lcd panel test video made in china
Having checked out your video, I personally will not use the aftermarket screen as a replacement for my X. It just doesn"t have what I expect for a $1000 USD phone. I recognize that $300 USD for a replacement is hefty but the aftermarket screen does not appear to have the quality that I would expect for my phone.
M2 starts the second generation of Apple’s M-series chips and extends the remarkable features of M1. With industry-leading power efficiency, a unified memory architecture, and custom technologies, this new chip brings even more performance and capabilities to Apple’s most popular Mac notebooks — the MacBook Air and the 13-inch MacBook Pro. M2 features a next-generation 8-core CPU with advancements in both performance and efficiency cores, along with Apple’s next-generation GPU, which now has up to 10 cores — two more than M1. M2 delivers 100GB/s of unified memory bandwidth and supports up to 24GB of fast unified memory, so it can handle even larger and more complex workloads with ease. Designed to dramatically speed up video workflows, M2 also adds a next-generation media engine and a powerful ProRes video engine for hardware-accelerated encode and decode, so systems with M2 will be able to play back more streams of 4K and 8K video than before.
MacBook Air includes a new 1080p FaceTime HD camera with a larger image sensor and more efficient pixels that deliver twice the resolution and low-light performance of the previous generation. Combined with the processing power of the advanced image signal processor on M2, users will look great on video calls.
And even with a larger display and increased performance, MacBook Air delivers the same great, all-day battery life as before, with up to 18 hours of video playback.
With support for ProRes encode and decode in the media engine of M2, users can play back up to 11 streams of 4K and up to two streams of 8K ProRes video.12 And they can convert their video projects to ProRes nearly 3x faster than before.13
With macOS Monterey and Apple silicon, MacBook Air and the 13-inch MacBook Pro deliver even more performance and productivity for users. Continuity tools like Universal Control make it easy for users to work effortlessly across Mac and iPad, while AirPlay to Mac enables users to play just about anything from their iPhone or iPad right to their Mac’s stunning Retina display. FaceTime includes audio and video features, including Portrait mode and Spatial Audio that make calls feel more natural and lifelike, while SharePlay enables Mac users to have shared experiences through FaceTime.14 Live Text and Visual Look Up use intelligence to surface useful information, Safari includes powerful tab organization with Tab Groups, and Shortcuts brings the ease of automation to the Mac.
Testing conducted by Apple in May 2022 using preproduction MacBook Air systems with Apple M2, 8-core CPU, 8-core GPU, 8GB of RAM, and 256GB SSD. MacBook Air systems tested with Apple 67W USB-C Power Adapter (Model A2518) and USB-C to MagSafe 3 Cable (Model A2363). Fast-charge testing conducted with drained MacBook Air units. Charge time varies with settings and environmental factors; actual results will vary.
Testing conducted by Apple in May 2022 using preproduction 13-inch MacBook Pro systems with Apple M2, 8-core CPU, 10-core GPU, and 24GB of RAM. Final Cut Pro 10.6.2 tested using a one-minute picture-in-picture project with four streams of Apple ProRes 422 video at 8192x4320 resolution and 30 frames per second, as well as a one-minute picture-in-picture project with 20 streams of Apple ProRes 422 video at 3840x2160 resolution and 29.97 frames per second. Performance tests are conducted using specific computer systems and reflect the approximate performance of MacBook Pro.
China tested a nuclear-capable hypersonic missile in August that circled the globe before speeding towards its target, demonstrating an advanced space capability that caught US intelligence by surprise.
Five people familiar with the test said the Chinese military launched a rocket that carried a hypersonic glide vehicle which flew through low-orbit space before cruising down towards its target.
The missile missed its target by about two-dozen miles, according to three people briefed on the intelligence. But two said the test showed that China had made astounding progress on hypersonic weapons and was far more advanced than US officials realised.
Taylor Fravel, an expert on Chinese nuclear weapons policy who was unaware of the test, said a hypersonic glide vehicle armed with a nuclear warhead could help China “negate” US missile defence systems which are designed to destroy incoming ballistic missiles.
Fravel added that it would be “destabilising” if China fully developed and deployed such a weapon, but he cautioned that a test did not necessarily mean that Beijing would deploy the capability.
Two of the people familiar with the Chinese test said the weapon could, in theory, fly over the South Pole. That would pose a big challenge for the US military because its missiles defence systems are focused on the northern polar route.
The Chinese foreign ministry denied that China had tested a hypersonic missile. “This was a routine test of a space vehicle to verify technology of spacecraft’s reusability,” said Zhao Lijian, a spokesperson, without explaining why China did not announce the test at the time.
One Asian national security official said the Chinese military conducted the test in August. China generally announces the launch of Long March rockets — the type used to launch the hypersonic glide vehicle into orbit — but it conspicuously concealed the August launch.
Subsequent to publication of this story, the Financial Times learned that Beijing had conducted two hypersonic weapon tests, with the first occurring on July 27. The FT later published an account of both tests here
Leyard"s commitment to high quality, leading-edge display technology is unparalleled. With innovations in video walls, large format displays, and touch interactivity, Leyard offers the best visualization solutions for a variety of demanding vertical markets around the globe.
An LCD with excellent "video" display quality is essential to fully enjoy video content. We have prepared a number of sample videos to check the video display quality of your LCD.
Note: Below is the translation from the Japanese of the ITmedia article "Are the response time figures true!? Let"s check LCD video performance" published May 31, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.
Have you ever consciously checked your current LCD"s video display capability? First of all, we"d like you to play the video below. It starts with a row of letters moving slowly from right to left but the letters gradually pick up speed and the direction in which they move also changes. Clicking on the title above the video takes you to YouTube where you can change the resolution and play it on the whole screen, so we would like you to set the resolution to suit your environment when you play this clip.
We would like you to try the next video now. The row of letters and the speeds at which it moves are exactly the same but the background and the letters are different colors.
We think that it was even more difficult to display correctly than the first monochrome video. Although it was a similar video it probably looked rather different, with things like the outlines of the letters seeming to blend with the background and afterimages becoming more conspicuous.
If both these videos were displayed smoothly then the video playback performance is good. On the other hand, if both of them had blurring and flickering from the start and could not be displayed satisfactorily, you should perhaps doubt your LCD"s video display capability.
There are a number of points to bear in mind when assessing LCD image quality, but it"s probably best to consider the image quality of still images and video separately, to a certain degree. The performance required to reproduce a still image beautifully on the screen is different from that required to display video clearly on the screen. This time we will focus on video image quality, and on the extended definition technology that boosts video image quality.
The general term video encompasses many different kinds of video, such as SD and HD with their different resolutions, and different genres such as live-action, animation and games. There are also different kinds of output devices such as computers, DVD / Blu-ray Disc players and game consoles.Recently LCDs require extended definition technology compatible with the kind of video or the external device, since the quality of the video source is improving and LCDs need to be connected to devices other than computers.
Anyway, let"s check the settings of the LCD you are using. If your LCD is equipped with video quality modes according to purpose, you should select a video-oriented mode such as "Video" or "Movie" and play a clip of your choice. We would then like you to compare it viewed in the "Standard" and "sRGB" image quality modes. In general, video-oriented image quality modes tend to boost things like brightness and contrast, saturation and color temperature. People have particularly strong personal preferences when it comes to coloration so this may not always be the case, but strong brightness, contrast and saturation boost the video"s appeal and give a sense of high image quality.
To go into a little more detail, video image quality is not determined by the LCD alone. If video is being played on a computer, a low power CPU causes visual and audio jumpiness, as well as which the image quality changes slightly according to the software on which the video is played. Furthermore, just as AMD"s GPU "ATI Radeon" series has "Avivo" and NVIDIA"s GPU "GeForce" series has "PureVideo", the CPU load reduction and the video extended definition technology from the GPU and driver playback support functions have a very strong effect. Also, when the LCD is connected to an AV device or game console, the image quality changes according to video playback function of those devices and the connection interface.
In this article we focus on the video playback performance of LCDs, but we would like you to remember that you also need be choosy about the video output environment if you want higher quality for your video display.
"Response time" is known to be the most easily understandable indicator amongst the LCD specifications influencing video display quality. The response time indicates the speed with which a pixel (dot) on the screen changes from one color to another. Strictly speaking, "speed" is measured in units such as "kilometers per hour" but LCD response time is shown in "ms" (milliseconds).
In many cases two values are given for the response time of an LCD. The first is the black-white-black response time (the crystal rise time + fall time), and is the total time that it takes for one pixel to change from black to white and white to black. As of May 2010, the fastest class of LCDs have achieved high-speed response times of 1 ms or 2 ms.
The other value is the middle gradation response time. It is the time that it takes a pixel to change from gray to gray (from one gradation of gray to another). An LCD has 256 gradations of gray, and in most cases several gradations are selected and the response time measured, and then the average value is taken as the middle gradation response time. LCDs with a fast middle gradation response time boast speeds of around 2 to 5 ms, and this is recorded in the specifications as "Gray-to-gray" or "G to G". Middle gradation colors are far more prevalent in video display colors (there are not many scenes that switch back and forth between black and white) so the middle gradation response time is very important for video image quality.
If we simply consider the figures, LCDs with fast response times have better video display quality. The screen colorations change quickly so fast moving images are displayed clearly and sharply. Slow response times, caused by slow coloration changes, can lead to fuzzy displays (blur) or afterimages being left of the outlines of the objects moving on the screen.
We should also remember response time tendencies according to how the liquid crystal panel used in the LCD is driven. Generally, although it is easy to accelerate the black -white-black response time with TN and VA liquid crystal panels (and particularly with TN ones), the middle gradation response time is easily slowed. Although it is hard to accelerate the response time for the entire gradation range with IPS liquid crystal panels, there is less slowing in the middle gradations than with the other types and they tend to be assessed as having stable display content.
Recently more and more LCDs are installed with technology to improve response times and also to reduce blur. This technology is typified by overdrive circuits, black insertion and accelerator drives, which we will introduce here.
The overdrive circuit mainly accelerates the middle gradation response time. Put simply, it is a device that speeds up the movement of liquid crystal cells (coloration change) by applying a higher voltage than usual to the liquid crystal cells when the colors on the screen change. By using an overdrive circuit it is possible for the middle gradation response time to approach the black-white-black one regardless of which system drives the LC panel (TN, VA or IPS).
However, there is a structural weakness to the overdrive circuit and in many cases the eye perceives outlines in false color (a color that is not in the original video source). This is because applying extra voltage to the liquid crystal cell can make it overleap the target tone. For example, when changing from gray tone "50" to "100", a tone higher than "100" is instantaneously displayed on the screen. This is known as overshoot / undershoot.
Black insertion is a technique to reduce blur and afterimages. Basically the refresh rate of an LCD is 60 Hz (although there are exceptions to this) so the frame rate is 60 fps. This means that the screen (frame) changes every sixtieth of a second. Inserting a pitch-black screen between the frames depicted reduces the appearance of blur and afterimages. This technique is widely adopted for household LCD televisions and is very effective.
Its disadvantages are that it reduces brightness and causes flickering. When the frequency of inserted black screens is increased it is more effective in reducing blur and afterimages, however the time in which the screen is black is increased, which means that the perceived brightness is lower. Also, the constant switching between the real frame and the black screen can easily make the screen appear to flicker. There are products that suppress brightness reduction and flickering by increasing the LC panel"s refresh rate to 120 Hz and inserting black screens accordingly.
Now that we have explained about response times and techniques to reduce blur, let"s use the sample videos shown at the start of this article to do a detailed check on actual LCDs.
The LCDs we will use for the test are the EIZO FlexScan EV2333W, FlexScan SX2462W and FlexScan EV2303W. We are using three models, one for each type of LCD panel drive system. The SX2462W has IPS, the EV2333W has VA and the EV2303W has TN. The specifications for video display performance are given in the chart below.
Play the video of monochrome letters scrolling across a monochrome background and check the black-white-black response time. When the video starts "●▲■EIZO" scrolls across the screen. Please observe the outlines of the letters and symbols. When the black-white-black response time is slow, the contours of the lettering may be blurred, afterimages may be left of the outlines facing towards and away from the scrolling direction, the lettering may seem to leave thin streaks behind it, and false colors may be seen.
At first the video scrolls horizontally from right to left, then vertically from bottom to top, and then diagonally from top-left to bottom-right. The lettering is scrolled five times and then speeds up. At first it takes about 10 seconds to get from one edge of the screen to the other, then around 5 seconds and finally around 3 seconds. You should expect that the contours of the lettering have more apparent afterimages and false colors the faster the scrolling goes.
The content is the same as the previous monochrome video but the color of the lettering and the background changes twice during the course of the video. The directions in which the lettering is scrolled and the method of checking is the same as in the monochrome video.
These sample videos have been created to make it easy to find the faults of response times, so probably in most cases faults are even easier to find in standard video content. In fact, at the present there are no computer LCDs that can display the scrolled lettering perfectly, without any afterimages or flickering. We did find afterimages and flickering in all three of our test models when the speed increased, but there was no particularly noticeable breaking up of the lettering or false coloring of their contours, so it was at a level where it was perfectly possible to watch the video content.
Looking at each model separately, the (VA type) could set the intensity of the overdrive circuit, with a choice of three settings: "Off", "Normal" "High". With the color sample video in particular, the effect of the overdrive circuit settings was very clear: when it was "Off" there was a lot of "streaking" but this was considerably alleviated when it was set to "Normal" and became even less when it was "High". The black-white-black response time of the panel itself is a rather slow 25 ms so the monochrome sample video was a little slow, but the middle gradation response time is accelerated to 7 ms by the overdrive circuit and perfectly satisfactory for switching colors much used in normal video content.
The SX2462W (IPS type) is a monitor that is perhaps better with still images but gave a similar impression to that of the EV2333W (VA type) with its overdrive circuit set at "Normal" and there were no obvious faults. The black-white-black response time of the panel itself is 13 ms, fast for an IPS type, and the built-in overdrive circuit boosted the middle gradation response time to 7 ms, producing a very stable video display.
The EV2303W (TN type) has the fastest black-white-black response time, at 5 ms, and although there was little blurring in the monochrome sample video, afterimages were conspicuous in the color sample video. The middle gradation response time has not been revealed but, since it is not equipped with an overdrive circuit, there is the typical TN type characteristic that some tones are very much slower than the change between black and white. At first glance the TN type seems to have a faster response time but we would like you to remember that the middle gradations, much used in normal video content, are slowed (easily blurred).
We played the monochrome lettering sample video and photographed the slow speed scrolling with a digital camera. From the left: the EV2333W (overdrive setting: high), the SX2462W and the EV2303W. The shutter speed was 1/60 sec.
We played the color lettering sample video and photographed the slow speed scrolling with a digital camera. From the left: the (overdrive setting: high), the SX2462W and the EV2303W. The shutter speed was 1/60 sec.
Next let"s check the brightness and contrast, which are related to the impact of the video display, and the tone and color balance, which are related to detailed color representation. The optimum brightness and contrast values depend upon the video being displayed, the viewing distance and the user"s preferences. However, the appearance is generally improved if a high brightness and high contrast are set. We have prepared the sample videos below for our next check.
The first sample video juxtaposes a 16-gradient and a smooth gray scale (gradation). The screen does not change and we would like you to observe it carefully.
We would like you to adjust the LCD"s OCD menu as necessary while checking whether there is sufficient brightness and contrast. In most cases there is no problem when the brightness is at maximum, but try turning the brightness down slightly if you are bothered by the black looking washed-out and grayish.
Incidentally, the smooth grayscale pattern can also be used to check the display quality for still images (in particular the gradation). In the case of still images, you should look to see if there is banding (unnatural stripes) anywhere on the smooth grayscale, but usually video images do not require such a high level of gradation. There are some products that, in order to produce forceful images, actually correct the gamma curve to an S-shape in the video settings and prioritize contrast over tone.
The next sample video juxtaposes a smooth gray scale and a smooth color gradation (the screen does not change). As well as adjusting the brightness and contrast, let"s try changing the pre-set image quality mode and color temperature and check how the coloration changes.
In particular, the coloration should have a very different appearance when the color temperature is raised or lowered. For your reference, the standard computer color temperature and the international standard for HD image color temperature are both 6,500K, while the color temperature is 9,300K for analog TV images and so on in Japan (NTSC). When the color temperature is low the colors on the screen have a reddish tinge, which becomes bluer as the color temperature rises. It is better if it is adjusted to the optimum color temperature for the video image source, but if the product has image quality modes the color temperature is also switched automatically according to the mode, so perhaps we need not worry too much about that.
There are quite a few LCDs whose color balance can be adjusted for each RGB in the OSD menu, but basically this is best left untouched. It is very difficult for the average user to visually adjust the RGB color balance. It is probably very common for someone to think that they have adjusted the color balance for each RGB but then notice some strange colorations when they watch some actual video content.
There was good tone and color balance in all three of our test models. Their image quality modes all have "Fine Contrast" and there were no problems when this was set according to the video source, for example "Cinema" or "Movie". They do have a function that enables detailed gain adjustments for each RGB but our tests found that there were no problems at all if they were left in the default settings.
Recently there are some products equipped with a "dynamic contrast" function to boost the contrast of the video or game being displayed. Although often the name it is given depends on the product, simply stated it is a function that makes real-time adjustments to the contrast and backlight according to the video scene and enhances contrast in the time axis of the entire video.
For example, even if the LCD"s original contrast ratio is "1000:1" when dynamic contrast is enabled the contrast ratio is boosted as far as readings equivalent to severalfold or tens of times higher. However, we would like you to remember that the contrast ratio in the hardware specifications cannot be enhanced, and that in fact the contrast does not look as different as the gap in the figures might suggest.
The advantage of dynamic contrast is that it boosts the liveliness with which the video or game is displayed and strongly enhances the perceived image quality. The disadvantages are that gradation is occasionally destroyed in some particular video scenes, and in some cases the brightness and contrast changes cannot keep up with the actual changes in the video and an unnatural brightness results. Also, we should warn you that, since the contrast changes dynamically, the incessant contrast changes can make the screen hard to watch when something other than a video or game is being displayed. Basically, dynamic contrast should be enabled for video and games but disabled for other purposes.
The LCD surface treatment also has a big influence in terms of the perceived video display quality. The surface treatment we are speaking of is glare (glossy) or non-glare (matte). Previously the majority were non-glare but recently there has been a dramatic increase in the glare type, particularly in manufacturers" built-in PC monitors.
Let"s take a look at the glare type first. Their advantages are high-saturated coloration and glossy display. The LCD construction means that light from the backlight passes through the color filter to generate color on the screen. With glare type products a large amount of light is transmitted to the screen surface. This trait therefore also boosts the brightness and contrast (specifications vary widely depending on the LCD). The glare type is better than the non-glare type with regard to impressive image quality when video content is displayed.
However, the glare type does have the disadvantage of easily reflecting ambient light and placing a lot of strain on the eyes. When watching video content the atmosphere is often ruined by the room lighting or the viewer being reflected on the screen during dark scenes. You should probably bear in mind that that your reflection is easily reflected on the screen of an LCD that is viewed from a closer distance than a TV.
The disadvantages of the non-glare type are roughly the exact opposite of the advantages of the glare type. The light from the backlight is also diffused by the screen surface (less backlight comes through), which is one reason for the decrease in brightness and sharpness. That is why video and images displayed on a non-glare type seem more muted than on the glare type.
The surface treatment of an LCD makes a difference to the background reflection. Glare panels impede the surface diffusion of background light, which does make it easier to achieve high color purity, but also makes distinct reflections of the user or lighting much more likely (photo on the left). If the lights are similarly trained on a non-glare panel they do not have much effect on the display, only appearing as a fuzzy brightness (photo on the right).
Magnified images of LCD surfaces taken with a microscope. With the glare panel, the light from the backlight passes through the color filter and comes straight out to the surface, and the shape of the pixels can be distinguished (photo on the left). With the non-glare panel, the light from the backlight passes through the color filter and is diffused on the surface so the shape of the pixels is blurred and cannot be distinguished (photo on the right). Recently there are also "half-glare" processed products with a feel that is midway between the glare and non-glare types.
It is impossible to state unconditionally whether the glare or non-glare type is better, so we would really like you to compare them in a store. We would expect that many people will appreciate the high image quality of the glare type when playing video content, but it is probably a good idea to run various applications at full-screen size and in particular to check the reflection of ambient light.
This time we focused on LCD video display performance. Did you find any problems in the display quality of the sample videos on the LCD you usually use? They were rather tricky sample videos for an LCD so we expect that there was some degree of blurring in most environments.
There are more colors on the screen for an actual video and the images are more complex so false-colored contours and afterimages are probably not that noticeable. Also, some people are far more aware of blurring than others.
If your concerns include the blurring of backgrounds and so on, it is probably a good idea to consider buying an LCD with excellent video display quality. In terms of the EIZO line-up we would like to draw your attention to all the models equipped with an overdrive circuit and the FORIS series which has awide range of video input options and game-oriented features. These models also have a high level of display quality for still images, guaranteeing that you need have no worries about image quality and that you can enjoy using your LCD for a variety of purposes.
A test card, also known as a test pattern or start-up/closedown test, is a television test signal, typically broadcast at times when the transmitter is active but no program is being broadcast (often at sign-on and sign-off).
Used since the earliest TV broadcasts, test cards were originally physical cards at which a television camera was pointed, allowing for simple adjustments of picture quality.camcorders. From the 1950s, test card images were built into monoscope tubes which freed up the use of TV cameras which would otherwise have to be rotated to continuously broadcast physical test cards during downtime hours.
Electronically generated test patterns, used for calibrating or troubleshooting the downstream signal path, were introduced in the late-1960s. These are generated by test signal generators, which do not depend on the correct configuration (and presence) of a camera, and can also test for additional parameters such as correct color decoding, sync, frames per second, and frequency response.vectorscope, allowing precise adjustments of image equipment.
The audio broadcast while test cards are shown is typically a sine wave tone, radio (if associated or affiliated with the television channel) or music (usually instrumental, though some also broadcast with jazz or popular music).
Digitally generated cards came later, associated with digital television, and add a few features specific of digital signals, like checking for error correction, chroma subsampling, aspect ratio signaling, surround sound, etc. More recently, the use of test cards has also expanded beyond television to other digital displays such as large LED walls and video projectors.
Test cards typically contain a set of patterns to enable television cameras and receivers to be adjusted to show the picture correctly (see SMPTE color bars). Most modern test cards include a set of calibrated color bars which will produce a characteristic pattern of "dot landings" on a vectorscope, allowing chroma and tint to be precisely adjusted between generations of videotape or network feeds. SMPTE bars—and several other test cards—include analog black (a flat waveform at 7.5 IRE, or the NTSC setup level), full white (100 IRE), and a "sub-black", or "blacker-than-black" (at 0 IRE), which represents the lowest low-frequency transmission voltage permissible in NTSC broadcasts (though the negative excursions of the colorburst signal may go below 0 IRE). Between the color bars and proper adjustment of brightness and contrast controls to the limits of perception of the first sub-black bar, an analog receiver (or other equipment such as VTRs) can be adjusted to provide impressive fidelity.
They are also used in the broader context of video displays for concerts and live events. There are a variety of different test patterns, each testing a specific technical parameter: gradient monotone bars for testing brightness and color; a crosshatch pattern for aspect ratio, alignment, focus, and convergence; and a single-pixel border for over-scanning and dimensions.
The famous RCA Indian-head test pattern used mainly in North America from 1940 to the 1970s with its elements labelled, describing the use of each element in aligning a black & white analog TV receiver.
Test cards are as old as TV broadcasts, with documented use by the BBC in the United Kingdom in its early 30-line mechanical Baird transmissions from 1934Occupied France during World War II.Radiodiffusion-Télévision Française 819-line test card introduced in 1953.
In North America, most test cards such as the famous Indian-head test pattern of the 1950s and 1960s have long since been relegated to history. The SMPTE color bars occasionally turn up, but with most North American broadcasters now following a 24-hour schedule, these too have become a rare sight.
With the introduction of color TV, electronically generated test cards were introduced. They are named after their generating equipment (ex: Grundig VG1000,Philips PM5544,Telefunken FuBK,BBC test card) or organization (ex: SMPTE color bars, EBU colour bars).
Formerly a common sight, test cards are now only rarely seen outside of television studios, post-production, and distribution facilities. In particular, they are no longer intended to assist viewers in calibration of television sets. Several factors have led to their demise for this purpose:
Modern microcontroller-controlled analogue televisions rarely if ever need adjustment, so test cards are much less important than previously. Likewise, modern cameras and camcorders seldom need adjustment for technical accuracy, though they are often adjusted to compensate for scene light levels, and for various artistic effects.
Use of digital interconnect standards, such as CCIR 601 and SMPTE 292M, which operate without the non-linearities and other issues inherent to analog broadcasting, do not introduce color shifts or brightness changes; thus the requirement to detect and compensate for them using this reference signal has been virtually eliminated. (Compare with the obsolescence of stroboscopes as used to adjust the speed of record players.) On the other hand, digital test signal generators do include test signals which are intended to stress the digital interface, and many sophisticated generators allow the insertion of jitter, bit errors, and other pathological conditions that can cause a digital interface to fail.
Test cards including large circles were used to confirm the linearity of the set"s deflection systems. As solid-state components replaced vacuum tubes in receiver deflection circuits, linearity adjustments were less frequently required (few newer sets have user-adjustable "VERT SIZE" and "VERT LIN" controls, for example). In LCD and other deflectionless displays, the linearity is a function of the display panel"s manufacturing quality; for the display to work, the tolerances will already be far tighter than human perception.
For custom-designed video installations, such as LED displays in buildings or at live events, some test images are custom-made to fit the specific size and shape of the setup in question. These custom test images can also be an opportunity for the technicians to hide inside jokes for the crew to see while installing equipment for a show.
Rather than physical test cards, which had to be televised using a camera, television stations often used a special purpose camera tube which had the test pattern painted on the inside screen of the tube. Each tube was only capable of generating the one test image, hence it was called a monoscope.
Monoscopes were similar in construction to an ordinary cathode ray tube (CRT), only instead of displaying an image on its screen it scanned a built-in image. The monoscope contained a formed metal target in place of the phosphor coating at its "screen" end and as the electron beam scanned the target, rather than displaying an image, a varying electrical signal was produced generating a video signal from the etched pattern. Monoscope tubes had the advantage over test cards that a full TV camera was not needed, and the image was always properly framed and in focus. They fell out of use in the 1960s as they were not able to produce color images.
There are also test patterns kits and software developed specifically for many consumer electronics. The B&K Television Analyst was developed in the 1960s for testing monochrome TV sets in the NTSC standard and was later modified for European and Australian PAL standards. Among other uses, it consisted of a flying spot scanner on which a test pattern printed on a cellulose acetate slide was shown.
When CRT monitors were still commonly used on personal computers, specific test patterns were created for proper calibration of such monitors in the cases whereby multimedia images could not be shown properly on said monitors.VCD and DVD lens cleaner discs, such as the Kyowa Sonic lens cleaning kits from 1997–2001, also included test patterns as well.
More recent examples include the THX Optimizer which can be accessed in the setup menu in almost every THX-certified DVD,Netflixsmart HDR TVs, 4K and 8K displays and also used to sync audio and video feeds, which can be affected, among other factors, by Bluetooth and Internet latency.
Test patterns are also used to calibrate medical displays for telemedicine and medical diagnostic purposes, such as the SMPTE RP-133 medical diagnostic imaging test pattern specification for medical and surgical displays, created around 1983AAPM in 2001.X-ray machines, in particular those manufactured by Leeds Test Objects in England, also exist as well.
Television has had such an impact in today"s life that it has been the main motif for numerous collectors" coins and medals. One of the most recent examples is The 50 Years of Television commemorative coin minted on 9 March 2005, in Austria. The obverse of the coin shows the centre portion of the Telefunken T05 test card, while the reverse shows several milestones in the history of television.
The Philips Pattern is widely recognised as one of the iconic popular culture symbols of the 1980s and 1990s. Numerous novelty and collectible items has been patterned after the famous test card, including wall clocks, bedsheets, wristwatches, and clothing.
In Britain, music - rather than radio sound - was usually played with the test card. The music played by the BBC, and afterwards ITV, was library music, which was licensed on more favourable terms for frequent use than commercially available alternatives. Later, Channel 4 used UK library LPs from publishers like KPM, Joseph Weinberger and Ready Music.
Until September 1955, the BBC used live playing 78 RPM commercial records as an audio background to the test cards. After that date, they switched to using recorded music on tape.celesta). ITV (which began its first trade transmissions in 1957) continued to use commercially available recordings until the late 1960s, when it also began to make specially produced tapes.
During the 1980s, the test card was gradually seen less and less - it was pushed out first by Teletext pages, then extended programme hours. The same tapes were used to accompany both the test card and Ceefax on BBC channels, but some fans argue that new tapes introduced after Ceefax became the norm in 1983 were less musically interesting.
Associated-Rediffusion–Marconi "diamond" monochrome test card versions 1, 2 and 3RTV in British Hong Kong, TVM in Crown Colony of Malta and WNTV in the western part of Colonial Nigeria
The Test Card Circle, a UK fan site: details of the UK"s Trade Test Transmissions including the history of the BBC and ITA Test Cards, a look at the music used and full details about the Trade Test Colour Films shown from the late fifties to 1973.
Curtiss-Wright"s flight test software is developed using feedback from decades of support experience to make it intuitive, fast, and efficient to use. It saves time and effort in setting up and managing hardware while providing powerful tools for real-time and post-flight data visualization, analysis, and reporting.
IADS is a suite of display and analysis tools for creating displays, parameter definitions, analysis options, and test setup in seconds that can scale from large multi-discipline test rooms to single-user systems. IADS Post-Test Explorer provides a unified post-test reporting system with many powerful features to gather data from multiple tests, develop custom data analysis functions and create plots and charts. To view technical documentation, user guides, etc. for IADS, visit its support page.
SEOUL (Reuters) - Chinese flat screen makers, once dismissed as second-class players in the global LCD market, are drawing envious looks from big names such as LG Display Co Ltd and Samsung.An employee works inside a LCD factory in Wuhan, Hubei province, May 8, 2013. REUTERS/China Daily
While the Korean giants were busy developing next-generation organic light emitting diode (OLED) TVs, little-known Chinese companies have started selling a type of display that are sharper than the standard LCD and cheaper than OLED.
Until last year, the UHD market had been almost non-existent, with just 33,000 sets sold in the 200 million-unit LCD TV market. Since then, shipments have soared around 20-fold, thanks to China, data from research firm IHS shows.
But its slow introduction into the market and austere prices have thrown open a window of opportunity for UHD makers, in this case Chinese companies like BOE Technology Group Co Ltd and TCL Corp’s LCD unit CSOT.
By comparison, Japanese flat-screen pioneer Sharp Corp reported a razor-thin 0.5 percent margin. LG Display, the world’s No.1 LCD maker, posted a 5.6 percent margin.
Samsung Display, a unit of Samsung Electronics, had a margin of 13 percent, the biggest in the industry. But excluding its fledging OLED business, its LCD margin is between 3 and 7 percent, according to a Bernstein forecast.
“Even with some expansion of the Chinese panel suppliers we do expect Samsung and LG Display to stay dominant and continue production in LCD,” said Sweta Dash, director at IHS.
BOE Technology is now planning to raise 46 billion yuan ($7.5 billion) in the biggest Chinese equity offering this year, to build panel production lines and increase its stake in its LCD venture BOE Display Technology.
2 Min ReadAn employee of LG Electronics" home appliances store walks past its LCD televisions displayed for customers at a store in Seoul July 21, 2008. REUTERS/Jo Yong-Hak
LG Display, the world’s second-biggest maker of liquid crystal display (LCD) panels, has sought alliances with Asian TV makers to strengthen its client base and reduce costs.
The LG-Amtran joint venture will be set up in Amtran’s existing production base in Suzhou, China, with initial funding of $20 million. LG Display will own 51 percent of the new company and Amtran, maker of Vizio brand LCD TVs, will hold the remaining 49 percent.
The joint venture will produce 3 million LCD modules and 5 million LCD TV sets a year, with operations set to start early next year, LG said. It did not disclose the value of any additional investments to be made.
Leading LCD makers, including No. 1 Samsung Electronics Co Ltd, LG Display and third-ranked AU Optronics Corp face a slowing global economy that has hit demand for new flat-screen TVs and personal computers.
It is such a waste to only use the LCD for desktop computers. Connecting it up with a laptop PC has many merits for the user and can also bring out the latent power of the laptop.
Most laptops have a handy "external display output" port. It can be used in the home to transmit videos played on the laptop to a large screen TV or, in the office, to connect up with a projector for presentations. In fact, there must be many users who already use it like this. However, people tend to use just the laptop in their daily routine and there are probably not so many cases where they use the external display output.
A laptop can be put to more effective use if it is connected to an external LCD. The photograph shows an EIZO 23-inch wide-screen LCD connected by HDMI to a Sony VAIO C laptop (VPCCW28FJ/R).
This time we would like to suggest a style that can be used in both the home and the office, where a laptop and stand-alone LCD remain connected. A laptop already has an LCD, but using it with an additional stand-alone LCD offers various merits. Not only does it make the laptop environment more pleasant and convenient, it also expands the potential of the computer itself, for example by making it possible to use it for new purposes.
Even if the LCD is already connected to a desktop computer and being used for something other than the laptop, most monitors nowadays have two or more video inputs and they tend not to use this capability to the full. It is such a waste to let the laptop"s external display output function and the monitor"s video input function remain dormant, so we would like them to be put to effective use. Of course, we would also recommend the introduction of a new LCD to connect to your laptop.
The biggest merit of connecting a laptop with a stand-alone LCD is that it gives you a large screen and high resolution dual display environment. Standard laptop models usually come with a built-in 13-inch to 15-inch wide-screen LCD with a 1280 × 800 dot or 1366 × 768 dot resolution.
This level of resolution is good enough for basic Windows operations, but it goes without saying that a large, high-resolution computer screen is much more user-friendly. Combining a laptop with one of the latest wide-screen monitors enables you to easily construct a large-screen, high-resolution dual display environment. It is a real boon to dramatically boost the screen size and resolution while continuing to use your familiar laptop.
Another plus is that you can create the luxury of a "watching while" environment where you run the web browser, for instance, on the laptop"s built-in LCD and watch the video content on the large screen of the external monitor. This can be really useful for hobbies too. For example, while playing a game on the large external LCD screen you can check out strategies on websites, post information on a BBS or communicate with other users.
You can smoothly use multiple applications at the same time in the large workspace provided by a dual display. The photograph shows an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W connected to a VAIO C. By supplementing the laptop"s built-in 1366 × 768 dot 14-inch wide-screen LCD with a 1920 × 1200 dot 24.1-inch wide-screen, it is possible to show more data at a time, a huge boost to work efficiency.
With two screens it"s easy to have full-screen display of the video content on one screen while you operate the computer on the other. The photograph shows an EIZO 23-inch wide-screen LCD monitor connected to a VAIO C. The VAIO C has HDMI output and the LCD monitor has HDMI input so visuals and sound can be transmitted by a single HDMI cable. The LCD monitor has full HD screen resolution (1920 × 1080 dot), making it the perfect match for HD video content.
At the office, it is very helpful for presentations to use "clone view" for the laptop"s built-in LCD and the external LCD screen. Clone view means showing exactly the same content on two display screens. It is normally set by a graphics driver function.
When holding small meetings it is certainly very convenient to be able to offer simple explanations of the presentation materials displayed on the external LCD, rather than having to ready a projector. Being able to explain about what is displayed on the screen means fewer documents to distribute, helping your office to "go paperless", which can only be a good thing.
Even if the upper limit is 1680 × 1050 dots, the LCD can still display the data if its own resolution is 1680 × 1050 dots or higher. In such cases, it is better to use a monitor that offers dot-by-dot display, which displays the input resolution as it is, or enlarged display, which maintains the screen"s aspect ratio as it is. You do not need to worry because EIZO wide-screen LCDs can handle such display methods (although in some cases they do not function properly depending on the laptop computer or input resolution).
This is an example of a low-resolution display on the 1920 × 1200 dot display SX2462W. Since dot-by-dot display outputs the physical "1 dot" of the LCD and the input resolution "1 dot" without enlargement or reduction, it is shown small in the center of the screen (photo on the left). The display is a little blurred if it is enlarged while maintaining the aspect ratio, but this method is suitable for displaying images as they are shown large with low resolution to make the most of the screen size (photo on the right). Many monitors that cannot handle such display methods enlarge the display to full screen regardless of the input resolution. In such cases you have to be careful as the aspect ratio of the image is altered (for example, people appear to be thinner or fatter).
It is easy to set up a dual display in Windows 7. A menu is displayed when you right-click on the desktop. From "Screen resolution" it is possible to detect and align the external LCD, and set details such as resolution, display method and which will be the main display screen.
The "Screen resolution" menu. If the external LCD is not automatically recognized, click on "Detect". After the monitor has been recognized, you can select the display mode from the "Multiple displays" drop-down menu. Select "Extend display screen" to make the laptop screen and the external LCD into a single display screen (dual display).
Select "Duplicate display screen" from the "Multiple displays" drop-down menu to display the same content on the laptop screen and the external LCD screen (clone view). With this drop-down menu you can also set it to display video on one of the LCDs.
It is also worth noting that Windows 7 has added functions so that dual display can be used more effectively. An active window can be moved to the screen of another LCD by simultaneously pushing "Windows" + "Shift" + "→" (or "←"). It is also possible to maximize the window by pressing "Windows" + "↑", minimize it by pressing "Windows" + "↓", and shift it to the left or right of each screen by pressing "Windows" + "→" (or "←"). Making good use of these shortcuts should enable the efficient placing of windows in the two screens.
We would recommend a wide-screen model with a screen resolution of 1920 × 1080 dots (Full HD) or 1920 × 1200 dots (WUXGA) as the LCD to connect to a laptop, so that you can make full use of the advantages of dual display. EIZO has an extensive line up of wide-screen LCDs which can offer many benefits, in addition to the merits of a large screen and high resolution, when used with a laptop for dual display.
With a 24.1 inch wide-screen like the SX2462W, an A3 sheet (two A4 sheets side by side) can be viewed in actual size, particularly effective for paper-based creative work ITmedia LCD Course II, Lesson 3: Which is better, 16:10 or 16:9 ? – "Screen size / resolution / aspect ratio"
We must not forget that EIZO"s wide-screen LCDs have non-glare screens (processed to reduce ambient light reflection). Nowadays the trend is for laptops to have an LCD with glare (glossy) surface treatment. While these can display images in bright color, reflected ambient light can sometimes be distracting.
A laptop screen is not so large and adjusting its angle can avoid the reflection of lights and so on, however it is not so easy with the large screen of an external LCD. When it comes to the large screen of an LCD in habitual use, a non-glare type that is not reflective is probably easier to see, as well as being kinder on the eyes. A large screen, high resolution and non-glare ensure that you can comfortably continue viewing over a prolonged period of time.
The surface treatment of an LCD makes a difference to the background reflection. Glare panels do not diffuse background light, making it easier to achieve high color purity, but easily reflect the user or lights (photo on the left). If the lights are similarly trained on a non-glare panel they do not have much effect, only appearing as a fuzzy brightness (photo on the right).
Another distinctive feature of EIZO wide-screen LCDs is a commitment to energy saving. They incorporate various power saving features that support "EcoView". A pivotal feature is the "EcoView Sense" adopted in the FlexScan EV series, such as the EV2333W.
This is the motion sensor on the front of the LCD. It constantly monitors the user"s movements to automatically take finely-tuned power saving measures. To be more precise, if the user"s presence is not detected for a specified period of time, for example if he leaves his seat, the monitor automatically switches to power save mode, and then automatically switches back when the user"s presence is detected again.
Other features include "Auto EcoView", which automatically optimizes the brightness of the LCD based on ambient lighting, and "EcoView Index", which displays a meter on the screen showing how much power is being saved. All these features can be expected to have a strong energy saving effect and to boost the user"s awareness of power saving, making them particularly useful in the office.
A standard laptop computer switches to sleep mode if the built-in LCD is closed while it is running but, if this function is turned off, a laptop can be treated as a "small desktop computer."
It can be set to use only the connected external LCD and not to react when the laptop"s built-in LCD is closed. The transformation into a small desktop PC is complete if you add a keyboard and mouse connected to the laptop via USB ports, for example. The OS is still running even though the laptop"s built-in LCD is closed, so you can carry out normal operations using the external keyboard and mouse, and also use the laptop"s built-in optical drives.
The idea is to use a large screen, high resolution external LCD at home or in the office, and to use the laptop"s built-in LCD as usual for mobile purposes. This helps to boost the longevity of the laptop"s built-in LCD and many people do use their laptop in this way. If you feel reluctant to use a dual display environment, where the screen is split in two, why not give this a try?
Select "Only show the desktop on 2" from the "Multiple displays" list in the "Screen resolution" menu. The laptop"s built-in LCD will be switched off and the external LCD will become the main display.
In the case of Windows 7, open "Alter power button operation" from the "Power options" list in the Control Panel"s "Hardware and sound", and alter the "Operation when the cover is closed" to "Do nothing".
By making this simple setting your laptop can be used as a space saving desktop computer. Another plus is that the laptop"s built-in LCD will last longer.
Recently some high-end laptop computers, such as the Sony VAIO F, are insisting on good display quality for their LCDs. However, a typical laptop"s built-in LCD does not have as good image quality as a stand-alone LCD. This is only natural since the costs allowed for display quality are completely different for an LCD incorporated into the PC as one of its parts and a specialized LCD.
However, by using an EIZO wide-screen LCD a laptop user can still fully enjoy such benefits of a stand-alone high-quality LCD as excellent color reproduction, a wide viewing angle, more even display and a wealth of items that can be adjusted to improve image quality. This is a crucial point for people who use their computer for photographs and videos in particular.
EIZO"s wide-screen LCDs emphasize color reproduction, and the coloration in sRGB mode has a high degree of accuracy. The standard color gamut used in PC environments and Internet content is sRGB, so you need have no worries about viewing or editing videos and photographs. They can also display images on web pages, such as products in online shops or goods for sale in online auctions, in colors that are very close to the real thing. (This is also influenced by how the seller took the photographs and processed the images, so we cannot say that the colors will always be accurate.)
In this case, if the image is edited on the external LCD with its high color reproducibility and the many tool palettes in the application are grouped in the laptop"s built-in LCD, there is less need to display or hide the tool palettes or to switch back and forth, and the image data to be edited can be displayed in a large form, making for more efficient work.
In this case, if the image is edited on the external LCD with its high color reproducibility and the many tool palettes in the application are grouped in the laptop"s built-in LCD, there is less need to display or hide the tool palettes or to switch back and forth, and the image data to be edited can be displayed in a large form, making for more efficient work.
When doing things like photo retouching, using software where there is a lot of switching between tool palettes it is very handy to display the image data to be edited on the external LCD with its high color reproducibility, and to gather the palette tools to be used on the laptop"s built-in LCD.
Going back to the subject of laptop computers, it is not going too far to say that applications and functions are being spoiled in laptops whose built-in LCD"s image quality is not too good. Connecting a laptop to a monitor with high image quality dispels any concerns about work that deals with colors and also helps to bring out the laptop"s potential.
Combining an EIZO wide-screen LCD with a laptop computer makes viewing videos and images even more fun. Just being able to see them on a large screen is a pleasure, but what makes it even better is that our LCDs are equipped with Fine Contrast, the optimum image quality mode for video and visuals. You can also use the Custom mode to create the image quality you prefer.
We expect that you now understand how displaying screens from a laptop computer on a stand-alone LCD can create a very pleasant environment. It feels as if your everyday laptop has been transformed into a completely different desktop machine. Even if you only use laptop computers, it is definitely worthwhile to add a stand-alone LCD.
When choosing the type of LCD the most important consideration is to choose one with overall high quality. When it comes to that, we can recommend EIZO wide-screen LCDs to a broad range of laptop users. In addition to their high image quality, EIZO wide-screen LCD are built with careful attention to detail, including non-glare screens, versatile stand features, dot-by-dot capability, abundant image quality modes, and our proprietary eco-functions. We want you to make full use of your beloved laptop computer along with an EIZO wide-screen LCD.
This time we have spoken about how an external LCD can be connected to a laptop computer, but if your main machine is a desktop computer then you probably already have a LCD.
In which case, why not consider adding a full HD (1920 × 1080 dot) or WUXGA (1920 × 1200 dot) wide-screen LCD and creating a more advanced dual display environment to further enhance your computer"s usability.
The dual display environment of a desktop PC has a wider range of options than a laptop computer, which is already installed with an LCD. Depending on the combination of products used you can seek for a larger screen, higher resolution and better image quality.
You can get a super high resolution of 3840 × 1200 dots in total by putting two 24.1-inch 1920 × 1200 dot wide-screen LCDs side by side. The advantage in this is that a larger screen and higher resolution are achieved at a lower cost than buying a single 30-inch high resolution model