an lcd displays color using the pricelist

A lot of consumers wonder how manufacturers determine the LCD display panel prices. After all, display solutions such as TFT LCDs and HMI touch screens do not always come cheap. And sometimes, a few products that can indeed be purchased for lower prices may come with several quality issues.

Hence, we’ve rounded up a list of factors that influence how to display modules such as TFTs, LCD, and touch screens are priced. You can also use these factors to evaluate to whom you should place your next orders for your display solutions.

LCD fluids are used in altering the light orientation passing through glass substrates. Hence, this causes the panel’s active pixels to darken. Different kinds of LCD panel fluids provide unique characteristics and change a panel’s viewing angle, temperature range, and display clarity.

TN fluid contains liquid crystal substances that allow light to pass through by twisting and untwisting at a 90-degree angle. This display technology is available in monochrome; that is, black characters against a gray background.

The viewing angle is limited in a panel containing TN fluid. This means that the text or image display becomes harder to read if you rotate the device away from its center. The display is also not that sharp compared to displays using other technologies.

Another characteristic of this fluid is that it works well even in colder temperatures. It’s because TN fluid has the quickest response time among the other LCD fluid types.

TN fluid is considered the cheapest LCD fluid type. However, this doesn’t mean that TN isn’t widely used. The display technology is greatly utilized in digital clocks, pagers, and gas pumps.

LCD modules with STN fluid enjoy a wider display angle, greater multiplexing, higher image contrast, and sharper response than devices using TN fluids. However, modules with STN fluids may have slower response times when used in lower temperatures due to the fluid freezing inside the device.

STN fluid falls under the moderately cheap LCD module price. Furthermore, STN fluid is widely utilized in several monochrome LCD devices such as POS machines, inexpensive feature phones, and informational screens of some devices.

The CSTN fluid technology takes away the monochrome finish of the typical STN fluid devices. Red, green, and blue filters are added to the fluid module to allow a colored display. New versions of CSTN often feature a viewing angle of 140 degrees and 100ms response times.

CSTN is a bit pricier than TN and STN fluids. But it’s a good choice if you need to display color images on your LCD device. In fact, a lot of color feature phones use CSTN as an alternative to the TFT displays, saving almost half the manufacturing costs.

A device using FSTN fluid has better viewing angles and can produce a sharp black-and-white coloration. It is a good choice for devices that need to display small yet easy-to-read images.

In terms of cost, the LCD display module price of a unit with FSTN is higher compared to TN and STN. But this is concerning the better visual quality that FSTN offers.

To cap off this part, the fluids used in a screen is a big factor in determining the overall LCD screen display panel price. As you can see, the four fluid types often used in LCD screens rise in costs with respect to the visual quality produced by each technology.

The temperature range in which LCD screen displays may work varies intensely. Some displays continue to work at optimal performance even when used in cold or hot outdoor temperatures. Lower-quality LCD panels may start having glitches at the slightest change of temperature and humidity. Hence, the temperature range may have a huge impact on the LCD display panel price as well.

In hot environments– The liquid crystals may begin to deteriorate, while the electrical components will start overheating and cause damage to the display screen performance.

Now, most LCD screen panels don’t experience such temperature extremes. In fact, a typical LCD TV can operate properly between approximately o°C and 32°C (32° – 90° F). Meanwhile, other screen modules (usually the industrial-grade ones) have unique capabilities to work in even more extreme ends of the temperature scale.

If you want to look for the most cost-effective type of LCD panel for your device, then you must consider the following standard LCD unit temperature types:

Normal temperature units work well in environments that have indoor temperatures at approximately 20-35°C (68-95°F). Some LCD modules may work well above up to 50°C (122°F). Such LCD modules can be used in daily settings by the typical consumer public.

LCD units under this type are made to withstand lower and higher temperature ranges. Extreme operating temperatures may range anywhere from -30°C to 85°C (-22-185°F). Most LCD modules with wide/extreme temperature capabilities are used in extremely cold areas such as Artic places and ski resorts, as well as humid and moisture-rich hot outdoor areas.

Generally, the LCD module price goes up if the entire display unit can withstand higher temperature ranges. Those who can operate under normal temperature ranges only are usually cheaper.

Hence, you must consider the places where you’ll be installing your LCD display devices. You can’t just use cheaper LCD modules for an industrial-grade display machine. Treat your LCD panel as an investment and select a panel that will yield better screen performance that’ll last several years for you and your business.

It’s an unspoken rule, but monochrome modules are generally cheaper than color-capable ones. However, color-capable display modules may also have cost variations depending on their display capabilities.

Color LCDs have three subpixels that hold red, blue, and green color filters. Each subpixel can have as much as 256 color shades, depending on the variation and control of the voltage applied to it.

Now, when you combine 256 shades of both red, blue, and green subpixels, color LCDs can display a color palette of up to 16.8 million colors. And all these are made possible by millions of transistors etched onto the glass modules.

Display size also plays a large role in an LCD device’s color capability. Smaller screens need fewer pixels and transistors since they have smaller display sizes. These screens are also less costly to make. Now, larger screens with high color resolution and huge display sizes require more transistors and pixels, justifying the higher prices of such monitors.

A touch screen display module is more costly than a non-touch monitor module. Touch capability is integrated into Human Machine Interface (HMI) modules and is generally used in kiosks, bank ATMs, hospital equipment, and similar devices in other industries.

HMI touch screen price is also dependent on what kind of touch screen technology it uses. Here are some of the common touch technologies integrated to HMI touch screen devices:

This type of touch screen technology is made up of a top polythene layer and a glass-bottom layer separated by microdots or an air gap. This module is then attached to a touch screen controller.

Resistive touch screen panels are used in most bank ATMs and some older models of cellular phones. They carry the lowest HMI touch screen price among all other touch screen technologies.

Capacitive touch screens are the most common in the display industry today. This technology uses transparent conductors, insulators, and glass to create the panel. An electrostatic field change in the screen’s module happens when a human finger touches the screen surface. This ultimately creates signals that are sent to the touch screen controller for processing.

In general, capacitive touch screens are the most cost-effective choice for HMI machines. Since they are considered the gold standard of commercial touch screen technologies, they do come with a high price tag.

Infrared grid technology uses photodetector pairs and X-Y infrared LED components to allow sensors to pick up the touch and its exact location. Infrared grids have been used in several touch screen modules before the capacitive touch screen technology took over.

We’ve explained the following factors at length for both public consumers and business clients to understand the variations in TFT, LCD, and HMI touch screen prices.

Cheap doesn’t necessarily mean low-quality. Also, expensive options aren’t always a wise choice, either. You can maximize your buying or manufacturing options if you know how to compare LCD modules and panels depending on the specifications you truly need for your display machines and devices.

an lcd displays color using the pricelist

Have you ever properly checked the display quality of the LCD you habitually use? Very often people become aware of previously unnoticed problems in display quality when they run a check using test patterns and so on. This time we are going to talk about the basic points used to assess LCD display quality, and show you a simple way to test it.

Below is the translation from the Japanese of the ITmedia article "The difference in image quality is perfectly obvious! – Let"s check the LCD"s monitor" published April 22, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.

First of all, bear with us in the following simple test. Below is image data of a row of three squares. In the center of each square is a letter so faint as to be barely distinguishable, so there are three letters in all. Read from the left they make up a word. Can you see that hidden word?

That"s right. The answer is "LCD" (it is displayed if you drag the space between the brackets). We assume that probably many users could read the letters concealed in the squares.

So, the next test is much more difficult. A word is concealed in the four squares below, just as in the image above. The letters are written in colors that are very similar to those of the boxes and we expect that, in many cases, it is hard to distinguish them in your browser. We would like you to download the image and check it closely in photo retouching software or a viewer that is capable of accurate color reproduction.

This time the answer is "EIZO" (it is displayed if you drag the space between the brackets). Depending on the lighting or the user"s environment it may be hard to make out but, if you can read these four letters, the display quality, or more accurately the still image gradation expression, of your LCD is extremely high.

Let"s get down to details then. "Image quality" is the top priority of the LCD, of course. However, recently LCD prices are fiercely competitive and there are surprisingly few products that insist on high image quality and performance. It may be nice to be able to get hold of a wide-screen monitor with full HD (1920 × 1080 dot) resolution or higher fairly cheaply, but it cannot be denied that such LCDs tend not to place too much importance on display quality.

On the other hand, the increasing opportunities to enjoy things like HD videos and games, and high resolution digital photographs on the computer make LCD display quality even more important. As far as possible it"s best to use an LCD with excellent display quality in order to fully enjoy the charms of the visual content.

Even so, perhaps you think that there can"t really be that much wrong with the LCDs that so many people are using at the moment. Here we would like to show you a simple method to check LCD display quality. You can get a good idea of whether the basic display quality is good or bad just by looking at how some simple test images are displayed, just like in the introductory quiz. First of all, we would like you to get a sense of how important it is that "image data can be properly displayed" by checking the display of the LCD that you currently use, (that"s right, the one you are using to view this page!).

The test items use color / monochrome patterned images to check gradation expression, and simple images to check brightness / chromaticity variation. Downloads are available of several test images, such as gradation patterns. We would like you to display the downloaded test images in photo retouching software or a viewer that can reproduce color accurately. As we mentioned at the start of this article, you have to be careful as in many cases colors cannot be displayed accurately in web browsers. (Currently only a few browsers such as Safari and Firefox 3.x can handle color management).

Before starting your visual check of the display quality, please return to your LCD"s setting to default, and select Adobe RGB or sRGB as the image quality mode. If these modes are not available it is fine to set the color temperature to 6500K and gamma to 2.2. If you cannot adjust the color temperature and gamma, simply adjust the brightness and contrast so that they are easier to discern. Of course, if it"s an LCD environment that has been color calibrated it"s OK to leave it as it is.

The average LCD takes some time for the monitor to stabilize after it is switched on so, after start up, please wait at least 30 minutes or so before doing the test. (Most EIZO monitors are an exception to this as they are equipped with our proprietary dimming function and the monitor stabilizes in a short time after start up.)

We would also like you to adjust the monitor stand so that things like the room"s lighting are not reflected on the screen. You have to be particularly careful with products that have a glare (glossy) type screen as they are highly reflective. Visual assessment is impeded when ambient light is reflected. It will be much easier to make an assessment if you turn off the room lights at night and exclude as much ambient light as possible. This applies for both glare and non-glare (matte) types.

The surface treatment of an LCD makes a difference to the background reflection. Glare panels impede the surface diffusion of backlight, which does make it easier to achieve high color purity, but also makes distinct reflections of the user or lighting much more likely (photo on the left).

If the lights are similarly trained on a non-glare panel they do not have much effect on the display, only appearing as a fuzzy brightness (photo on the right).

For your reference, we ran a test on an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W, for this article. The FlexScan SX series comes with a number of high image quality functions and boasts top class display quality as a general-purpose LCD intended for a computer.

When we displayed the quiz images (the more difficult ones, of course) on the FlexScan SX2462W, the four letters appeared faintly when we stared closely at the screen and we could read what they said. This indicates the high image quality level.

When checking the display quality of an LCD it is comparatively easy to understand the gradation expression capability by a visual check. Let"s display color and monochrome gradation images and check whether the entire image is smoothly reproduced. If there is a problem with the gradation expression it produces things like blocked-up shadows in dark areas and blown-out highlights in light areas, banding (vertical or horizontal stripes) in the middle gradations, and color cast, so you should check for problems like these.

Test images of color / monochrome gradations are shown below. Each test image is prepared for three resolution levels (1280 × 800 dots / 1680 × 1050 dots / 1920 × 1200 dots). When you click on an image it is displayed in that actual resolution. We would like you to download the images in the resolution which matches that of your current LCD. Gradation expression can vary according to whether the image is viewed horizontally or vertically, so it will be more effective if you rotate these images and view them vertically as well.

A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 16 gradients as they change to white or black. This is an easy test image so we expect that it can be seen in most environments that each color bar is divided into 16 blocks.

A gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 64 gradients as they change to white or black. Each color bar is divided into 64 rectangular blocks. With this many gradients we expect that many LCDs will find it hard to make distinctions in the dark areas or the areas that are close to primary colors.

A smooth gradation pattern where the colors red, green, blue, cyan, magenta and yellow go through 256 gradients as they change to white or black. At this level of difficulty you cannot distinguish between adjoining colors from a distance but, if you have an LCD with excellent gradation expression, if you look closely you should be able to see that each color is divided into thin rectangular blocks.

A gradation pattern that changes from black to white. It is divided into 5 horizontal bars: from the top, smooth, 128 gradients, 64 gradients, 32 gradients and 16 gradients. Even if all the differences can be distinguished in the 16 and 32 gradient patterns near the bottom, we expect that there will be some parts in the 64 and 128 gradient patterns where it is hard to see the boundaries between adjoining colors. With this kind of monochrome test image you should also check whether any unnecessary colors are mixed with the gray.

On an average LCD gradations of gray that are close to black tend to appear as blocked-up shadows (gradations of gray that are close to white are displayed comparatively accurately). If your LCD"s OSD menu allows you to adjust the contrast, please try gradually turning down the contrast. Turning down the contrast often makes it possible to see gradations that had been subject to blocked-up shadows or blown-out highlights.

Probably most LCDs will be able to detect some degree of banding and color cast in the middle gradations. Banding in the middle gradations is tone jump (Missing gradations) and, along with color cast, means that the RGB gamma curves are unequal. Unlike blocked-up shadows or blown-out highlights, this is an area that it is hard to improve with adjustments made by the user.

When there is a problem with the gradation expression, the original colors of the content being displayed cannot be reproduced. If you look carefully at displays like video, games or photographs you can probably see or sense things like a lack of depth in the coloration, unnatural color shifts in the middle gradations or displays blanked out with large blocked-up shadows. Of course, it is very hard to use such monitors for things where color reproduction such as photo retouching or graphics work.

When we looked at these test images on the FlexScan SX2462W, in the smooth gradation there was blocked-up shadows right next to the black but we could distinguish differences in gradations of gray until very close to the black area. When it comes to such subtle gradation distinctions the brightness of the room and the adaptability of the eye come into play, so the range that is visible will vary according to the environment and the individual. The gradation expression was excellent, with almost no blown-out highlights in light areas, middle gradation banding or color cast.

The FlexScan SX2462W has a 16-bit look-up table (around 278 trillion colors). It converts the 8-bit RGB input from the computer into multiple tones and then reallocates them in 8-bit RGB for their display. (10-bit display is also supported with the DisplayPort input)

This aligns RGB gamma curves for the entire gradation range from dark to light, making it possible to depict subtle gradations and thus eliminating banding and color cast in the middle gradations.

Smooth color and monochrome gradations displayed on the FlexScan SX2462W. This data is of screen displays photographed with a digital camera so some of the gradations may seem to have been destroyed, but they were cleanly represented when checked visually.

We have talked about ways to check gradation expression. We think that it was comparatively easy to understand about blocked-up shadows in dark areas, blown-out highlights in light areas and banding in middle gradations. However, it is hard to distinguish whether a gradation is being cast with unnecessary color so we would like to add a little more about this.

A row of images of slightly different grays (1050 × 300 dots). If you cannot see the boundaries between the grays there is probably a problem with the display environment or gradation expression of your monitor.

The answer is "The far right" (it is displayed if you drag the space between the brackets). If the other grays looked correct, color may not be being correctly recognized for a variety of reasons, such as the lighting environment or the LCD settings.

For example, when the room is lit with standard household incandescent lights white and gray look reddish, while fluorescent lights can make them greenish (which is why there is some lighting that is made to conform to color evaluations). What is more, white and gray can have a reddish tinge when the monitor has been set to a low color temperature, while a high setting can give them a bluish tinge. Thus it often happens that the gray in visual data does not look like a true gray.

Another big problem is that the human eye (brain) is easily influenced by surrounding colors. Everyone has probably experienced the phenomenon where, when you come from outdoors into a room lit with incandescent lights, the room seems to be bathed in a reddish light at first but, as your eyes gradually get used to it, you lose all awareness of the redness.

The two image patterns below are easy to understand examples of optical illusions. When you look at them you should be able to understand how heavily the human eye is influenced by surrounding colors.

The gray in the center of each square is in fact exactly the same color in each case (600 × 200 dots). However, the grays with a dark surrounding look light and the ones with a light surrounding look dark, don"t they? This is known as "brightness contrast"

The orange in the center of each square is in fact exactly the same color in each case (600 × 200 dots). However, when the surrounding saturation is high (red) the orange seems to have a low saturation, but when the surrounding color has a low saturation (green) the orange seems to have a high saturation, doesn"t it? This is known as "chroma contrast"

The human eye has adaptability that it is applicable to a variety of environments, so it is extremely difficult to accurately distinguish color by a visual check, even for color professionals. Big shifts in color can probably be seen but it cannot be helped if very slight color casts go unnoticed.

The important thing in actual use is that you should not adjust the image quality of your monitor or edit visual material while looking at colors that are being wrongly recognized like this. There are some products where the RGB values of the monitor can be adjusted individually, but this requires caution since fiddling around randomly often leads to irreparable loss of color balance. An effective way to make subtle adjustments to the color detail of image data is to display neutral gray or white image data and use that as a yardstick.

Now let"s assess the gradation expression with some slightly different test images. Below are color patterns with a spread of pale colors in gradations close to the dark range and the light range. They are arranged so that a distinction cannot be made between adjoining colors on an LCD with insufficient gradation expression.

In this color pattern the colors gradually change from near-white pastels to gradations that are even closer to white. As the lightness of each color increases (the nearer it approaches to white), the more difficult it becomes to distinguish between adjoining colors.

A color pattern where the lightness and hue gradually change. As the lightness of each color decreases (the nearer it approaches to black), the more difficult it becomes to distinguish between adjoining colors.

We expect that you could roughly get the whole picture in the gradation patterns on the previous page, but in the patterns this time some parts that cannot be seen may have appeared in some cases. As we mentioned earlier, LCDs tend to display gradations close to black as a blocked-up shadows, and color patterns that are close to black are particularly hard to distinguish.

Since there are some parts that cannot be seen, the possibility arises subtle skin colors and tones cannot be accurately recognized when doing things like retouching photographs, though the misrecognition will vary according to the user"s eyesight. People who place importance on color reproduction should probably bear this in mind when they think about replacing their LCD or buying an extra one.

Incidentally, when we checked the FlexScan SX2462W with these tests we could distinguish everything in both the close to white and the close to black patterns. As well as no blown-out highlights or blocked-up shadows, we saw no unnatural color casts.

This shows the color patterns displayed on the FlexScan SX2462W. It was taken with a digital camera so some parts look a little patchy but they were accurately displayed when we did a visual check.

Along with gradation expression, it is easy to visually check brightness variation and chromaticity variation. Brightness variation scatters brightness around the screen and is easy to notice when you use full-screen display for things like drawing up documents or using spreadsheets. Chromaticity variation scatters color around the screen and is not as easily noticed as brightness variation, but it makes graphics-related displays unnatural and causes deterioration in color reproducibility.

Every LCD has some degree of brightness and chromaticity variation, but there are many products where the variations become more obvious when the brightness is lowered. A comparison of the brightness and chromaticity variation of a number of LCDs reveals that there is a fairly large difference between products, so this is a point to bear in mind.

Brightness and chromaticity variation can be checked with standard Windows or Mac OS X functions. All you need to do is to set the desktop background to "Monochrome" and look at the whole screen from a little way away. Your check will be perfect if you change the desktop background to black, white, gray, then 100% red, green, blue, cyan, magenta and yellow, and then any "near-white pale color".

If you actually try this test you may be surprised to find more variation than you expected when gray or a near-white pale color is displayed. Generally speaking, the center of an LCD screen is the brightest and it gradually gets darker towards the edges. This is no problem if there is not a big difference in brightness between the central and peripheral areas, but there are some products where this difference is very striking.

An example of Windows 7 settings. Set the desktop background to "Monochrome" and then click on "Other". Prepare a color on the "Color settings" screen and use it as the background. (The background color cannot be changed in Windows 7 Starter.)

Incidentally, this test is also an effective way to test the LCD for dot defects (normal lighting / unlit room). We would like you to check the black display in a darkened environment, for example by switching off all the room lights at night. Although you probably saw the whole screen as uniformly black in a light environment, very often in a dark environment you can find variations in some parts due to light leaks.

The FlexScan SX2462W got good results again when we tried it with the brightness and chromaticity variation tests. The brightness decreased slightly at the edges of the screen, particularly the lower edge, but overall the display was even and pleasing. It is installed with a "digital uniformity equalizer" that measures brightness and chromaticity throughout the screen and makes corrections so that the entire screen is uniform.

Monochrome full-screen displays on a FlexScan SX2462W. Only the screen display is shown. The bottom right is a near-white pale orange. There are not many LCDs that can display this kind of pale color as uniformly as this

However, the pitfall here is that it simply means that "the screen is visible". The thing is that the viewing angle specifications are permitted to use the term "visible" until the display contrast ratio drops to an extremely low 10:1 or 5:1 when the screen is viewed from an angle (the steeper the angle from which the LCD screen is viewed, the more the contrast generally declines). In other words, they do not take into account the display uniformity of the central and peripheral areas of the screen, or the level of chromatic change, when the screen is viewed from an angle.

The ideal viewing angles is that the brightness and chromaticity is very uniform and there is not much chromatic change, even when the screen is viewed from a slight angle. The viewing angles given in the specifications are not really very helpful, but you can judge the standard of the panel type that the LCD (liquid crystal panel) adopts. IPS liquid crystal panels have the least change in brightness or chromaticity when the screen is viewed from an angle, and they are followed by VA panels. An IPS or VA liquid crystal panel can be said to indicate the superior nature of the product itself, so this is often included in the catalog or specifications. It is probably a good idea to look through the catalogs of various products.

On the other hand, monitors installed with cost-effective TN liquid crystal panels are in fact the most numerous. However, the TN type lags far behind the IPS and VA types in terms of characteristic viewing angle changes in brightness and chromaticity. Simply viewing the screen from a slightly different angle makes the coloration change dramatically, and the screen looks completely different according to whether it is viewed vertically or horizontally. If the vertical and horizontal viewing angles in the specifications are different then it is a TN type. There are quite a few products with a 20-inch wide screen or larger where colors look different in the central and peripheral areas even when the screen is viewed straight on.

The display on an IPS panel. Even when viewed from this angle, the displayed content can of course be distinguished completely and the colors also show up really well

The display on a VA panel. Compared with the IPS panel the screen is a little whitish and the chromaticity has slipped, but it is a satisfactory viewing angle for actual use

The display on a TN panel. There is a very clear difference from the IPS and VA panels. The display throughout the entire screen lacks uniformity and there is a yellow cast

The gradation images and monochrome images from earlier in this article can be used as they are to check the viewing angles. Display an image on the whole screen, look at it straight on and check whether the brightness and colors are uniform at the top and bottom of the screen, and in the center and at both sides. Then gradually shift the angle from which you view the screen and check how the brightness and coloration change. If you do this with photographic data as well as the test images, you should be able to get a better sense of the difference in the display.

When we checked the viewing angles of the FlexScan SX2462W there was absolutely nothing to criticize since, in addition to the use of an IPS panel, it is equipped with many high image quality functions, including the afore-mentioned digital uniformity correction circuit. The brightness and chromaticity throughout the whole screen is very uniform, and the coloration hardly changed at all when the viewing angle was changed.

Naturally, this is very impressive when doing things like photo retouching, but it is also very pleasant at times like when many people are looking at videos or photographs. You can get a perfect understanding of the viewing angles by a visual check of the display so, if possible, we would like you to check this in the store. You will probably be particularly amazed by the difference between IPS / VA types and TN ones.

The display on the FlexScan SX2462W. As expected, the display did not change even when the vertical display function was used, or when it was viewed from a very sharp angle

We explained here about easy ways to check LCD monitor quality. How were the results for your current LCD? We think that many people were probably very bothered by the blocked-up shadows and blown-out highlights when the test images to check gradation were displayed, by the middle gradation banding, and by the variations in brightness and chromaticity when the monochrome images were displayed.

As we mentioned at the beginning, recently the number of LCDs with excellent display quality is on the decline. Although we would not go so far as to say that the display quality of inexpensive products is poor. Of course a high quality LCD is indispensable if you want to enjoy using your computer, properly handle the needs of applications that require color reproducibility, and to fully enjoy all the benefits of rich content.

The EIZO FlexScan LCD series has excellent display quality in those regards, and we have no qualms about recommending them to everyone. The product line-up is diverse but each model is clearly ranked according to the purpose to which it is suited and its screen size, and they all guarantee above-standard display quality. They may cost a little more than you had budgeted for but the clear value they offer exceeds their price.

If, after trying these tests, you have doubts about the display quality of the LCD that you usually use, we would certainly urge you to consider an EIZO LCD. We would also recommend that you construct a multi-display environment by making the new LCD your main monitor and the one that you have been using your sub monitor.

an lcd displays color using the pricelist

Photo: A trick of the polarized light: rotate one pair of polarizing sunglasses past another and you can block out virtually all the light that normally passes through.

Photo: A less well known trick of polarized light: it makes crystals gleam with amazing spectral colors due to a phenomenon called pleochroism. Photo of protein and virus crystals, many of which were grown in space. Credit: Dr. Alex McPherson, University of California, Irvine. Photo courtesy of NASA Marshall Space Flight Center (NASA-MSFC).

Photo: Prove to yourself that an LCD display uses polarized light. Simply put on a pair of polarizing sunglasses and rotate your head (or the display). You"ll see the display at its brightest at one angle and at its darkest at exactly 90 degrees to that angle.

Photo: How liquid crystals switch light on and off. In one orientation, polarized light cannot pass through the crystals so they appear dark (left side photo). In a different orientation, polarized light passes through okay so the crystals appear bright (right side photo). We can make the crystals change orientation—and switch their pixels on and off—simply by applying an electric field. Photo from liquid crystal research by David Weitz courtesy of NASA Marshall Space Flight Center (NASA-MSFC).

an lcd displays color using the pricelist

To create an LCD, you take two pieces ofpolarized glass. A special polymer that creates microscopic grooves in the surface is rubbed on the side of the glass that does not have the polarizing film on it. The grooves must be in the same direction as the polarizing film. You then add a coating of nematic liquid crystals to one of the filters. The grooves will cause the first layer of molecules to align with the filter"s orientation. Then add the second piece of glass with the polarizing film at a right angle to the first piece. Each successive layer of TN molecules will gradually twist until the uppermost layer is at a 90-degree angle to the bottom, matching the polarized glass filters.

As light strikes the first filter, it is polarized. The molecules in each layer then guide the light they receive to the next layer. As the light passes through the liquid crystal layers, the molecules also change the light"s plane of vibration to match their own angle. When the light reaches the far side of the liquid crystal substance, it vibrates at the same angle as the final layer of molecules. If the final layer is matched up with the second polarized glass filter, then the light will pass through.

If we apply an electric charge to liquid crystal molecules, they untwist. When they straighten out, they change the angle of the light passing through them so that it no longer matches the angle of the top polarizing filter. Consequently, no light can pass through that area of the LCD, which makes that area darker than the surrounding areas.

Building a simple LCD is easier than you think. Your start with the sandwich of glass and liquid crystals described above and add two transparent electrodes to it. For example, imagine that you want to create the simplest possible LCD with just a single rectangular electrode on it. The layers would look like this:

The LCD needed to do this job is very basic. It has a mirror (A) in back, which makes it reflective. Then, we add a piece of glass (B) with a polarizing film on the bottom side, and a common electrode plane (C) made of indium-tin oxide on top. A common electrode plane covers the entire area of the LCD. Above that is the layer of liquid crystal substance (D). Next comes another piece of glass (E) with an electrode in the shape of the rectangle on the bottom and, on top, another polarizing film (F), at a right angle to the first one.

The electrode is hooked up to a power source like a battery. When there is no current, light entering through the front of the LCD will simply hit the mirror and bounce right back out. But when the battery supplies current to the electrodes, the liquid crystals between the common-plane electrode and the electrode shaped like a rectangle untwist and block the light in that region from passing through. That makes the LCD show the rectangle as a black area.

an lcd displays color using the pricelist

LCD displays use a relatively new technology, but all of the early teething problems have long been worked out and the prices of LCD displays have fallen to the point that they are now mainstream products. A good LCD display, such as the ViewSonic VP191 19" model shown in Figure 11-2, provides top-notch image quality in a compact package. Although traditional CRTs have advantages of their own, most people who experience the bright, contrasty image of a good LCD display will never return to using a CRT monitor.

If you convert from a standard CRT display to a flat-screen CRT display or (particularly) an LCD display, you may notice an odd effect. Your eye and brain become used to seeing the curved surface of the old display as flat. The new display, which truly is flat, looks concave! Straight lines appear to bow inward, particularly if you work close to the display. The effect is so convincing that Robert actually held a straight-edge up to his new LCD display. Sure enough, the "bent" lines were straight. Don"t worry, though. The optical illusion disappears after only a couple hours" use.

CRT monitors were the dominant PC display technology until recently, but that has changed. For displays bundled with new PCs, LCDs exceeded CRTs in popularity by late 2002. By 2005, LCDs had also begun to outsell CRTs in retail channels. Lower cost and other advantages of CRTs ensure that they"ll remain available for years to come, but the emphasis has definitely shifted to LCDs.

Unlike CRT monitors, which have a maximum resolution but can easily be run at lower resolutions, LCDs are designed to operate at one resolution, called the native resolution. You can run an LCD at lower than native resolution, but that results in either the image occupying only part of the screen at full image quality or, via pixel extrapolation, the image occupying the full screen area but with greatly reduced image quality.

LCDs are available in analog-only, digital/analog hybrid, and digital-only interfaces. Using an analog interface requires converting the video signal from digital to analog inside the PC and then from analog to digital inside the monitor, which reduces image quality, particularly at higher resolutions. Synchronization problems occur frequently with analog interfaces, and can cause various undesirable display problems. Finally, analog interfaces are inherently noisier than digital interfaces, which causes subtle variations in display quality that can be quite disconcerting.

Whereas CRT monitors require high vertical refresh rates to ensure stable images, LCDs, because of their differing display technology, can use much lower refresh rates. For example, at 1280x1024 resolution on a CRT monitor, you"ll probably want to use an 85 Hz or higher refresh rate for good image quality. At the same resolution on an LCD, 60 Hz is a perfectly adequate refresh rate. In fact, on LCDs, a lower refresh rate often provides a better image than a higher refresh rate.

Unlike CRT monitors, whose phosphor-based pixels respond essentially instantaneously to the electron beam, LCD panels use transistors, which require time to turn on or turn off. That means there is a measurable lag between when a transistor is switched on or off and when the associated pixel changes to the proper state. That lag, called rise time for when the transistor is switched on and fall time for when it is switched off, results in a corresponding lag in image display.

Fast LCD response time is a Good Thing. Fast response means smoother scrolling and no ghosting or smearing, even when you view fast-motion video. Unfortunately, there"s no standard way to measure or specify response time, so different LCD makers use different methods. That means you can"t necessarily compare the response time specified by one LCD maker directly with that specified by another. (Actually, it"s worse than that; you can"t necessarily compare response times for two different models made by the same company.)

When LCDs first appeared, most makers specified rise-and-fall response in milliseconds (ms), the time required for a pixel to change from black to white (rise time) and then from white to black (fall time), also called the black-white-black (bwb) response. Nowadays, in addition to or instead of bwb, many LCD makers specify white-black-white (wbw) response and/or gray-to-gray (gtg) response, the time required to go from one level of gray to another.

And gtg times are not necessarily comparable between different brands, or even between different models from the same company, because gtg time depends on which particular levels of gray are tested. Do we specify gtg response for going from an almost-black gray to an almost-white gray, or for going from one almost-middle gray to another almost-middle gray? It makes a difference.

Some makers also specify the rise time separately. For example, we found one display that was advertised as having a 4 ms response time, but the product data sheet on the maker"s web site listed that display as having an 8 ms response time. Both numbers were accurate, as far as they went. The 4 ms time quoted in the ad referred to rise time (black to white). The 8 ms time quoted in the technical documents referred to bwb response.

It is not safe to make assumptions about one type of response time based on another type. For example, one LCD may have response times of 20 ms bwb and 8 ms gtg, while another model from the same manufacturer may have response times of 16 ms bwb and 12 ms gtg. So, is the second LCD slower or faster than the first? It depends on which numbers you decide to use. Advertisers use the fastest numbers available. Count on it.

All of these response-time numbers can be different, and there"s no direct relationship among them. If you look only at ads (as opposed to technical documentation), it"s often not clear what type of response time is being specified. If a response time is quoted without qualification, such as "16 ms," that ordinarily (but not always) refers to bwb response.

A fast bwb (or wbw) response time is more important for general use, while a fast gtg response time is more important for gamers and graphic artists. For general use, bwb response of 25 ms to 30 ms is acceptable to most people, and 16 ms to 20 ms preferable. For gaming and other demanding applications, bwb response of 12 ms is generally acceptable and 8 ms preferable, with gtg response no slower than 8 ms and 4 ms or less desirable.

LCDs are brighter than CRTs. A typical CRT has brightness of about 100 candelas/square meter, a unit of measurement called a nit. (Some displays are rated in foot Lamberts (fL); one fL equals about 3.43 nits). A typical LCD is rated at 250 to 350 nits, roughly three times as bright as a typical CRT. CRTs dim as they age, although a brightness control with enough range at the upper end can often be used to set an old CRT to near original brightness. The CCRTs used to backlight LCDs also dim as they age, but generally fail completely before reduced brightness becomes a major issue.

Contrast measures the difference in luminance between the brightest and dimmest portions of an image, and is expressed as a ratio. The ability to display a high-contrast image is an important aspect of image quality, particularly for text. An average CRT may have a contrast ratio of 200:1, and a superb CRT 250:1. An inexpensive LCD may have a contrast ratio of 400:1, and a superb LCD 1,000:1. In other words, even an inexpensive LCD may have higher contrast than an excellent CRT.

Even good flat-screen CRTs are subject to objectionable reflections when used in bright environments, such as having the screen facing a window. Good LCDs are much superior in this respect. Short of direct sunlight impinging on the screen, a good LCD provides excellent images under any lighting conditions.

A typical CRT is about as deep as its nominal screen size. For example, a 19" CRT may be 19" from front to back. Large CRTs may be difficult to fit physically in the available space. Conversely, LCDs are quite shallow. The panel itself typically ranges from 1.5" to 3" deep, and even with the base most LCDs are no more than 7" to 8" deep. Also, where a large CRT may weigh 50 to 100 pounds or more, even large LCDs are quite light. A typical 17" LCD might weigh 10 pounds, and even a 23" unit may weigh less than 20 pounds. That small size and weight means that it"s possible to desk- or wall-mount an LCD with relatively inexpensive mounting hardware, compared to the large, heavy, expensive mounting hardware needed for CRTs.

Stated LCD display sizes are accurate. For example, a 19" LCD has a display area that actually measures 19" diagonally. CRT sizes, on the other hand, are nominal because they specify the diagonal measurement of the entire CRT, part of which is covered by the bezel. For example, a nominal 19" CRT might have a display area that actually measures 18.1" diagonally. A couple of lawsuits several years ago convinced CRT makers to begin stating the usable size of their CRTs. This is stated as VIS (viewable image size or visible image size), and is invariably an inch or so smaller than the nominal size.

This VIS issue has given rise to the belief that a 15" LCD is equivalent to a 17" CRT, a 17" LCD to a 19" CRT, and so on. In fact, that"s not true. The image size of a typical 17" CRT is an inch or so larger than that of a 15" LCD, as is the image size of a 19" CRT relative to a 17" LCD.

Depending on size and other factors, a typical CRT consumes 100 to 160 watts while operating, while an LCD consumes only a quarter to a half as much power. Using an LCD reduces your electricity bill directly by consuming less power and indirectly by reducing the heating load on your air conditioning during hot weather.

Current LCDs are available in analog-only, digital-only, and models with both analog and digital inputs. Analog input is acceptable for 15" (1024x768) models, but for 17" (1280x1024) models analog video noise becomes an issue. At that screen size and resolution, analog noise isn"t immediately obvious to most people, but if you use the display for long periods the difference between using a display with a clean digital signal and one with a noisy analog signal will affect you on almost a subconscious level. For a 19" (1280x1024) LCD, we regard a digital signal as extremely desirable but not absolutely essential. For a larger display or above 1280x1024, we wouldn"t consider using analog signaling.

Insist on true 24-bit color support, which may be described as support for 16.7 million colors. Most current LCDs support 24-bit color, allocating one full byte to each of the three primary colors, which allows 256 shades of each color and a total of 16.7 million colors to be displayed. Many early LCDs and some inexpensive current models support only six bits per color, for a total of 18-bit color. These models use extrapolation to simulate full 24-bit color support, which results in poor color quality. If an LCD is advertised as "24-bit compatible," that"s good reason to look elsewhere. Oddly, many LCDs that do support true 24-bit color don"t bother to mention it in their spec sheets, while many that support only 18-bit color trumpet the fact that they are "24-bit compatible."

Most LCD makers produce three or more series of LCDs. Entry-level models are often analog-only, even in 19" and 21" sizes, and have slow response times. Midrange models usually accept analog or digital inputs, and generally have response times fast enough for anything except 3D gaming and similarly demanding uses. The best models may be analog/digital hybrids or digital-only, and have very fast response times. Choose an entry-level model only if you are certain that you will never use the display for anything more than word processing, web browsing, and similarly undemanding tasks. If you need a true CRT-replacement display, choose a midrange or higher model with a digital interface and the fastest response time you are willing to pay for.

Decide what panel size and resolution is right for you. Keep in mind that when you choose a specific LCD model, you are also effectively choosing the resolution that you will always use on that display.

Buy the LCD locally if possible. Whether or not you buy locally, insist on a no-questions-asked return policy. LCDs are more variable than CRT monitors, both in terms of unit-to-unit variation and in terms of usability with a particular graphics adapter. This is particularly important if you are using an analog interface. Some analog LCDs simply don"t play nice with some analog graphics adapters. Also, LCDs vary from unit to unit in how many defective pixels they have and where those are located. You might prefer a unit with five defective pixels near the edges and corners rather than a unit with only one or two defective pixels located near the center of the screen.

If you buy locally, ask the store to endorse the manufacturer"s warranty that is, to agree that if the LCD fails you can bring it back to the store for a replacement rather than dealing with the hassles of returning the LCD to the maker.

If possible, test the exact LCD you plan to buy (not a floor sample) before you buy it. Ideally, and particularly if you will use the analog interface, you should test the LCD with your own system, or at least with a system that has a graphics adapter identical to the one you plan to use. We"d go to some extremes to do this, including carrying our desktop system down to the local store. But if that isn"t possible for some reason, still insist on seeing the actual LCD you plan to buy running. That way, you can at least determine if there are defective pixels in locations that bother you. Also, use a neutral gray screen with no image to verify that the backlight evenly illuminates the entire screen. Some variation is unavoidable, but one or more corners should not be especially darker than the rest of the display, nor should there be any obvious "hot" spots.

Recommended Brands: Our opinion, confirmed by our readers and colleagues, is that NEC-Mitsubishi, Samsung, Sony, and ViewSonic make the best LCDs available. Their LCDs particularly their midrange and better models provide excellent image quality and are quite reliable. You"re likely to be happy with an LCD from any of these manufacturers.

Stick with good name brands and buy a midrange or higher model from within that name brand. That doesn"t guarantee that you"ll get a good LCD, but it does greatly increase your chances. The LCD market is extremely competitive. If two similar models differ greatly in price, the cheaper one likely has significantly worse specs. If the specs appear similar, the maker of the cheaper model has cut corners somewhere, whether in component quality, construction quality, or warranty policies.

an lcd displays color using the pricelist

Girgaon, Mumbai Shop No. 102, 1st Floor, Rajdeep Building Tara Temple Lane, Lamington Road, Grant Road East, Girgaon, Mumbai - 400007, Dist. Mumbai, Maharashtra

Adyar, Chennai No. 13, F- 3, 2nd Floor, 2nd Main Road, Nehru Nagar, Adyar, H.D.F.C. Bank A.T.M., Ground Floor Near Nalli Silks, Opposite To SBI Indra Nagar Branch, Adyar, Chennai - 600020, Dist. Chennai, Tamil Nadu

Pataudi Road, Gurgaon, Dist. Gurugram Shop No. 6, Nikhil Complex Near Capt. Umang Bharadwaj Chowk, Pataudi Road, Gurgaon - 122001, Dist. Gurugram, Haryana

Perumanallur, Tiruppur, Dist. Coimbatore Sun Plaza, 2nd Floor, Eswaran Koil Street Triuppur Road, Perumanallur, Tiruppur - 641666, Dist. Coimbatore, Tamil Nadu

- TD1630-3 delivers touchscreen versatility, offering fantastic flexibility for retail or business settings. With advanced ergonomics, the display can tilt or layread more...

M.T.H. Road, Mannurpet, Chennai UNIVERSAL CNC HARDWARE #48-A, 1st Floor, Ambattur industrial Estate,, M.T.H. Road, Mannurpet,, Chennai - 600058, Dist. Chennai, Tamil Nadu

an lcd displays color using the pricelist

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

an lcd displays color using the pricelist

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).

From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.

From cinema content to motion-based digital art, Planar® Luxe Displays offer a way to enrich distinctive spaces. These professional-grade displays provide vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior decor.

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

From cinema content to motion-based digital art, Planar® Luxe MicroLED Displays offer a way to enrich distinctive spaces. HDR support and superior dynamic range create vibrant, high-resolution canvases for creative expression and entertainment. Leading-edge MicroLED technology, design adaptability and the slimmest profiles ensure they seamlessly integrate with architectural elements and complement interior décor.

Advanced LED video wall with MicroLED models in 0.6, 0.7 and 0.9mm pixel pitches, and 1.2mm pixel pitch standard LED; with powerful processing, proprietary alignment technology and off-board electronics.

LED video wall solution with advanced video wall processing, off-board electronics, front serviceable cabinets and outstanding image quality available in 0.9mm pixel pitch

Planar® CarbonLight™ VX Series is comprised of carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility, available in 1.9 and 2.6mm pixel pitch (wall) and 2.6mm (floor).

Carbon fiber-framed indoor LED video wall and floor displays with exceptional on-camera visual properties and deployment versatility for various installations including virtual production and extended reality.

a line of extreme and ultra-narrow bezel LCD displays that provides a video wall solution for demanding requirements of 24x7 mission-critical applications and high ambient light environments

Since 1983, Planar display solutions have benefitted countless organizations in every application. Planar displays are usually front and center, dutifully delivering the visual experiences and critical information customers need, with proven technology that is built to withstand the rigors of constant use.

an lcd displays color using the pricelist

23.8" LED-backlit LCD monitor / FHD (1920x1080) resolution IPS display / 178° (H) 178° (V) viewing angle / 250 cd/m² brightness / 5ms (GTG) response time (in FAST mode) / 1xUSB‑C input (video/audio/60W charging capability), 1xDisplayPort (in), 1xDisplayPort (out) with MST, 1xHDMI, 1xUSB‑C output (data/15W charging capability), 3xSuperSpeed 10Gbps USB Type A ports / 1xDisplayPort, 1xUSB-C to USB Type A cable included / 3 year system/panel warranty

an lcd displays color using the pricelist

OLED displays have higher contrast ratios (1 million : 1 static compared with 1,000 : 1 for LCD screens), deeper blacks and lower power consumption compared with LCD displays. They also have greater color accuracy. However, they are more expensive, and blue OLEDs have a shorter lifetime.

OLED displays offer a much better viewing angle. In contrast, viewing angle is limited with LCD displays. And even inside the supported viewing angle, the quality of the picture on an LCD screen is not consistent; it varies in brightness, contrast, saturation and hue by variations in posture of the viewer.

There are no geographical constraints with OLED screens. LCD screens, on the other hand, lose contrast in high temperature environments, and lose brightness and speed in low temperature environments.

Blue OLEDs degrade more rapidly than the materials that produce other colors. Because of this, the manufacturers of these displays often compensate by calibrating the colors in a way that oversaturates the them and adds a bluish tint to the screen.

With current technology, OLED displays use more energy than backlit LCDs when displaying light colors. While OLED displays have deeper blacks compared with backlit LCD displays, they have dimmer whites.

LCDs use liquid crystals that twist and untwist in response to an electric charge and are lit by a backlight. When a current runs through them, they untwist to let through a specific amount of light. They are then paired with color filters to create the display.

AMOLED (Active-Matrix Organic Light-Emitting Diode) is a different form of OLED used in some mobile phones, media players and digital cameras. It offers higher refresh rates with OLEDs and consume a lot less power, making them good for portable electronics. However, they are difficult to view in direct sunlight. Products with AMOLED screens include Galaxy Nexus, Galaxy S II, HTC Legend and PlayStation Vita.

an lcd displays color using the pricelist

A cookie is a small text file that a website saves on your computer or mobile device when you visit the site. It enables the website to remember your actions and preferences (such as login, language, font size and other display preferences) over a period of time, so you don’t have to keep re-entering them whenever you come back to the site or browse from one page to another.

an lcd displays color using the pricelist

Footnotes* Returns: The 30-day return period is calculated from invoice date. Exceptions to Dell"s standard return policy still apply, and certain products are not eligible for return at any time. See dell.com/returnpolicy.

* Offers subject to change, not combinable with all other offers. Dell may impose a purchase quantity limit (for example, 5 units per order). Taxes, shipping, and other fees apply. Free shipping offer valid only in Continental U.S. (excludes Alaska and P.O. Box addresses). Offer not valid for Resellers. Dell reserves the right to cancel orders arising from pricing or other errors.

* Rewards 3% back excludes taxes and shipping. Rewards are issued to your online Dell Rewards Account (available via your Dell.com My Account) typically within 30 business days after your order’s ship date. Rewards expire in 90 days (except where prohibited by law). “Current rewards balance” amount may not reflect the most recent transactions. Check Dell.com My Account for your most up-to-date reward balance. Total rewards earned may not exceed $2,000 within a 3-month period. Outlet purchases do not qualify for rewards. Expedited Delivery not available on certain TVs, monitors, batteries and adapters, and is available in Continental (except Alaska) U.S. only. Other exceptions apply. Not valid for resellers and/or online auctions. Offers and rewards subject to change without notice, not combinable with all other offers. See Dell.com/rewardsfaq. $50 in bonus rewards for Dell Rewards Members who open a new Dell Preferred Account (DPA), or Dell Business Credit (DBC) account on or after 8/10/2022. $50 bonus rewards typically issued within 30 business days after DPA or DBC open date.

Dell Coupon Offer:Offer valid 12/9/2022 - 1/5/2023 7:00AM CST. Coupon is valid with select other offers but not with other coupons. Coupon is valid on