lcd module 16x2 pinout free sample

We come across Liquid Crystal Display (LCD) displays everywhere around us. Computers, calculators, television sets, mobile phones, and digital watches use some kind of display to display the time.

An LCD screen is an electronic display module that uses liquid crystal to produce a visible image. The 16×2 LCD display is a very basic module commonly used in DIYs and circuits. The 16×2 translates a display of 16 characters per line in 2 such lines. In this LCD, each character is displayed in a 5×7 pixel matrix.

Contrast adjustment; the best way is to use a variable resistor such as a potentiometer. The output of the potentiometer is connected to this pin. Rotate the potentiometer knob forward and backward to adjust the LCD contrast.

A 16X2 LCD has two registers, namely, command and data. The register select is used to switch from one register to other. RS=0 for the command register, whereas RS=1 for the data register.

Command Register: The command register stores the command instructions given to the LCD. A command is an instruction given to an LCD to do a predefined task. Examples like:

Data Register: The data register stores the data to be displayed on the LCD. The data is the ASCII value of the character to be displayed on the LCD. When we send data to LCD, it goes to the data register and is processed there. When RS=1, the data register is selected.

Generating custom characters on LCD is not very hard. It requires knowledge about the custom-generated random access memory (CG-RAM) of the LCD and the LCD chip controller. Most LCDs contain a Hitachi HD4478 controller.

CG-RAM address starts from 0x40 (Hexadecimal) or 64 in decimal. We can generate custom characters at these addresses. Once we generate our characters at these addresses, we can print them by just sending commands to the LCD. Character addresses and printing commands are below.

LCD modules are very important in many Arduino-based embedded system designs to improve the user interface of the system. Interfacing with Arduino gives the programmer more freedom to customize the code easily. Any cost-effective Arduino board, a 16X2 character LCD display, jumper wires, and a breadboard are sufficient enough to build the circuit. The interfacing of Arduino to LCD display is below.

The combination of an LCD and Arduino yields several projects, the most simple one being LCD to display the LED brightness. All we need for this circuit is an LCD, Arduino, breadboard, a resistor, potentiometer, LED, and some jumper cables. The circuit connections are below.

lcd module 16x2 pinout free sample

In this tutorial I am going to explain about the pin out, working and control systems of character lcd’s. Character lcd’s comes in many sizes for example 8×1, 8×2, 8×4, 16×1, 16×2, 20×1, 20×2, 20×4, 24×1, 24×2, 24×4, 32×1, 32×2, 40×1, 40×2 and 40×4. In these MxN dimensions, M represents number of coulombs & N represents number of rows.

All these Lcd’s available in market have 14 or 16 pins depending on the vendor/supplier. Also they all contains a same lcd controller in them which controls all their activities. Talks to external peripherals(like microcontrollers) receives data from external devices and displays them on lcd display screen. Generally every character lcd has HD44780 controller in it which controls every operation of character lcd. Some variants and competitors of HD44780 also placed step in embedded market but they are not popular for exampleAIP31066 , KS0066 , SPLC780 and ST7066 lcd controller.

In these 14 pins, 8 are data pins(FromDB-0toDB-7). Three are lcd control pinsRS(Register Select),R/W(Read-Write) &En(Enable). Two are lcd power pinsVcc(+5v)Vss(Gnd). The last pin islcd contrast pin(V0).

If lcd contains 16 pins than the extra 2 pins are LED+ and LED- pins. LED+ and LED- are for lcd’s back light, if you want to switch on the back light of lcd then use these pins other wise leave them void.

Character lcd’s which have pins arranged in two lines like headers, their pin-out is given below. Female header pin-out is shown below. Vendors for ease pre-solder the lcd pins and provide a female header for connections.

Mostly character lcds contains HD44780U lcd controller in them. HD44780 was developed by Hitachi. A single HD44780 can handle up to 80 characters. In 40×4 lcd display total characters which we can display on lcd are 40×4=160. So to control 160 characters we need two HD44780 controllers. To work with two HD44780 controllers we need an extra pin to energize the second controller.

Lcd contrast pin is same like fine tuning your television. In televisions we fine tune stations using remote but in character lcd’s we have to manually do it by varying the resistance. Varying the resistance means we control the input current to lcd. Varying resistance will fade or brighten the characters or data appearing on lcd screen.

Character Lcd’s can be interfaced in 8-bit and 4-bit mode with external controllers. In 8-bit mode all the data lines(DB0-DB7) of lcd are utilized. In 4-bit mode only four data pins of lcd are utilized (DB7-DB4). In 4-bit mode first the 8-bit ASCII value is divided in to two nibbles, first the upper nibble is send on data line and then the lower nibble. 4-bit mode is used when we want to save GPIO pins of our external device like microcontoller. An example of lcd connection with remote controller is shown in the picture below.

I prepared a good tutorial on interfacing character lcd in 8-bit and 4-bit mode with microcontrollers. Demo codes are also presented and explained in the post. Click the below button to take the tutorial.

lcd module 16x2 pinout free sample

16×2 LCD is named so because; it has 16 Columns and 2 Rows. There are a lot of combinations available like, 8×1, 8×2, 10×2, 16×1, etc. But the most used one is the 16*2 LCD, hence we are using it here.

All the above mentioned LCD display will have 16 Pins and the programming approach is also the same and hence the choice is left to you. Below is the Pinout and Pin Description of 16x2 LCD Module:

These black circles consist of an interface IC and its associated components to help us use this LCD with the MCU. Because our LCD is a 16*2 Dot matrix LCD and so it will have (16*2=32) 32 characters in total and each character will be made of 5*8 Pixel Dots.  A Single character with all its Pixels enabled is shown in the below picture.

So Now, we know that each character has (5*8=40) 40 Pixels and for 32 Characters we will have (32*40) 1280 Pixels. Further, the LCD should also be instructed about the Position of the Pixels.

It will be a hectic task to handle everything with the help of MCU, hence an Interface IC like HD44780 is used, which is mounted on LCD Module itself. The function of this IC is to get the Commands and Data from the MCU and process them to display meaningful information onto our LCD Screen.

The LCD can work in two different modes, namely the 4-bit mode and the 8-bit mode. In 4 bit mode we send the data nibble by nibble, first upper nibble and then lower nibble. For those of you who don’t know what a nibble is: a nibble is a group of four bits, so the lower four bits (D0-D3) of a byte form the lower nibble while the upper four bits (D4-D7) of a byte form the higher nibble. This enables us to send 8 bit data.

As said, the LCD itself consists of an Interface IC. The MCU can either read or write to this interface IC. Most of the times we will be just writing to the IC, since reading will make it more complex and such scenarios are very rare. Information like position of cursor, status completion interrupts etc. can be read if required, but it is out of the scope of this tutorial.

The Interface IC present in most of the LCD is HD44780U,in order to program our LCD we should learn the complete datasheet of the IC. The datasheet is given here.

There are some preset commands instructions in LCD, which we need to send to LCD through some microcontroller. Some important command instructions are given below:

lcd module 16x2 pinout free sample

In this Arduino tutorial we will learn how to connect and use an LCD (Liquid Crystal Display)with Arduino. LCD displays like these are very popular and broadly used in many electronics projects because they are great for displaying simple information, like sensors data, while being very affordable.

You can watch the following video or read the written tutorial below. It includes everything you need to know about using an LCD character display with Arduino, such as, LCD pinout, wiring diagram and several example codes.

An LCD character display is a unique type of display that can only output individual ASCII characters with fixed size. Using these individual characters then we can form a text.

The number of the rectangular areas define the size of the LCD. The most popular LCD is the 16×2 LCD, which has two rows with 16 rectangular areas or characters. Of course, there are other sizes like 16×1, 16×4, 20×4 and so on, but they all work on the same principle. Also, these LCDs can have different background and text color.

Next, The RSpin or register select pin is used for selecting whether we will send commands or data to the LCD. For example if the RS pin is set on low state or zero volts, then we are sending commands to the LCD like: set the cursor to a specific location, clear the display, turn off the display and so on. And when RS pin is set on High state or 5 volts we are sending data or characters to the LCD.

Next comes the R/W pin which selects the mode whether we will read or write to the LCD. Here the write mode is obvious and it is used for writing or sending commands and data to the LCD. The read mode is used by the LCD itself when executing the program which we don’t have a need to discuss about it in this tutorial.

After all we don’t have to worry much about how the LCD works, as the Liquid Crystal Library takes care for almost everything. From the Arduino’s official website you can find and see the functions of the library which enable easy use of the LCD. We can use the Library in 4 or 8 bit mode. In this tutorial we will use it in 4 bit mode, or we will just use 4 of the 8 data pins.

We will use just 6 digital input pins from the Arduino Board. The LCD’s registers from D4 to D7 will be connected to Arduino’s digital pins from 4 to 7. The Enable pin will be connected to pin number 2 and the RS pin will be connected to pin number 1. The R/W pin will be connected to Ground and theVo pin will be connected to the potentiometer middle pin.

We can adjust the contrast of the LCD by adjusting the voltage input at the Vo pin. We are using a potentiometer because in that way we can easily fine tune the contrast, by adjusting input voltage from 0 to 5V.

Yes, in case we don’t have a potentiometer, we can still adjust the LCD contrast by using a voltage divider made out of two resistors. Using the voltage divider we need to set the voltage value between 0 and 5V in order to get a good contrast on the display. I found that voltage of around 1V worked worked great for my LCD. I used 1K and 220 ohm resistor to get a good contrast.

There’s also another way of adjusting the LCD contrast, and that’s by supplying a PWM signal from the Arduino to the Vo pin of the LCD. We can connect the Vo pin to any Arduino PWM capable pin, and in the setup section, we can use the following line of code:

It will generate PWM signal at pin D11, with value of 100 out of 255, which translated into voltage from 0 to 5V, it will be around 2V input at the Vo LCD pin.

First thing we need to do is it insert the Liquid Crystal Library. We can do that like this: Sketch > Include Library > Liquid Crystal. Then we have to create an LC object. The parameters of this object should be the numbers of the Digital Input pins of the Arduino Board respectively to the LCD’s pins as follow: (RS, Enable, D4, D5, D6, D7). In the setup we have to initialize the interface to the LCD and specify the dimensions of the display using the begin()function.

The cursor() function is used for displaying underscore cursor and the noCursor() function for turning off. Using the clear() function we can clear the LCD screen.

So, we have covered pretty much everything we need to know about using an LCD with Arduino. These LCD Character displays are really handy for displaying information for many electronics project. In the examples above I used 16×2 LCD, but the same working principle applies for any other size of these character displays.

lcd module 16x2 pinout free sample

Liquid Crystal Display(LCDs) provide a cost effective way to put a text output unit for a microcontroller. As we have seen in the previous tutorial, LEDs or 7 Segments do no have the flexibility to display informative messages.

The LCD is a simple device to use but the internal details are complex. Most of the 16x2 LCDs use a Hitachi HD44780 or a compatible controller. Yes, a micrcontroller is present inside a Liquid crystal display as shown in figure 2.

Power & contrast:Apart from that the LCD should be powered with 5V between PIN 2(VCC) and PIN 1(gnd). PIN 3 is the contrast pin and is output of center terminal of potentiometer(voltage divider) which varies voltage between 0 to 5v to vary the contrast.

lcd module 16x2 pinout free sample

Previous examples connect the white LED backlight to power. The following example is specifically for those using an LCD with a RGB LED backlight. The only difference between the connection is the LED"s backlight on pins 15-18.

lcd module 16x2 pinout free sample

In LCD 16×2, the term LCD stands for Liquid Crystal Display that uses a plane panel display technology, used in screens of computer monitors & TVs, smartphones, tablets, mobile devices, etc. Both the displays like LCD & CRTs look the same but their operation is different. Instead of electrons diffraction at a glass display, a liquid crystal display has a backlight that provides light to each pixel that is arranged in a rectangular network.

Every pixel includes a blue, red, green sub-pixel that can be switched ON/OFF. Once all these pixels are deactivated, then it will appear black and when all the sub-pixels are activated then it will appear white. By changing the levels of each light, different color combinations are achievable. This article discusses an overview of LCD 16X2 & its working with applications.

An electronic device that is used to display data and the message is known as LCD 16×2. As the name suggests, it includes 16 Columns & 2 Rows so it can display 32 characters (16×2=32) in total & every character will be made with 5×8 (40) Pixel Dots. So the total pixels within this LCD can be calculated as 32 x 40 otherwise 1280 pixels.

16 X2 displays mostly depend on multi-segment LEDs. There are different types of displays available in the market with different combinations such as 8×2, 8×1, 16×1, and 10×2, however, the LCD 16×2 is broadly used in devices, DIY circuits, electronic projects due to less cost, programmable friendly & simple to access.

Pin7 (Data Pin): The data pins are from 0-7 which are connected through the microcontroller for data transmission. The LCD module can also work on the 4-bit mode through working on pins 1, 2, 3 & other pins are free.

The basic working principle of LCD is passing the light from layer to layer through modules. These modules will vibrate & line up their position on 90o that permits the polarized sheet to allow the light to pass through it.

At present, LCDs are used frequently in CD/DVD players, digital watches, computers, etc. In screen industries, LCDs have replaced the CRTs (Cathode Ray Tubes) because these displays use more power as compared to LCD, heavier & larger.

The displays of LCDs are thinner as compared to CRTs. As compared to LED screens, LCD has less power consumption because it functions on the fundamental principle of blocking light instead of dissipating.

The registers used in LCD are two types like data register & command register. The register can be changed by using the RS pinout. If we set ‘0’ then it is command register and if it is ‘1’ then it is data register.

The main function of the command register is to save instructions illustrated on LCD. That assists in data clearing & changes the cursor location & controls the display.

The data register is used to save the date to exhibit on the LCD. Once we transmit data to LCD, then it shifts to the data register to process the data. If we fix the register value at one that the data register will start working.

Interfacing of a 16X2 LCD with Arduino is discussed to display “Hello World!” on the screen. A library like LiquidCrystal permits you to manage the displays that are well-matched through the driver like Hitachi HD44780 driver. Here, the following example circuit displays “Hello World!” on the LCD & displays the time in sec once the Arduino board was reset.

The 16×2 display includes a parallel interface which means that the microcontroller used in this has to control different interface pins immediately to control the LCD. The interface includes mainly these pins like RS (Register Select) pin, Read/Write pin, Enable Pin, Data pins from D0 to D7, display contrast pin, LED backlight pins, power supply pins.

The controlling of LCDs compatible with Hitachi can be done using two modes like 4-bit/8-bit. Here, the 4-bit mode needs 7 I/O pins using the Arduino board, whereas the 8-bit mode needs 11 pins. To display the text on the LCD, the 4-bit mode is used. The following example will explain how to control an LCD using 4-bit mode.

Before interfacing the LCD screen to the Arduino board, a pin header strip need to be solder to pin-14 or 16 of the LCD. We can notice this in the following circuit diagram. The following pins need to connect to wire the LCD to an Arduino board.

Thus, this is all about an overview of LCD 16×2, used in a wide range of applications such as different devices and circuits such as calculators, mobile phones, TV sets, computers, etc. These displays are mostly selected for multi-segment LEDs & 7- segment displays. LCDs are extensively used in different electronic applications like different systems to illustrate different statuses as well as parameters. Here is a question for you, what are the different types of LCDs available in the market?

lcd module 16x2 pinout free sample

In this tutorial, you’ll learn how to interface ESP32 with an LCD display 16×2 without I2C. It can be useful in some projects, however, it’s not very common, due to the GPIO pins it does consume. But it’s going to be a good starting point if you’re new to Alphanumeric LCDs in general or just want to use the generic Arduino LiquidCrystal display library.

Alphanumeric LCD 16×2 display units are the most common and easiest solutions to get some data out of your microcontroller to the world to visually see. It’s a very cheap, easy to use, and reliable option to display strings of text/numbers to your system’s users.

The only downside to using the bare 16×2 LCD display is that it requires 6 dedicated GPIO pins of your microcontroller. In the case of our ESP32, it can be really annoying to lose 6 GPIO pins for adding only 1 LCD module to the project. However, in some projects, it can be a good option in case you don’t need the extra GPIO pins anyway.

The second most commonly preferred option is by using the I2C module with your LCD. This will reduce the GPIO pins requirement down to only 2 pins (the I2C pins SDA & SCL). Not only that, actually the 2 pins of that I2C bus can still access so many other I2C devices on the exact same bus.

You can end up having maybe 5 LCDs connected to your microcontroller using only 2 pins If you’re using that I2C module. But it’s the topic of the next tutorial. For this tutorial, we’ll be doing bare LCD interfacing in a classic way without an I2C IO expansion module.

This is the pinout for a typical LCD 16×2 display unit. It’s got 8 data lines (you can use only 4 of them or all of the 8). And remember that it needs to be powered from a +5v source despite the fact that our ESP32 is a 3.3v microcontroller device. This requirement is only for the power supply pins, not the data lines.

There are two ways to interface the LCD diver (controller) IC. You can use the full bus width (8-Bits) for data or alternatively you can use a 4-Bit interface for a reduced pin count needed to control the LCD. Specifically low pin count MCUs need to operate in the 4-Bit mode. And it’s the case for our ESP32 which has limited resources in terms of GPIO pin count.

The differences between 8-Bit mode and 4-Bit mode are that in the 8-Bit mode you’re operating the LCD at the full speed. While in 4-Bit mode, you send each data byte or command in two consecutive cycles instead of one. The other difference is the initialization routine steps. This is detailed in the full LCD article linked below.

If you’re interested in learning more about the LCD display, how it works, how does the LCD driver IC work (the circular black thing on the back), its internal registers, and more. Then, you should check outthis tutorial linked down below.

In that tutorial, we’ll be scrolling through the LCD driver datasheet, learning how it works, how to write a driver firmware library for it, and build our own library in Embedded-C with PIC microcontrollers from scratch and test it out in a couple of LABs.

In this section, I’ll give you a brief description of the LiquidCrystal library that we’ll be using in this tutorial. And it’s basic API functions to initialize and write some text on any LCD. We’ll be using the generic LiquidCrystal library (not the I2C version) which is similar to any other Arduino LCD example code you’ve seen online.

The Arduino LiquidCrystal library gives you all the functionalities that you’d need from an LCD driver and it’s very easy to use in your projects. Here are the exact steps you need to follow in order to initialize and write to an LCD in your project code (in Arduino IDE).

Step2– Create an LCD object. In which you’ll define the GPIO pins to be used for the various LCD signals (6 pins). This is done in code as shown below

Step3– Now, you need to initialize the LCD in the Setup function, and it’s better to clear the display to make sure there are no random characters on the visible display. In this step, you also define the number of rows and columns for your display. There are many versions of this LCD display not only 16×2, there are 16×4, 20×4, and maybe others.

Step4– Now, our LCD is properly initialized and ready for displaying any data or executing any commands. To write something on the LCD you can use the LCD_object.print() function. As you can see in the example code down below

We use the LCD_object.setCursor() function to set the cursor position, so the next LCD write operation occurs exactly at that location. And that’s it! Here is how it looks like in real-life testing.

The diagram down below shows you the connection between ESP32 and the LCD 16×2 display (in 4-Bit data mode). Note that the LCD requires a +5v supply and the ESP32 is a 3.3v board, however, it’s got the USB Vbus available on the Vin pin. So, we’ll be using the Vin pin as a +5v source (it’s measured to be 4.7v but it’s sufficient indeed).

The code example down below does the following: We start with including the LiquidCrystal library, then create an LCD object and initialize it. Then, we’ll write to the home position “Hello World!”, and move the cursor to the middle of the 2nd row and write “GG izi”. And nothing to be done in the main loop() function.

The LCD display’s controller (Hitachi HD44780) supports up to 8 custom characters that you can create and store on the LCD itself. Then you can send the Index of each custom character to be displayed later. Maybe 8 custom characters are not enough for your project, but it’s one little extra feature that you can occasionally use.

lcd module 16x2 pinout free sample

Do you want your Arduino projects to display status messages or sensor readings? Then these LCD displays can be a perfect fit. They are extremely common and fast way to add a readable interface to your project.

This tutorial will help you get up and running with not only 16×2 Character LCD, but any Character LCD (16×4, 16×1, 20×4 etc.) that is based on Hitachi’s LCD Controller Chip – HD44780.

True to their name, these LCDs are ideal for displaying only text/characters. A 16×2 character LCD, for example, has an LED backlight and can display 32 ASCII characters in two rows of 16 characters each.

The good news is that all of these displays are ‘swappable’, which means if you build your project with one you can just unplug it and use another size/color LCD of your choice. Your code will have to change a bit but at least the wiring remains the same!

Vo (LCD Contrast) controls the contrast and brightness of the LCD. Using a simple voltage divider with a potentiometer, we can make fine adjustments to the contrast.

RS (Register Select) pin is set to LOW when sending commands to the LCD (such as setting the cursor to a specific location, clearing the display, etc.) and HIGH when sending data to the LCD. Basically this pin is used to separate the command from the data.

R/W (Read/Write) pin allows you to read data from the LCD or write data to the LCD. Since we are only using this LCD as an output device, we are going to set this pin LOW. This forces it into WRITE mode.

E (Enable) pin is used to enable the display. When this pin is set to LOW, the LCD does not care what is happening on the R/W, RS, and data bus lines. When this pin is set to HIGH, the LCD processes the incoming data.

Now we will power the LCD. The LCD has two separate power connections; One for the LCD (pin 1 and pin 2) and the other for the LCD backlight (pin 15 and pin 16). Connect pins 1 and 16 of the LCD to GND and 2 and 15 to 5V.

Most LCDs have a built-in series resistor for the LED backlight. You’ll find this near pin 15 on the back of the LCD. If your LCD does not include such a resistor or you are not sure if your LCD has one, you will need to add one between 5V and pin 15. It is safe to use a 220 ohm resistor, although a value this high may make the backlight a bit dim. For better results you can check the datasheet for maximum backlight current and select a suitable resistor value.

Next we will make the connection for pin 3 on the LCD which controls the contrast and brightness of the display. To adjust the contrast we will connect a 10K potentiometer between 5V and GND and connect the potentiometer’s center pin (wiper) to pin 3 on the LCD.

That’s it. Now turn on the Arduino. You will see the backlight lit up. Now as you turn the knob on the potentiometer, you will start to see the first row of rectangles. If that happens, Congratulations! Your LCD is working fine.

Let’s finish connecting the LCD to the Arduino. We have already made the connections to power the LCD, now all we have to do is make the necessary connections for communication.

We know that there are 8 data pins that carry data to the display. However, HD44780 based LCDs are designed in such a way that we can communicate with the LCD using only 4 data pins (4-bit mode) instead of 8 (8-bit mode). This saves us 4 pins!

The sketch begins by including the LiquidCrystal library. The Arduino community has a library called LiquidCrystal which makes programming of LCD modules less difficult. You can find more information about the library on Arduino’s official website.

First we create a LiquidCrystal object. This object uses 6 parameters and specifies which Arduino pins are connected to the LCD’s RS, EN, and four data pins.

In the ‘setup’ we call two functions. The first function is begin(). It is used to specify the dimensions (number of columns and rows) of the display. If you are using a 16×2 character LCD, pass the 16 and 2; If you’re using a 20×4 LCD, pass 20 and 4. You got the point!

After that we set the cursor position to the second row by calling the function setCursor(). The cursor position specifies the location where you want the new text to be displayed on the LCD. The upper left corner is assumed to be col=0, row=0.

There are some useful functions you can use with LiquidCrystal objects. Some of them are listed below:lcd.home() function is used to position the cursor in the upper-left of the LCD without clearing the display.

lcd.scrollDisplayRight() function scrolls the contents of the display one space to the right. If you want the text to scroll continuously, you have to use this function inside a for loop.

lcd.scrollDisplayLeft() function scrolls the contents of the display one space to the left. Similar to above function, use this inside a for loop for continuous scrolling.

If you find the characters on the display dull and boring, you can create your own custom characters (glyphs) and symbols for your LCD. They are extremely useful when you want to display a character that is not part of the standard ASCII character set.

CGROM is used to store all permanent fonts that are displayed using their ASCII codes. For example, if we send 0x41 to the LCD, the letter ‘A’ will be printed on the display.

CGRAM is another memory used to store user defined characters. This RAM is limited to 64 bytes. For a 5×8 pixel based LCD, only 8 user-defined characters can be stored in CGRAM. And for 5×10 pixel based LCD only 4 user-defined characters can be stored.

lcd module 16x2 pinout free sample

This tutorial shows how to use the I2C LCD (Liquid Crystal Display) with the ESP32 using Arduino IDE. We’ll show you how to wire the display, install the library and try sample code to write text on the LCD: static text, and scroll long messages. You can also use this guide with the ESP8266.

Additionally, it comes with a built-in potentiometer you can use to adjust the contrast between the background and the characters on the LCD. On a “regular” LCD you need to add a potentiometer to the circuit to adjust the contrast.

Before displaying text on the LCD, you need to find the LCD I2C address. With the LCD properly wired to the ESP32, upload the following I2C Scanner sketch.

Displaying static text on the LCD is very simple. All you have to do is select where you want the characters to be displayed on the screen, and then send the message to the display.

The next two lines set the number of columns and rows of your LCD display. If you’re using a display with another size, you should modify those variables.

Scrolling text on the LCD is specially useful when you want to display messages longer than 16 characters. The library comes with built-in functions that allows you to scroll text. However, many people experience problems with those functions because:

In a 16×2 LCD there are 32 blocks where you can display characters. Each block is made out of 5×8 tiny pixels. You can display custom characters by defining the state of each tiny pixel. For that, you can create a byte variable to hold  the state of each pixel.

In summary, in this tutorial we’ve shown you how to use an I2C LCD display with the ESP32/ESP8266 with Arduino IDE: how to display static text, scrolling text and custom characters. This tutorial also works with the Arduino board, you just need to change the pin assignment to use the Arduino I2C pins.

lcd module 16x2 pinout free sample

We will print a simple text on the LCD using Arduino UNO in this example. In this case, you control what is displayed on the Arduino readily. You only need four cables. Power, Ground, I2C data, and I2C clock.

The below line code adds the LCD library to your project. This consists of all the LCD-related functions. Since we are using the I2C version, we have included the standard LCD library made for the I2C version.#include

The following line of the code resets and initializes all the LCD registers and prepares them for project usage. This function will be called only once in thesetup()function.lcd.init();

To turn on the backlight, you can use the below code. You will be able to see the contents of the display without a backlight, too, if it is a green LCD. Backlight, nevertheless, makes the project more beautiful and reading crisper.lcd.backlight();

The first parameter tells the position column-wise (0indicated first place,1indicates the second place, and so on). The second parameter tells the row number. We have only two rows (0and1).lcd.setCursor(1, 0);

This completes a basic introduction to the LCD as well as an example project to start the LCD exploration. In the coming sections, we will see different projects as soon as possible