems with an LCD panel, because each cell is switched on and off individually. This is one reason why text looks so crisp on an LCD monitor. There’s no need to worry about refresh rates and flicker with an LCD panel – the LCD cells are either on or off, so an image displayed at a refresh rate as low as between 40-60Hz should not produce any more flicker than one at a 75Hz refresh rate.

Conversely, it’s possible for one or more cells on the LCD panel to be flawed. On a 1024×768 monitor, there are three cells for each pixel – one each for red, green, and blue – which amounts to nearly 2.4 million cells (1024x768x 3 = 2,359,296). There’s only a slim chance that all of these will be perfect; more likely, some will be stuck on (creating a bright defect) or off (resulting in a dark defect). Some buyers may think that the premium cost of an LCD display entitles them to perfect screens – unfortunately, this is not the case.

LCD monitors have other elements that you don’t find in CRT displays. The panels are lit by fluorescent tubes that snake through the back of the unit; sometimes, a display will exhibit brighter lines in some parts of the screen than in others. It may also be possible to see ghosting or streaking, where a particularly light or dark image can affect adjacent portions of the screen. And fine patterns such as dithered images may create Moiré or interference patterns that jitter.

Viewing angle problems on LCDs occur because the technology is a transmissive system which works by modulating the light that passes through the display, while CRTs are emissive. With emissive displays, there’s a material that emits light at the front of the display, which is easily viewed from greater angles. In an LCD, as well as passing through the intended pixel, obliquely emitted light passes through adjacent pixels, causing colour distortion.

Until the new millennium, most LCD monitors plugged into a computer’s familiar 15-pin analogue VGA port and used an analogue-to-digital converter to convert the signal into a form the panel can use. In fact, by then VGA represented an impediment to the adoption of new flat panel display technologies, because of the added cost for these systems to support an analogue interface.

However, by the late 1990s several working groups had proposed digital interface solutions for LCDs, but without gaining the widespread support necessary for the establishment of a standard. The impasse was finally broken through the efforts of the Digital Display Working Group (DDWG) – which included computer industry leaders Intel, Compaq, Fujitsu, Hewlett-Packard, IBM, NEC and Silicon Image – which had been formed in the autumn of 1998 with the objective of delivering a robust, comprehensive and extensible specification of the interface between digital displays and high-performance PCs. In the spring of 1999 the DDWG approved the first version of the Digital Visual Interface (DVI), a comprehensive specification which addressed protocol, electrical and mechanical definitions, was scalable to high-resolution digital support and which provided a connector that supported both analogue and digital displays.

common lcd panel resolutions manufacturer

Over the past 20+ years as the major electronics companies evolved the consumer LCD TV market, Digital View has played a key role enabling the commercial and industrial display market with its LCD controllers.

Digital View was founded in March 1995 in England and Hong Kong then California within a year. Over its 24 year history it has tracked the developments in LCD display technology to provide highly reliable electronics enabling LCD monitors and video displays in a very broad range of non-consumer applications. When the company was founded 1024x768 was about the highest resolution available for production LCD panels with 640x480 still being very common, the panel interface was TTL, sizes were less than 20" diagonal and the aspect ratio was 4:3. At this time the input signals were typically Composite Video (PAL, NTSC, SECAM) or ARGB normally known as VGA. For the profesional video market although a digital standard, SDI, had been around since 1990 analog Component was still widely used.

24 years later, in 2019, LCD panel resolution for the non-consumer market extends to 3840x2160 (usually referred to as Ultra-HD or 4K) and higher with the common panel interfaces being LVDS, eDP and V-by-One. Sizes are up to 100" diagonal and the common aspect ratio is 16:9 but with 16:10 and 4:3 still being readily available as well as super wide models. An emerging trend for LCD panels is for other aspect ratios, previously created by cutting a standard panel these "banner" panels are now being made in various native resolutions and sizes. Digital View supports all these.