edge lit led lcd panel free sample
When comparing different models of televisions, you might see the term "edge-lit LED." All LED TVs are a type of LCD TV; the "LED" refers only to the kind of lighting source used to illuminate the LCD pixels in the television. There is more than one way to light the pixels. The two primary technologies are edge-lit and full-array.
In an edge-lit television, the LEDs that illuminate the LCD pixels are located only along the edges of the set. These LEDs face inward toward the screen to illuminate it.
These models are thin and light at the mild expense of some picture quality—specifically in the area of black levels. Black areas of the picture, such as a dark night scene, are not truly black but more like a very dark gray since the lighting is coming from the edge and illuminating the dark areas a bit more.
In some poorer-quality edge-lit LEDs, uniform picture quality can be a problem. Because the LEDs are along the edges of the panel, quality declines as you approach the middle of the screen because a uniform amount of illumination is not reaching the pixels further from the edges. Again, this is more noticeable during scenes of darkness; the black along the sides of the screen is more gray than black (and corners can appear to have a flashlight-like quality of illumination emanating from the edges).
Full-array LED televisions use a full panel of LEDs to illuminate the pixels. Most of these sets also have local dimming, which means the LEDs can be dimmed in different regions of the panel while other areas are not. It helps improve black levels, which appear closer to black than dark gray.
In general, full-array LED is a superior technology when it comes to picture quality, but edge-lit sets have one significant advantage: depth. Edge-lit LED TVs can be much thinner than those lit with either a full LED panel or traditional fluorescent (non-LED) backlight. For that reason, most of the super-thin sets you see in stores will be edge-lit.
If you"re looking for the best possible picture quality, you are most likely to find it in a full-array LED display with local dimming. If you are primarily concerned about the appearance of the television and want an extremely thin screen, edge-lit is the style that will fit your needs.
LCD panels are backlit by LED lights, so they rely on a backlight behind the panel to make the picture visible, and the LCD layer can"t prevent all light from escaping out of the screen. This means that even in a black scene, the backlight is still on, and some light escapes, causing blacks to appear gray.
In an attempt to mask this shortcoming, some LED TVs employ local dimming to target dark portions of the screen and dim the backlight in those areas. The intended result is that dark portions become darker, but everything else is left as bright as it should be, increasing the contrast between dark and light objects.
OLEDs use self-emitting pixels and don"t have a backlight, and because of this, they don"t have local dimming features. However, we score OLEDs as a perfect 10 for local dimming, because they do everything that a local dimming feature on an LED TV should do. Dark areas are completely off, leaving bright areas to stand out without any blooming.
Contrast/Brightness: These settings aim to improve the contrast ratio by tinkering with the white and black levels. It doesn"t have a direct effect on the local dimming but can improve the picture quality. The contrast setting increases the luminosity of the brightest whites, while brightness (sometimes called black level), makes blacks darker. Keep in mind the brightness setting on some TVs controls the backlight, which doesn"t affect picture quality.
Frame dimming: Frame dimming, or CE dimming on Samsung TVs, is a basic version of local dimming, but it dims the entire backlight instead of zones. Usually found on edge-lit TVs, it causes small highlights to become dim as well. It may improve the contrast a bit, but it"s not very useful for most scenes.
Local dimming features on LED TVs are a way to improve the contrast ratio. Since these TVs consist of LED backlights behind an LCD panel, local dimming aims to turn off, or dim, certain zones of the LED backlight, making blacks look darker and highlights brighter. However, there may be some issues with local dimming on some TVs as it could cause blooming around bright objects or for entire zones to light up when there"s a small object. Overall, most local dimming features on modern TV do an effective job at improving the picture quality in dark scenes, and only some lower-end models will have glaring problems.
A loved classic household item – the TV is an essential piece of technology for the modern family. Our wholesale smart led tv free sample offer great versatility. In addition to watching normal TV, viewers can connect to the internet and browse through programs online for instant streaming. For all of the family, these led tv free sample can play games, use apps, and are set up for social networking. With built-in voice control and touch screen features, these smart TV"s really are one not to miss. They come in a range of sizes. For those wanting the big screen experience, try the following sizes (inches): 60, 65, 70, 75 80, and 85. For customers who want something smaller, then our range of 24-32-inch led tv free sample are ideal.
TV definition improves vastly every day with constant new technology. With our wholesale 4k Ultra HD TVs, viewers can watch their favorite programs in ultra-high definition. These led tv free sample come in the highest resolution for optimal viewing. For customers who want the latest technology at affordable prices, then choose from our range of 4k TVs.
LED TVs are known for their great contrast and lighting, producing stunning clarity and colors. They are more durable than other TVs, so viewers do not have to worry about buying an expensive TV they then have to replace in a year"s time.
Whatever your customer"s preference, we will have the TV for them. Choose from wholesale flat-screen led tv free sample to curved led tv free sample. Outdoor TVs are also great for those wanting to install a TV on their terrace or in their back garden. For the full range, then visit our online wholesalers at Alibaba.com.
One of the top buzzterms in LED LCD marketing is "local dimming." Ostensibly, local dimming can dim the area of the screen that needs it, while keeping the bright parts of the screen bright. This technology can really increase the contrast ratio to make a better image. It"s also vital to get the intense highlights possible with High Dynamic Range (HDR) content.
LED LCDs don"t have the OLED (or plasma, may it RIP). As such, their images don"t have quite the depth and three-dimensionality that"s possible with other technologies.
This is the full monty. The name refers to an array of individual LEDs behind the LCD panel, all pointing out through the screen toward your eyeballs. A mock-up example is shown at right, if the front LCD layer was removed and the LED backlight exposed.
While individual control of all these LEDs would be ideal (though rarely implemented), the most common method is a set number of "zones." Depending on the TV, these could number in the dozens or more. Unfortunately, most LED TV makers don"t disclose the number.
Each zone is responsible for a certain area of the screen. Objects smaller than the zone (stars in the night sky, for example), don"t benefit from the local dimming, and can look muted as a result. Also, if a zone is lit, and an adjacent zone isn"t lit, you could see a halo/bloom as that part of the screen becomes brighter than its neighboring zone. This artifact is commonly known as "blooming."
At its best, full-array backlit local dimming produces the best images you can get with LCD. It"s also always more expensive than TVs from the same company with one of the other backlighting methods discussed below.
The downside is size and cost. The LEDs have to be set back from the screen a little (the farther away, the fewer you need to cover the same area), so there"s additional depth compared to the edge-lit models.
Best-case, there"s a noticeable improvement in the picture quality, though not as much as there would be with full array. The pin-point highlights of HDR aren"t possible here, though some models might still offer Wide Color Gamut (which is related to HDR, but separate).
Depending where the LEDs are (along all four sides of the screen, just the right and left, just the top and bottom, or just the bottom or the top), edge-lit local dimming can have widely different performance.
One last trick isn"t really "local" dimming as much as it"s just "dimming," or maybe "global dimming." The entire image will get darker with dark scenes, and stay bright with bright scenes. As in, the entire backlight functions as one single light. This is common among the least expensive LCD TVs.
It"s common on these models, for example, that when given a full black image (like the fade-out at the end of a movie, but before the credits start) the LEDs will shut off completely, making the TV seem like it has a really good black level.
This is fake, of course. If anything should appear, the LEDs kick back on, and the black level jumps up, revealing the TV"s true (and far more muted) contrast ratio. There are some tiny energy-saving benefits to turning off the LEDs, but visually this is can be distracting.
It all comes down to "don"t believe the marketing hype," at least not at face value. Local dimming can be a way to get near-OLED levels of picture quality. Or, it can offer some improvement compared with basic TVs, creating a pleasing, if not class-leading, image. Or, it could be a marketing label for something that"s not really much benefit at all. As usual, the best way to know is to check the reviews, where TVs with good local dimming do really well.
Got a question for Geoff? First, check out all the other articles he"s written on topics like why all HDMI cables are the same, TV resolutions explained, LED LCD vs. OLED, and more. Still have a question? Tweet at him @TechWriterGeoff then check out his travel photography on Instagram. He also thinks you should check out his bestselling sci-fi novel and its sequel.
If you thought all LED TVs were created equal, you"re underestimating the power of confusion as a marketing tool. In their continuing efforts to compete against the picture-quality advantages of plasma-based flat-panel TVs, makers of LCD TVs have introduced numerous new technologies. The most successful in our opinion is full-array LED backlighting with local dimming. When you see the words "LED TV" in an ad, it definitely refers to an LCD TV with an LED backlight, but what type of LED backlight, and how it"s configured, make all the difference.
To help you out, we compare reviews of different "LED TVs" that provide examples of all four LED backlight configurations, but first we"ll provide a bit of context. All LCD-based TVs rely on a backlight of some kind to illuminate the liquid-crystal panel itself.
The most commonly used fluorescent backlights are known as CCFLs, but a growing number feature LED backlights instead. LEDs use somewhat less power, can enable thinner flat-panel cabinets, and--crucially for TV makers--provide a great excuse to charge more money. But make no mistake: despite the
Unfortunately for TV shoppers, the confusion just increases from there. To cut through the clutter, we"re going to lengthen our descriptions beyond the "LED TV" shorthand by describing the four different configurations, and tell you how their picture quality generally compares to standard LCD.
During the Consumer Electronics Show back in January, we noticed that some TV manufacturers were debuting LCD TVs with a new type of LED backlight, a direct-lit LED backlight.
At the time we didn"t know a lot about direct-lit LED backlights, but based on where these TVs were positioned in the manufacturer"s lineup—typically in or close to the entry-level series—it appeared that direct-lit LED backlight technology was able to bridge the price gap between lower-cost CCFL (fluorescent) backlights and the newer edge LED backlights that have become increasingly common in many LCD TVs. This year, for example, both Samsung (EH series) and LG (LS3400 series) are offering lower-priced LCD TVs with direct-lit LED backlights.
Most of the LCD TVs in our TV Ratings now come with edge LED backlights, where the LEDs are arrayed around the perimeter—typically the sides—of the TV. A waveguide (or lightguide, or diffuser) then spreads the light across the entire panel, hopefully in a uniform fashion.
The other type of LED-based backlighting we"ve seen—now less common—is a full-array LED backlight, where rows of LEDs are spread across the entire back panel of the TV. Using a feature called local dimming, the LEDs are divided into a number of zones that can be individually controlled, so some portions of the backlight can be dimmed while other remain illuminated. In some instances, we"ve seen this improve contrast and black levels. Some edge LEDs also have a form of local dimming, but this has had a negligible effect on contrast or black levels on most of the TVs we"ve tested.
Direct-lit LED backlights are an offshoot of full-array backlighting, in that they use LEDs spread across the entire back panel of the TV. (The TV"s spec page may just refer to these TVs as having a full-array backlight.) However, there are a few key differences compared to the more expensive full-array LED sets we"ve tested previously. One is that they use significantly fewer LEDs across the back of the panel. Another is that these sets lack the local dimming feature.
In addition, these TVs are much deeper than previous LED-backlit models, especially the ultra-thin edge LED sets. In fact, they more closely resemble LCD TVs with CCFL backlights. The reason: Because fewer LEDs are used, they have to be moved farther away from the screen to provide adequate light coverage across the panel, much the way the beam of a flashlight gets wider as you move it away from an object.
But the primary reason we"re seeing direct-lit LED backlights is price. Though they do cost a bit more than CCFL models, they"re less expensive than edge LED models, since they don"t require the lightguide plates. And in a tough economy, this lets manufacturers offer less-expensive models without having to forgo what has become perceived as a key LCD feature—an LED backlight. Although direct-lit LED backlights are no slimmer than CCFL-based LCD TVs, they do offer an advantage over models with fluorescent lights: better energy efficiency.
We"re currently testing a few Samsung models that use direct-lit LED backlights, so make sure to check out our TV Ratings in the next week or so to see how these sets fared. We"ll also be watching the market to see if more manufacturers embrace this type of backlight in their lower-priced LCD TV models.
MLA style: "PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.." The Free Library. 2009 Normans Media Ltd. 09 Jan. 2023 https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
Chicago style: The Free Library. S.v. PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.." Retrieved Jan 09 2023 from https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
APA style: PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.. (n.d.) >The Free Library. (2014). Retrieved Jan 09 2023 from https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
The Hisense U8H matches the excellent brightness and color performance of much pricier LCD TVs, and its Google TV smart platform is a welcome addition. But it’s available in only three screen sizes.
The Hisense U8H is the best LCD/LED TV for most people because it delivers the performance of a much pricier TV yet starts at under $1,000, for the smallest (55-inch) screen size. This TV utilizes quantum dots, a full-array backlight with mini-LEDs, and a 120 Hz refresh rate to deliver a great-looking 4K HDR image. It’s compatible with every major HDR format. And it’s equipped with two full-bandwidth HDMI 2.1 inputs to support 4K 120 Hz gaming from the newest Xbox and PlayStation consoles. Add in the intuitive, fully featured Google TV smart-TV platform, and the U8H’s price-to-performance ratio is of inarguable value.
Key to this functionality is the U8H’s employment of mini-LED backlighting with local dimming, which allows this TV to produce very bright light while still maintaining satisfyingly deep black levels that are typically free of blooming (or light bleed that’s visible around bright objects against a dark backdrop). This not only ensures impressive image contrast, it also makes the U8H a viable choice for most rooms, whether they’re brighter than average or dimmed down like a movie theater.
That’s not to say the U8H has pixel-precise light control—it’s not an OLED TV, after all—but it does a terrific job most of the time. In fact, in our tests, the U8H bested last year’s upgrade pick, the Samsung QN90A, in certain scenarios: The intro to Guillermo del Toro’s Cabinet of Curiosities on Netflix features the filmmaker against a pitch-black backdrop. Though last year’s QN90A failed to maintain perfect control over dimming elements during this scene (the black backdrop brightened distractingly once a sufficient amount of brighter content appeared on screen), the U8H did not. (For the record, the newer QN90B also passed this test.) The U8H’s mini-LEDs also help the screen look uniformly bright: Although the U8H is still not as good as an OLED TV in this respect, it shows very little indication of being a backlight-driven display, even during tricky scenes with large swaths of dim lighting.
The U8H’s brightness, black-level integrity, and local-dimming abilities make this an excellent TV for watching HDR content. The U8H is capable of playing HDR content in all of the major formats (HDR10, HDR10+, Dolby Vision, and HLG), but when it comes to impressive HDR, what’s under the hood is much more important than format compatibility. The most crucial thing for good HDR is high brightness and deep color saturation, and the U8H’s quantum dots achieve the latter. It’s not as simple as just having quantum dots, however: While many TVs (even the budget options) have quantum dots nowadays, what is often not taken into account is that brightness directly affects color saturation. For example, both the 2022 TCL 6-Series and the Hisense U8H are equipped with quantum dots, mini-LED backlights, and local dimming. But because the U8H is notably brighter than the 6-Series, it also achieves a higher total color volume. During our color-volume testing, the U8H exhibited color ranges at more than 100% of the DCI-P3 color space (the range of color needed to properly display HDR content), and it is capable of roughly 10% more total color volume compared with the 6-Series.
What does this mean in real-world terms? It means that the Hisense U8H truly excels as a modern 4K HDR TV, whether you’re watching the latest episode of Rings of Power or playing Overwatch 2. While watching HDR content side by side on the U8H and on our upgrade pick, the Samsung QN90B, I was truly surprised by how similar they looked at times, given that our upgrade pick is much more expensive. That said, though the U8H achieves impressive results where light output and color volume are concerned, it also exhibited some occasional video processing and upscaling issues (see Flaws but not dealbreakers), which videophiles and AV enthusiasts may take umbrage with. But in general, the picture quality punches well above its weight, metaphorically speaking.
And thanks to Hisense’s inclusion of Filmmaker Mode, it’s easy to rein in the U8H’s brightness abilities for a more-subdued and filmic experience in a darker room. Our measurements revealed that this mode has a very accurate white balance, mostly accurate colors (green is a bit oversaturated, but not egregiously so), and a perfect “dark room” gamma (which controls how quickly the video signal transitions from dark to light). Additionally, the TV’s 120 Hz refresh rate means it can play Blu-ray discs at 24 fps without the judder that’s usually present on TVs with 60 Hz refresh rates.
In terms of design, the Hisense U8H is not as svelte as our upgrade pick, but it’s plenty sturdy and doesn’t look or feel cheap. Two narrow, metal feet jut out from beneath the panel and steadily hold the TV. They can be attached in two separate spots, either closer in toward the middle of the panel or out toward the edges, to account for different-size TV stands. The feet are also equipped with cable organization clasps—a nice touch for keeping your TV stand free of cable clutter. Though the TV is primarily plastic, its bezels are lined with metal strips, providing a bit more durability in the long run. I moved it around my home, and it was no worse for wear, but we’ll know more after doing some long-term testing.
The Hisense U8H has some difficulties with banding, or areas of uneven gradation, where transitions that should appear smooth instead look like “bands” of color (sometimes also called posterization). Like many current 4K HDR TVs, the U8H uses an 8-bit panel rather than a 10-bit panel, which affects the color decoding and color presentation process. This is usually relevant only with HDR video and games. When playing games on the PlayStation 5 and Xbox Series X, I saw a few instances where the content wasn’t rendered correctly and displayed ugly splotches of color on the screen. However, this almost always occurred during static screens (such as a pause menu or loading screen); I rarely spotted it during actual gameplay. Hisense has stated that it would address the problem in a future firmware update, but at the time of writing it was still present. This is a flaw that may give dedicated gamers pause, but we don’t consider it to be a dealbreaker for most people.
I also saw occasional instances of banding with TV shows and movies, though they were few and far between. The U8H isn’t the best at upscaling sub-4K content, so videos with a 1080p or lower resolution looked a little soft. You can get better overall video processing and upscaling by springing for our upgrade pick (this is one reason it’s more expensive, after all).
Finally, like most TVs that use vertical alignment (VA) LCD panels, the U8H has a limited horizontal viewing angle, which may be a bit annoying if you’re hoping to entertain a large crowd. Our upgrade pick uses a special wide-angle technology to address this.
For gaming, use the game picture mode (the TV should switch into this mode automatically when paired with the newer game consoles), and then go into the Gaming submenu to make sure the right settings (VRR) are enabled. We recommend leaving the HDMI setting in “auto,” unless you notice that your game console is incorrectly identified.
MLA style: "PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.." The Free Library. 2009 Normans Media Ltd. 09 Jan. 2023 https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
Chicago style: The Free Library. S.v. PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.." Retrieved Jan 09 2023 from https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
APA style: PRODUCTS: New Samsung Edge-lit LED TV Panels Save Energy, Are Mercury-Free.. (n.d.) >The Free Library. (2014). Retrieved Jan 09 2023 from https://www.thefreelibrary.com/PRODUCTS%3a+New+Samsung+Edge-lit+LED+TV+Panels+Save+Energy%2c+Are...-a0196580617
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.
Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.
LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch
Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).
Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.
a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.
Ever had your TV showing nothing but a black screen even if the audio was working? Unfortunately, that’s a common issue with low/middle-end LCD/LED TVs these days… Even more frustrating, this issue often comes from a rather tiny and cheap component that can be easily replaced. Most common issues are:
That implies disassembling the TV to access the backlight which is between the LCD screen in the front and the boards in the rear. In my case, with a Samsung F5000, I had to process as follows:
First we have to remove the back housing to reveal the boards (from left to right: main board, T-CON, power supply) and disconnect the LCD panel from the T-CON board.
Note: Older TVs have neon tubes for backlight, which is thicker and less exposed to this kind of failure. LED backlight is the most common thing these days, but do not mistake an LED TV with an OLED TV. The first one is a classic LCD panel with a LED backlight, whereas the second is an OLED panel that doesn’t need any backlight as it is integrated in each pixels (making the spare parts much more expensive by the way).
As we can see, the backlight system is made of 5 LED strips. First thing to do is look for burnt LEDs. Most LED backlight systems have strips set in series, meaning that if one of the them fails, all the system goes dark…
Using a multimeter, we can confirm that the strips are indeed set in series, so now we have to test each strip individually. Professionals use LED testers such as this one (about 40$ on amazon) but as I didn’t had one at the time, I decided to make one, McGyver style!