surplus lcd displays quotation

At TeleTraders, we want to buy your used LCD Displays from you in bulk. If you’re older LCD Displays are still usable, consider selling them to TeleTraders to help offset your equipment upgrade costs. Give TeleTraders a call at

When it comes time to update your office, offset your expenses and sell used LCD Displays. We will make you a competitive offer for your old monitors, LCDs, computers, modems, and laptops.

Our company is happy to purchase your old used, outdated LCD displays and monitors to free your business from the sometimes complicated electronics disposal processes. Please give us a call at 770-864-9179 or get a Free Online Quote to get started.

Our team utilizes industry experience to provide you with a fair and competitive price quote for your old used LCD displays and computer devices. We continue to upgrade our knowledge base as office equipment quickly becomes outdated in the constantly changing world of electronics. We team up with many companies around the world to quickly resell, repurpose, or recycle the LCD displays sent our way. Our efforts ensure the electronics remain in operation well beyond their initial run with your company.

When you sell your LCD displays and other office equipment to TeleTraders, we can also handle all of the packing, removal and transporting for the equipment, helping free up both your space and your time.

We understand that office technology needs change over time. The LCD displays and monitors that worked for your office a year or two ago may not be keeping pace anymore with your needs. We can help by offering you the best rates possible for your bulk LCD displays. Contact TeleTraders to get started right now.

When it’s time to upgrade your computer and LCD displays, you shouldn’t have to spend lots of time trying to figure out how to dispose of, sell or recycle your used LCD displays and office equipment – that’s where TeleTraders will be able to help you.

We request a detailed list of your used office LCD displays, including make, model, and quantity of units. Please, also include a photo of your equipment so we can gauge the current quality of the hardware.

TeleTraders is happy to accept most major and minor brands of common IT office LCD displays, office LCD display systems, and also other IT office equipment. If there is any question about whether we will accept your brand of equipment, feel free to contact us by phone or email at any time and we will respond to your inquiry as quickly as possible.

We are always looking to help businesses, small and large, offset the costs of upgrading their IT office LCD displays and IT office LCD display systems. In order to make an inquiry about a possible trade-in valuation, please Contact Us so we can work with you to evaluate used IT office LCD display gear. You may also Call Us directly for immediate assistance.

surplus lcd displays quotation

At General Digital, we produce the finest rugged military displays available on the market for the U.S. Armed Forces and her allies. Every rugged monitor that we produce is uniquely equipped with highly specialized capabilities for use within tanks, armored personnel carriers, Humvees, submarines, aircraft carriers, helicopters, fighter jets and all types of land, marine, air, space and autonomous vehicle systems.

These rugged LCD innovations continue to prove indispensable as the military continues its development of on-the-move intelligence systems, threat detection, surveillance and suppression operations. Therefore, every General Digital military-grade LCD monitor and ruggedized peripheral can be customized to meet the rigorous demands presented in the modern warfare theater.

General Digital"s reputation for going above and beyond military standards means we utilize in-house equipment for engineering, design, testing and validation of all of our rugged LCD displays.

General Digital designs and builds in the United States of America, so you know you’re getting robust and dependable flat panel military LCD monitors and accessories. Our monitors will last for years, long after the others have succumbed to the elements. Below is a list of our heavy-duty product line, which will suit just about any requirement you have. And if it doesn’t, we’ll build it for you.

This smart device features an integrated computer system designed to connectto a server through a gigabit Ethernet connection. As configured, the customizable computer allows two independent video feeds on the displays, and allowsthe keyboard and trackball to provide inputs to the host server.

The Saber series consists of standard rack mount, panel mount and standalone/VESA mount military-grade and COTS (Commercial Off-The-Shelf) LCD monitors. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. The

The TwoView Micro (dual display), SlimLine Micro and Rack Mount Hinge series consist of 1U and 2U high rack mount, flip-up and flip-down military-grade LCD monitors in a rack mount drawer. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. They have been used in military applications such as:

Integrated for use within Humvees and ECS transit cases for the CONDOR (Command and Control On-the-Move Network, Digital Over the Horizon Relay) program (high bright displays)

The TwoView (dual display), SlimLine 1U and SlimLine Lite II series consist of 1U and 2U high rack mount, flip-up military-grade LCD monitors with integral keyboards and trackballs in a rack mount drawer. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs, keyboards and more. They have been used in military applications such as:

Integrated for use within Humvees and ECS transit cases for the CONDOR (Command and Control On-the-Move Network, Digital Over the Horizon Relay) program (high bright displays)

The Barracuda series consists of NEMA 4/6 and IP67 environmentally sealed rack mount, panel mount and standalone/VESA mount military-grade and COTS (Commercial Off-The-Shelf) LCD monitors. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. The marine-grade

The Impact series consists of an open frame military-grade LCD monitor kit, ready for mounting where you need it. Options include sunlight readable displays, LED backlights, NVIS goggle compatibility, touch screens, multiple video inputs and more. They have been used in military applications such as:

surplus lcd displays quotation

Manufacturer of indoor or outdoor digital and electronic food menu displays. Panel, graphic, multi-head, digital and LCD displays are offered. Available in 32 to 65 in. dimensions. Features include HD video quality, proprietary case design, integrated order confirmation systems, sunlight readability, windproof design, IP67 protection and single, dual or triple screen configurations. Displays are resistant to frost, rain, wind, snow, heat and cold. Standard displays are also offered. Used for restaurants, drive-thru and other quick-service purposes. Suitable for advertising and promotional applications. Made in the USA.

surplus lcd displays quotation

TRU-Vu High Bright Sunlight Readable Monitors enable users to see clear, sharp video images even in direct sunlight with a bright screen.  Our high brightness screens produce at least 1,000 nits brightness. Some go up to 2,500 nits of brightness.  This makes them far brighter than standard LCD monitors.  Specifically, consumer or commercial-grade monitors typically offer only 150 to 300 nits brightness.  High brightness displays and sunlight readable touch screens will ensure crystal-clear video images even in bright sunlight. The result is better performance and bold colors in other high ambient light conditions as well. They are also available with optical bonding as monitors or touch screen displays.

In outdoor or bright conditions, it is imperative to increase the brightness of a display to ensure crisp images.  The number of nits an LCD display emits is the main factor in determining the monitor’s perceived brightness. A monitor luminance of around 200-350 nits will work well indoors.  Most LCD displays and monitors fall in this range. However, 400-700 nits would be required for use in daylight conditions. Most importantly, a Sunlight readable display requires at least 1,000 nits or more for viewing in direct, bright sunlight . These high brightness displays are available with 16:9 aspect ratio or 4:3 aspect ratio screens.  All TRU-Vu Sunlight Readable monitors and high-brightness touch screens are TAA Compliant.

Some monitors feature a sheet of glass over the LCD panel to protect it from accidental or intentional damage. However, the glass also produces unwanted glare and reflections. Internal reflections in the air gap between the glass and the LCD panel diminish image quality even further. In order to combat this, monitors are optically bonded.

Optical bondingis the process of laminating protective glass or a touch screen panel to the LCD panel with an optical-grade resin.  This completely fills the air gap between the glass and LCD panel. It not only eliminates the internal reflections, but  also increases the contrast ratio. This makes the screen appear much brighter and more viewable in bright light conditions. Optical bonding  also eliminates internal moisture and condensation. Moreover, it will make the monitor more rugged and durable. Lastly, an Anti-Reflective coating is applied to the outside of the glass. Consequently, this will drastically reduce glare and surface reflections.

For installations in indirect sunlight, or reflected bright light, our Daylight Viewable displays will most likely suffice. These are also more cost-effective than Sunlight Readable monitors with 1,000 nits brightness. Daylight viewable monitors feature  LCD screens with 400 nits to 700 nits brightness.  The LCD panels also include optical bonding.

Our outdoor high brightness Sunlight Readable LCD monitors feature waterproof stainless steel enclosures. These are ideal for factory wash-down environments.  Additionally, they are perfect for outside use in challenging weather.  Our panel mount enclosures are made from steel, stainless steel, or aluminum. This enables them to be flush-mounted. Outdoor LCD monitors with high brightness work in a wider range of temperatures. Consequently, this broadens the environments in which they may be used. Additionally, temperature ranges are very important to consider when using outdoors.  When we combine extreme operating temperatures with outdoor waterproof enclosures, we ensure your high brightness monitors will be able to function in even the harshest wet and hot environments. We will also modify or customize any model to meet your exact requirements.

In conclusion, we deploy TRU-Vu outdoor waterproof sunlight readable monitors and high brightness touch screens in a wide range of industries. For example, military, law enforcement, manufacturing plants benefit from high bright LCD displays. Amusement parks, sports stadiums, mass transit, and construction & heavy equipment also rely on high bright sunlight readable displays.  In addition, outdoor high brightness LCD monitors are demanded in pipeline inspection,  kiosks, marine,  oil & gas, drones, security applications. When it counts, you can rely on TRU-Vu Monitors to deliver the optimal weather resistant high bright LCD monitor solution for your specific needs.

surplus lcd displays quotation

Liquid Crystal Displays or more commonly known as LCDs are one of the most common electronic components which help us interact with an equipment or a device. Most personal portable equipment and even gigantic industrial equipment utilize a custom segment display to display data. For many portable consumer electronics, a segment LCD display is one of the biggest contributors to the overall cost of the device, hence designing a custom segment display can drive the cost down while also utilizing the display area in the most optimum manner. These displays have the lowest cost per piece, low power requirements, and a low tooling fee too.

At first thought, designing a custom segment LCD might look like a Herculean task, but trust me that it is easier than it seems. In this article, we have summarised and compared the display types and available technologies which are required to construct a custom segment LCD. We have also provided a flowchart that can act as a step-by-step guide while you design your own custom LCD. We have also provided the process we followed, a require gathering sheet we used for communicating our needs to the manufacturer, and a few other data and the quotation we received from the manufacturer.

LCD Bias– It denotes the number of different voltage levels used in driving the segments, static drives (explained later in this article) only have 2 voltage levels or 2 bias voltage while multiplex drives have multiple voltage levels. For example, 1/3 will have 4 bias voltages.

LCDs utilizes the light modulating properties of liquid crystals which can be observed by using polarizing filters. Polarizing filters are special materials that have their molecules aligned in the same direction. If the light waves passing through polarisers have the same orientation as the filter, then the molecules of lights are absorbed by the filter, hence reducing the intensity of light passing through it, making it visible.

A custom LCD is important for maximizing the efficiency of the display area by adding custom symbols and characters. It also helps in reducing the cost and improving energy efficiency of the product. A higher number of custom symbols and specified placement of numerical and alphanumerical characters make the display more informative and readable for the user. This makes it look better than the plain old boring displays we get in the market. Furthermore, we can specify the viewing angle, contrast, and other specifications which can increase durability or give a better value for money for our intended usage.  A typical Custom Segment display is shown below, we will also show you how to design and fabricate the same further in the article.

The LCD display doesn’t emit any light of its own, therefore it requires an external source of illumination or reflector to be readable in dark environments.

While designing a custom segment LCD display, we have the leverage of choosing a lot of parameters that affect the final product. From the color of the display to the illumination technique and color of illumination as well as the type of input pins. Some important considerations we need to take while designing a custom 7 segment display are - the type of display, i.e. positive or negative, illumination method, driving technique, polarising type, and connection method. All these design criteria are explained below:

Positive and negative displays can be easily distinguished by the colour of the background and characters. Some common differences between the positive and negative displays are:

So, which one should you choose? When the displays are to be used in areas with higher ambient light, we should select positive segment LCD display as it has better visibility than negative segment LCD displays without using a backlight.

As we know that LED displays don’t emit any light, hence to illuminate it and make it visible in a dark environment, we can use different methods of illumination. The most common LCD Illumination methods are compared below:

For displays that need to be used for budget-friendly devices that should be small and rugged, LED lights are preferred for the displays due to the high durability and low cost of operations. For high brightness, CCFL and Incandescent lights can be used.

A polarizer film is the most important component of an LCD display, which makes it possible to display characters by controlling the light. There are 3 types of polarizers that can be used in the LCD display, the properties and difference are given below:

Displays can be categorized into two types, passive displays, and active display, passive displays are simpler to construct as they have 2 connections at each segment, the conductors comprise of an Indium Tin Oxide to create an image, whereas the active displays use thin-film transistors (TFT) arranged in a grid. The name is due to its ability to control each pixel individually.

If your displays have fewer segments, then static LCD drive is preferred as it is easier to control and cheaper to construct, and has a better contrast ratio. But let’s say that if the number of segments in the display are more than 30-40 then a multiplex LCD drive should be preferred as it has multiple common pins, hence reducing the total number of pins required to drive the display.

Choosing a connector type!!! For the prototyping phase or if you need to connect your LCD display on a Microcontroller directly, a pin type connector is the best and most economical option you have. If you need to connect your LCD display in a final product with a high volume of production which also requires to be extremely durable, but at the same time should not take up a lot of space, a Flex type LCD Connector will work best for you

LCDs have limited viewing angles and when seen from an angle they lose contrast and are difficult to be observed.  The viewing angle is defined by the angles perpendicular to the center of the display towards its right, left, up, and down which are denoted by the notations 3:00, 9:00, 12:00, and 6:00 respectively. The viewing angle of LCD can be defined as the angle w.r.t. to the bias angle at which the contrast of segments is legible.

To improve the viewing angle in an LCD, a Bias is incorporated in the design which shifts the nominal viewing angle with an offset. Another technique is to increase the Voltage, it affects the bias angle, making the display crisper when viewed from a direction.

For example, the viewing angle of a TN type TFT LCD is 45-65 degrees. Extra-wide polarising film (EWP) can increase the viewing angle by 10 degrees, using an O film polariser can make the viewing angles 75 degrees but these come at a cost of reduced contrast.

LCD Control chip or LCD driver chips can be mounted on the flex cable, display, or externally on a PCB. The placement of LCD control chip can affect the cost and size of the display. The 2 most common methods of chip placement are-Chip of Board (COB)and Chip on Glass(COG) which are described below:

We planned to design an air quality monitoring system for which we needed a custom segment LCD panel for an air quality monitoring device. Our product needs to display the following data: 2.5-micron and 10-micron particulate matter (PM) suspended in the air; the units should be in parts per million (PPM). CO2 in the air in PPM along with total volatile organic compounds present in the air in parts per billion (PPB). To make the product more usable, we included time in 24-hour format, Temperature in ºC, Battery status, loudspeaker status, Bluetooth status, and Wi-Fi status. And for some personal touch, we also added how good the air quality in the room is by using 3 different smileys.

We realized that it was impossible to provide all these data in a generic LCD available in the market, thus decided to build a custom LCD for our project.

A step-by-step flowchart is shown below to walk you through each and every step of selecting components and getting your custom segment LCD manufactured.

Usually, the displays are mounted at a height of 4.5 feet from the ground, thus the viewing direction was selected to be 12"O clock with an operating frequency of 64Hz. We selected a Transmissive polarizer for the front glass and a reflective polarizer for the rear glass so that the natural light can pass through the front panel and the display can achieve the maximum contrast without the need for backlighting and we opted for the pin type connectors as they are easy for prototyping and are suitable for harsh environment with a lot of vibrations and shocks which best suited our purpose.

We mailed our requirements to multiple LCD manufacturers, (you will find a lot of LCD manufacturers on the Internet). Most LCD manufacturers have competitive pricing, and reply within a week. A sample requirement sheet is shown above which a customer needs to fill to specify all the details to the manufacturer.

This is a sample Custom Segment LCD quotation we got from one of the manufacturers. As you can see, the cost is based on the quantity. Higher the quantity, lower the cost. Apart from the cost per quantity, there is one more component called tooling fees. Tooling fee is a one-time fee charged by the manufacturer. It is for the technical design, support, and customization of the product. Customization of PCB or tooling of LCD can drive the tooling price higher or lower.

A custom segment LCD can help you personalize your product while also saving the overall cost of your product. The whole process will take you around 2-3 months, which will include the designing phase, prototyping phase, and getting your custom segment LCDs delivered to your doorstep. Higher ordering quantity will reduce the cost per piece of each unit, thus driving down the cost of your final product.

surplus lcd displays quotation

Dynamic Displays, Inc. manufactures and sells a wide variety of Rugged Color & Monochrome Military Display Monitors, Rugged Industrial LCD Display Monitors, and Industrial Panel PC Systems. We carry many LCD Replacement Monitors for use as process control replacement LCDs, EGA/CGA replacement monitors, and RS170/RS-343 compatible displays.  Other displays include Industrial Desktop Computer Monitors. We are a proud manufacturer of industrial, COTS military, and replacement LCD monitors.

We’ve supplied our Military with highly specialized, extremely rugged video displays for avionics suites, Flight Simulators, Naval Flight Decks, Targeting Displays and many more.  We provide Dynamic Display Systems for the harshest of industrial environments such as Petrochemical, Pharmaceutical, Power Distribution, Machine Tool, Process Control, and Food Preparation Industries.  Our extensive line of High-Quality LCD displays includes rugged NEMA 4, Sealed 4X and Oil Resistant NEMA 12 Panel Mounts as well as EIA Standard 19″ Rack Mount, Wall Mount, and Desktop configurations.  Our legacy CRT monitor replacement products have helped many customers extend the life of their industrial equipment when replacement monitors were impossible to find.

surplus lcd displays quotation

Liquid Crystal Display (LCD) screens are a staple in the digital display marketplace and are used in display applications across every industry. With every display application presenting a unique set of requirements, the selection of specialized LCDs has grown to meet these demands.

LCD screens can be grouped into three categories: TN (twisted nematic), IPS (in-plane switching), and VA (Vertical Alignment). Each of these screen types has its own unique qualities, almost all of them having to do with how images appear across the various screen types.

This technology consists of nematic liquid crystal sandwiched between two plates of glass. When power is applied to the electrodes, the liquid crystals twist 90°. TN (Twisted Nematic) LCDs are the most common LCD screen type. They offer full-color images, and moderate viewing angles.

TN LCDs maintain a dedicated user base despite other screen types growing in popularity due to some unique key features that TN display offer. For one,

VA, also known as Multi-Domain Vertical Alignment (MVA) dislays offer features found in both TN and IPS screens. The Pixels in VA displays align vertically to the glass substrate when voltage is applied, allowing light to pass through.

Displays with VA screens deliver wide viewing angles, high contrast, and good color reproduction. They maintain high response rates similar to TN TFTs but may not reach the same sunlight readable brightness levels as comparable TN or IPS LCDs. VA displays are generally best for applications that need to be viewed from multiple angles, like digital signage in a commercial setting.

IPS displays offer a slightly lower refresh rate than TN displays. Remember that the time for pixels to go from inactive to active is measured in milliseconds. So for most users, the difference in refresh rates will go unnoticed.

Based on current trends, IPS and TN screen types will be expected to remain the dominant formats for some time. As human interface display technology advances and new product designs are developed, customers will likely choose IPS LCDs to replace the similarly priced TN LCDs for their new projects.

surplus lcd displays quotation

A video wall is a special multi-monitor setup that consists of multiple computer monitors, video projectors, or television sets tiled together contiguously or overlapped in order to form one large screen. Typical display technologies include LCD panels, Direct View LED arrays, blended projection screens, Laser Phosphor Displays, and rear projection cubes. Jumbotron technology was also previously used. Diamond Vision was historically similar to Jumbotron in that they both used cathode-ray tube (CRT) technology, but with slight differences between the two. Early Diamond vision displays used separate flood gun CRTs, one per subpixel. Later Diamond vision displays and all Jumbotrons used field-replaceable modules containing several flood gun CRTs each, one per subpixel, that had common connections shared across all CRTs in a module; the module was connected through a single weather-sealed connector.

The most simple example of video wall controller is single input multiple outputs scaler. It accepts one video input and splits the image into parts corresponding to displays in the video wall.

Most of professional video wall displays also have built-in controller (sometimes called an integrated video matrix processor or splitter). This matrix splitter allows to “stretch” the image from a single video input across all the displays within the whole video wall (typically arranged in a linear matrix, e.g., 2x2, 4x4, etc.). These types of displays typically have loop-through output (usually DVI) that allows installers to daisy-chain all displays and feed them with the same input. Typically setup is done via the remote control and the on-screen display. It is a fairly simple method to build a video wall but it has some disadvantages. First of all, it is impossible to use full pixel resolution of the video wall because the resolution cannot be bigger than the resolution of the input signal. It is also not possible to display multiple inputs at the same time.

The integrated video wall scalers are often limited to matrix grid layouts (e.g., 2x2, 3x3, 4x4, etc.) of identical displays. Here the aspect ratio remains the same but the source-image is scaled across the number of displays in the matrix. More advanced controllers enable grid layouts of any configuration (e.g., 1x5, 2x8, etc.) where the aspect ratio of the video wall can be very different from that of individual displays. Others enable displays to be placed anywhere within the canvas, but are limited to portrait or landscape orientation. The most advanced video wall controllers enable full artistic control of the displays, enabling a heterogeneous mix of different displays as well as 360deg multi-angle rotation of any individual display within the video wall canvas.

Advanced video wall controllers will allow you to output multiple sources to groups of displays within the video wall and change these zones at will even during live playback.

A network configuration allows video walls to be synchronized with individual digital signs. This means that video walls of different sizes and configurations, as well as individual digital displays

Transparent video walls combine transparent LCD screens with a video wall controller to display video and still images on a large transparent surface. Transparent displays are available from a variety of companies and are common in retail and other environments that want to add digital signage to their window displays or in store promotions. Bezel-less transparent displays can be combined using certain video wall controllers to turn the individual displays into a video wall to cover a significantly larger surface.

David Hughes and others from SGI developed Media Fusion, an architecture designed to exploit the potential of a scalable shared memory and manage multiple visual streams of pixel data into 3D environments. It provides data management solution and interaction in immersive visualization environments. Its focus is streaming pixels across heterogeneous network over the Visual Area Network(VAN) similar to SAGE. However, it is designed for a small number of large displays. Since it relies on a relatively small resolution for the display, pixel data can be streamed under the fundamental limit of the network bandwidth.