led versus lcd display factory

A Liquid Crystal Display (LCD) is one of the most enduring and fundamental technologies found in monitors, televisions, tablets, and smartphones. TVs and monitors once used cathode ray tubes (CRTs) to provide the image on your screen. But CRTs were bulky and contained dangerous chemicals. Once LCDs became affordable, they replaced CRTs.

An LCD features a panel of liquid crystal molecules. The molecules can be induced using an electrical current to take certain patterns which either block or allow light to pass through. An LCD TV or monitor has a light source at the rear of the display, which lights up the crystals. LCDs commonly use Cold Cathode Fluorescent Lamps (CCFL) to provide the TV or monitor backlight.

To provide a color image on your screen, the LCD has red, green, and blue sub-pixels in each screen pixel. Transistors within the display control the direction of light each pixel emits, which then passes through either a red, green, or blue filter.

Light Emitting Diodes (LEDs) are small semiconductors that emit visible light when an electrical current passes through them. LEDs are typically more efficient and longer-lasting than traditional lighting.

While manufacturers often use "LED" in place of "LCD," an LED TV is also a type of LCD. Instead of CCFL tubes to provide the LCDs backlight, rows of LEDs provide the backlight. The LEDs give better control of the light, as well as greater efficiency as it is possible to control individual LEDs.

For accuracy, a TV or monitor description should read "LED-Backlit LCD Monitor." But that is a) a mouthful and b) doesn"t allow for the creation of a separate marketable product. That"s not to say there aren"t differences between the two.

However, both LED and LCD monitors have different technologies that make certain panels more appealing to gamers, film buffs, designers, and so on. You should also note that on older screens, the difference between an LCD and LED TV or monitor is more pronounced, due to the relative age of the two lighting options.

There are several different types of LED and LCD monitors. When you"re trying to buy a new TV or monitor, understanding the differences and the terminology will help you bag a better deal. Here are some of the most common variations of the LED and LCD panels.

An Edge-Lit LED TV or monitor has its LEDs arranged around the rim of the display, behind the LCD panels facing the screen. The Edge-Lit option allows for slimmer designs, uses fewer LEDs, and can bring the cost of a new screen down. Light reflects across the screen uniformly to create the image.

One downside to an Edge-Lit screen is the dark contrast. Because the Edge-Lit LED display is brightest closer to the edges, color uniformity and black levels can become an issue, with some areas appearing darker than others.

A Full-Array LED display uses a grid of LED lights behind the LCD. The LEDs shine outwards directly towards the LCD, creating a bright and uniform picture. Full-Array LED panels enjoy the efficiency benefits of LEDs.

For the best image reproduction, a Full-Array LED display may include local dimming. Local dimming means that groups of LEDs can switch on and off as required to provide better overall control of the brightness level.

LEDs are often referred to as emitting white light. Actually, LEDs produce light closer to yellow than a pure white. That difference can create a color shift in the image you see on your screen. To improve on this issue, some manufacturers replace white LEDs with groupings of red, green, and blue (RGB) LEDs.

The display uses advanced electronics and programming to control the RGB LEDs accurately, along with more LEDs. The combination increases the cost of an RGB LED screen significantly for what most viewers would consider a marginal improvement. RGB LED displays never became mainstream because of their higher cost.

Organic Light-Emitting Diodes (OLED) are an advanced form of LED lighting found in some LED monitors. Each pixel of an OLED TV can glow or dim independently, resulting in much better black levels, extremely sharp colors, and better contrast ratios. The majority of OLED TVs and monitors have excellent viewing angles and color quality.

Without a doubt, OLED TVs and monitors (and even smartphone screens) have incredible color depth. But that does come at a cost. The latest generation of flagship smartphones all feature OLED screens, and it is a contributing factor to their massive cost. Another consideration is power. An OLED screen consumes more power than other LED-backlit screens and standard LCD screens.

The acronyms continue with QLED, which stands for Quantum Dot LED. Samsung"s QLED improves color accuracy as much as 90-percent from a regular LED TV or monitor and can hit the high levels of brightness and color depth that HDR requires.

So, what is a quantum dot monitor? In short, quantum dots are semiconductor nanocrystals that absorb light at one wavelength and output it at a different wavelength. The LEDs in a QLED emit all of the blue shades the picture requires. But a blue picture isn"t what consumers want. The quantum dots refract the blue LED light into the green and red shades needed to complete the picture.

A single quantum dot monitor or TV contains billions of semiconductor nanocrystals. Those nanocrystals give QLED screens outstanding black range and color depth, as well as excellent color saturation and contrast.

Just as there are types of LED monitor technology, so is there LCD monitor and TV technology, too. The type of LCD tech powering your screen makes a difference to the final picture. Here"s what you need to look out for.

Twisted nematic (TN) was one of the first LCD panel types, dating back to the 1980s. TN panels have fast response time. Most of the fastest gaming monitors use a TN LCD panel to offer exceptionally fast refresh rates, up to 240Hz. That level of refresh isn"t necessary for most people, but it can make a difference for top-level gamers (for instance, in reducing motion blur and image transition smoothness).

While a VA LCD panel has a better color range than a TN panel, they also have a slower refresh rate. They also usually cost more and, as such, are rarely marketed toward gamers. Between TN panels and IPS panels (read below), VA is the least popular LCD panel technology.

In-Plane Switching (IPS) panels are considered the best LCD panel technology for a variety of reasons. An IPS panel offers very wide viewing angles with very fast refresh rates. They"re not as fast as a TN panel, but IPS panels are widely available at 144Hz. At the time of writing, the first few 240Hz IPS LCD panels are hitting the market, although they are extremely expensive for a marginal gain.

Color-wise, IPS panels are excellent. High-quality IPS LCD panel prices continue to fall. However, there are several reasons why you shouldn"t buy a ridiculously cheap IPS gaming monitor.

The type of LCD panel you need depends on its use. Gamers want fast response times and rich depth of color, which is why IPS panels are a great option. If you"re more concerned about picture quality for your favorite films, an OLED panel will perform extremely well.

Still, now you know the terminology behind LCD panels and the pros and cons to each type, you can make an informed decision for your TV or monitor upgrade. But wait, the type of LCD or LED panel isn"t the only thing to consider. Take a moment to learn about the differences between 4K, Ultra HD, and 8K screens.

led versus lcd display factory

In the world of digital signage, there are two prominent display technologies: LCD and LED. There’s also a considerable amount of misconception about these technologies and how they relate to each other or work together. The blame for much of this confusion can be attributed to the advent of LCD TVs with LED-backlighting technology, so let’s clear that difference up before we move on.

With any digital display, you must have a well working light source so that you can see the picture brightly. Until very recently, TVs have always been backlit—that is, illuminated from behind the display monitor. For a long period of time after television sets were invented, this was done by firing electrons through a “gun” to the screen (tube and projector TVs). In the early 2000s, LCD TVs were backlit by fluorescent bulbs. More recently, however, TV manufacturers began using LED technology as the light source for flat-screen LCD TVs, as this method provided more versatility and uniform picture lighting, therein lies some of the confusion.

As picture displays, there are many differences between LED display features and LCDs. Given advances in LED display technology—and drastically lower cost—both display types can be viable options for a variety of interior spaces. And of course, each has benefits, and each has limitations. To determine the best display for a digital signage project, it’s critical to understand exactly how each display type will perform and why one is better than the other in a given situation. It’s important to compare, not only cost, but also factors such as brightness, durability, size, resolution, vibrancy, and many more features that are on the market.

LED stands for light-emitting diode. By definition, LEDs provide their own light. Once reserved for large-scale, exterior digital displays, direct-view LED signage has emerged as a greatly improved, widely applicable medium, now suitable for virtually all display installations, both indoor or outdoor. In the digital signage industry, direct-view LED displays have now become the norm and work well together.

LCD stands for liquid crystal display. This type of display uses light-modulating properties of liquid crystals. As referenced above, liquid crystals don’t produce light directly; instead, they use a backlight to produce images on the screen. LCDs are used most often in interior applications, where users are in proximity to the screen. With this display technology, ambient light is usually limited and controlled.

Typically, LED displays have a higher up-front cost than LCDs; however, unlike LCDs, LED displays are rugged and durable, even in the most inhospitable environments. Additionally, they can be upgraded and retrofitted relatively easily. For total cost of ownership and longevity, the better option is the LED.

Brightness is typically measured in NITs. One NIT is equivalent to one candela per square meter. The brightness for LED displays ranges from hundreds to thousands of NITs. LCDs have a much lower brightness range feature. LED displays are able to compete in well-lit areas, both inside and outside. In contrast, competing light will severely impact an LCD; many times, this renders the picture unviewable.

While LED and LCD displays can both render most types of content, there are some drawbacks to LCDs. They can sometimes hold the “memory” of an image, and leave behind a residual imprint referred to as “image persistence.” It’s caused when a still image remains on the screen for too long. The colors become “stuck” in place. When the display tries to shift to another color, the crystals don’t want to budge. The result is a color that is slightly skewed from the intended one. LED displays do not encounter this issue.

Video walls are one of the most popular ways to use digital displays in interior spaces. From entertainment venues to other various retail spaces on the market, video walls have wide appeal. This makes the setup more complex than single screens, so it’s essential to have the right screens. LEDs are typically the preferred display for video walls. They are seamless, tiling together with no bezels. In a well-installed application, video walls have excellent uniformity and the widest viewing angles. LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible, unfortunately.

An LED display can be any size. There are no inherent limitations. They can also be curved, concave, or convex. They can even wrap completely around a pillar for a 360-degree effect. LCDs are typically only available in the standard sizing set by the manufacturer.

SNA Displays is a global manufacturing leader in LED video displays. We offer fully customizable LED products, thereby providing you with the most impact on your messaging. To learn more about how LED signage can power your digital display project, view our portfolio.

led versus lcd display factory

There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?

LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.

Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.

LED backlighting is an essential feature in offering realistic pictures. The features enhance the popularity of the LED screens (check out the Viewsonic TD2230 Review).

The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.

The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.

Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.

LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.

OLED stands for organic light-emitting diodes, and it uses an organic compound to create outstanding high-contrast images - OLED screens are more environmentally friendly. They are also thinner than a standard LED screen as they don"t require a thick LED backlighting behind the screen to illuminate it.

On the other hand, you have QLED screens that are created and patented by Samsung. The QLED screens offer more crisp images as they create light with a shorter wavelength.

The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.

Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.

Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.

Better color:If you want to enjoy more realistic images, LED will be the better option. The screen offers you better color than other screens in the market. Additionally, it offers a better contrast, which is the range between the darkest blacks and brightest whites on the screen. The enhanced contrast ensures you end up with the most realistic images.

However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.

If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.

When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.

You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.

With an LED light, the pixels are either edge-lit or backlit. As such, the lights behind the screen are designed to light up all the pixels in your monitor at once.

LED monitors feature better dimming options without sacrificing picture clarity. They also come with features that reduce eye strain, making them the ideal option if you are spending long hours in front of the screen.

Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.

You can trust an LED monitor to offer you the best resolution for the most precise and crisp images. This enables you to enjoy clear and lifelike images.

When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.

LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.

Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.

In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.

LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.

Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.

LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.

led versus lcd display factory

Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.

Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.

Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.

Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.

Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.

CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.

Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.

Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.

To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.

Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.

Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.

TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.

“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.

Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.

Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.

As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.

An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.

Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.

QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.

And now to make things extra confusing, part of Samsung’s 2022 TV lineup is being billed as traditional OLEDs, although a deeper dive will reveal this is actually the company’s first foray into a new panel technology altogether called QD-OLED.

For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.

There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in

In the world of TV technology, there’s never a dull moment. However, with this detailed research, we hope you feel empowered to make an informed shopping decision and keep your Best Buy salesperson on his or her toes.

led versus lcd display factory

One of the most common questions we’re asked when assisting businesses establish their digital signage systems is whether an LED or an LCD display is best for their business. The answer is always contextual to the clients’ needs. It starts by clarifying what the difference between the two actually is.

When we’re talking aboutconsumer products such as computer monitors and televisions the first thing to know is that an LED screenis an LCD screen, but an LCD screen is not always an LED screen. An LED monitor or television is just a specific type of LCD screen, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen.

For the display to be considered an LED screen, it means it is utilising ‘Light Emitting Diodes’ to generate the light behind the liquid crystals to form an image. A non-LED LCD screen has backlights (called fluorescent lamps) behind the screen that emit white light which cannot pass through the liquid crystals until an electric current is applied to the liquid crystals which then straighten out and allow light to pass through.

This is where it can get easy to divert away from giving clear advice on whether as LED or LCD display is best for your business, because consumer displays differ from commercial displays. We are not trying to give the reader direction on which monitor is best for their gaming set-up, but which screen type is ideal for communicating your business’ messages.

Commercial LED displays are typically referred to as Direct View LED. This is because they use LEDs as the individual pixels that make up the image itself. Using a surface array of LEDs removes any need for a liquid crystal display panel, which carries noticeable benefits for particular uses.

While LCD flat panels are available in resolutions of 1080P and 4K UHD, Direct View LED displays are measured by pixel pitch. Pixel pitch is the distance from the centre of one pixel cluster to the centre of the next pixel cluster in an LED screen. The smaller the pitch, the closer viewers can get to the display before they see the pixels themselves. Outdoor configurations may have a pitch of 10mm to 40mm, as they are viewed at longer distances.

For use indoors, where viewers would be closer to the display, a pitch of 10mm or less would be required, some have even sub-1mm pixel pitch. When considering Direct View LED displays, it is important to know the minimum viewing distance required. Multiplying the pixel pitch by 1,000 gives you a good rule of thumb for the minimum viewing distance.

Direct view LED displays can either use discrete oval LEDs which are basically one single self-contained diode, or Surface Mounted Device (SMD) LEDs. SMD LEDs contain 3 individual light-emitting diodes bunched together. Either way, it’s the light-emitting diodes that create the images you see on screen. This is explained in the image below, courtesy of LG Electronics

Commercial LCD screens are more closely related to their consumer counterparts like TVs but there are still differences to be aware of. It is not advised to simply purchase an LCD TV from your local electronics retailer and install it in a public setting and expect it to function as desired.

Both have been designed to be used differently. Commercial display manufacturers understand that their displays are going to be exposed to far different conditions than a living room television will be. The componentry in a commercial display is optimised to allow for the display to be on 24 hours a day, all year around. They take into account diverse environments such as hot kitchens, high foot traffic, and bad weather,ensuring the product won’t fail in such exposures. The addition of more durable and resistant technology means commercial LCD displays will typically be priced higher than their consumer cousins.

Brightness: When deployed in areas with strong ambient lighting, even the best LCDs can appear washed out and difficult to view, especially when from an angle. Direct view LEDs for outdoor applications can reach 9,000 nits, making them a brighter and better choice for most outdoor applications.

Contrast: Direct View LEDs can turn off pixels that aren’t being used which allows for a higher contrast and therefore a richer image in varied lighting conditions.

Size and shape: Direct view LED-based walls can be flat, curved, wrapped around pillars and more. With no size limit or set aspect ratio they can be used more flexibly than LCDs. Plus, panels have no bezels which means you can piece together Direct view LEDs to create large and uniquely shaped displays with no visible interruptions between units.

Lifespan and servicing: Most direct view LEDs are rated to last 10 years, compared to a typical 5 years for LCDs. Further, they can be easily replaced on-site, reducing maintenance costs.

Tougher: If you’re using an LCD for any outdoor application or one where the unit has to be protected from extreme temperatures or humidity, you’re going to need to include an enclosure and have an understanding of how to properly seal and vent the unit. Outdoor Direct view LEDs, on the other hand, are purpose-built to withstand harsh environments.

Price: The higher upfront cost of Direct LEDs could be the biggest sticking point when it comes to pitching a video wall. While prices have been steadily dropping, Direct view LEDs are still more expensive than LCD alternatives. However, make sure you consider the lifetime cost of the solution and other benefits mentioned above before you discount direct view LEDs.

Functionality: LCD screens can offer a wider range of functionality when it comes to set-up, display settings, and day-to-day control. There is also the addition of touch screen options for LCD displays which are a fairly sought-after feature these days.

Resolution: Whilst the fine pixel pitches available in direct view LEDs today make for impressively resolute images, LCD screens still boast are more uninterrupted image when viewed up close, particularly with the modern 4k displays. This makes them a better option for smaller retail stores, quick service restaurants or office meeting rooms.

As earlier stated, intended use for the display will determine which format you invest in. In outdoor environments or areas with high ambient lighting, brightness is the key concern. For indoor environments, the key concern is image quality and contrast. It’s also imperative to consider the usage environment and what the screen may be exposed to with regards to weather, temperature, humidity, direct contact and other factors. If you have a good understanding of your requirements for content, application, perception and budget then your first move should be to contact a supplier, like Black Lab Design, and we will be able to assist you with designing, building and installing the perfect digital display solution for your business.

led versus lcd display factory

But how do you know which tech­nol­o­gy is right for your project? As we look at dig­i­tal sig­nage solu­tions, there’s one ques­tion that always seems to pop up. What’s the dif­fer­ence between Direct View LED and LCD displays?

LED and LCD dis­plays are both good tech­nolo­gies, and which is bet­ter depends on your appli­ca­tion. LCD is a liq­uid crys­tal dis­play. Com­mer­cial LED dis­plays are a grid or group of Light-Emit­ting Diodes or LEDs that make up the image itself. To make things even more con­fus­ing com­mer­cial, or Direct-View LEDs, are actu­al­ly very dif­fer­ent than their con­sumer LED cousins. Here are the basics to help you under­stand what’s the dif­fer­ence between LED and LCD dis­plays and which is bet­ter for your project.

LCD dis­plays are an option for either indoor or out­door sig­nage. The LCD screen is a series of lay­ers, like an onion. LCD dis­plays have light­ing on the base lay­er. Then comes the LCD sheet, which is a liq­uid housed between two plates. On top is a pro­tec­tive glass lay­er. If the dis­play is meant for the out­doors, a final coat­ing is added to pro­tect against the ele­ments- whether they’re nat­ur­al, like weath­er, or human-caused, like vandalism.

Here’s where the dif­fer­ence starts to get mud­dy. LCD screens can be back-lit by LEDs. Mean­ing the light­ing lay­er con­sists of many lit­tle LEDs that light the LCD sheet from behind. In the con­sumer world, these are mar­ket­ed as LED screens. While accu­rate, it’s not the same as a com­mer­cial LED screen. When we talk about com­mer­cial LED’s we’re talk­ing about Direct View LEDs, but we’ll get into that more later.

LCD dis­plays come in Full-HD (1080p) or Ultra-HD (4K) res­o­lu­tion. 4K res­o­lu­tion has four times the pix­els as 1080p. What does this mean in the real world? At about thir­teen feet away from a 98 inch 1080p dis­play, you can begin to see pix­els. With 4K res­o­lu­tion, this decreas­es to sev­en feet before see­ing pixels.

Direct View LED use LEDs as the indi­vid­ual pix­els that make up the image itself. Pix­el pitch is an impor­tant con­cept with Direct View LED dis­plays. Pix­el pitch is the dis­tance from the cen­ter of one pix­el clus­ter to the cen­ter of the next pix­el clus­ter in a LED screen. This can range from .7 mm- 18 mm plus depend­ing on the view­ing distance.

A Direct View LED dis­play is made up of dif­fer­ent pan­els. These pan­els can be grouped into var­i­ous shapes pro­vid­ing flex­i­bil­i­ty and scal­a­bil­i­ty. Unlike LCD dis­plays, Direct View LED video walls don’t have bezel lines between each pan­el. Var­i­ous Direct View LEDs fea­ture bezel-less pan­els which are placed togeth­er like build­ing blocks. This LED tech­nol­o­gy cre­ates a seam­less view­ing expe­ri­ence even for large-scale video walls.

Direct View LEDs can be curved, con­vex or con­cave. They can even wrap entire­ly around a pil­lar, the full 360 degrees. Since they’re pan­els, they can be con­fig­ured in almost lim­it-less sizes and aren’t con­fined to the 16x9 aspect ratio.

Sizes:LCD Dis­plays come in sizes pro­vid­ed by the man­u­fac­tur­er and aren’t that easy to cus­tomize. Some man­u­fac­tur­ers have stretch sizes, but most of the options are at a 16x9 aspect ratio.

Res­o­lu­tion: LCD Dis­plays typ­i­cal­ly have a high­er res­o­lu­tion than LED screens. So, a cus­tomer can view the screen at a clos­er dis­tance with­out see­ing the pixels.

Bezels:If you’re look­ing for a video wall option, LCD dis­plays do have bezels around each dis­play. Con­verse­ly, some Direct View LEDs don’t have any vis­i­ble bezels, so there will be no line breaks in your content.

Bright­ness:Direct View LEDs can range from 800–8,500 nits, which exceeds the bright­ness of most LCDs. Bright­ness may or may not be an issue, depend­ing on if the dis­play will be indoors or outdoors.

These basic fea­tures out­line the dif­fer­ence between com­mer­cial LED vs. LCD dis­plays. Which is bet­ter? It’s a ques­tion that can’t be answered with­out con­text. The specifics around your project and what you’re try­ing to achieve will define which tech­nol­o­gy should be used. Work with an inte­gra­tor that under­stands both tech­nolo­gies and can make a rec­om­men­da­tion based upon your project. There’s no one-size-fits all solu­tion, but devel­op­ing a bet­ter under­stand­ing of com­mer­cial LED vs. LCD dis­plays will help you for­mu­late the right ques­tions to ask an inte­gra­tion partner.

led versus lcd display factory

LCDs can be tiled, but their bezels cause gaps and visual barriers. While there are LCDs with narrow bezels, small seams are still visible. Thus it is not an ideal choice given such a condition.

An LED display can be any size. There are various creative LED displays including ball LED display, curved LED display, flexible LED display, foldable LED display and so on to meet the requirements for creative display, but LCDs are typically only available in the standard sizing set by the manufacture.

The possible higher initial price point: as the more complex production process, more durable quality and is released later than LCD panels, the initial price point of LEDs can be higher. But there is one thing that deserves to be noticed, the lifespan is longer and the future maintenance fee can be lower with high adaptability to different application scenarios. So in the long term, choosing a LED display may save you more money.

LCD stands for liquid crystal display. As what has been mentioned above, LCD doesn’t produce light directly, it has a backlight to help to produce images. LCD displays are usually used in the indoor environment and the ambient light is often limited and controlled.

Due to LCD has been in widespread use since the early ’70s where it first appeared in digital watches, the cost has been reduced so the price can be lower.

LCD monitors tend to have better viewing angles and anti-glare than edge-lit LEDs as if you like to kick back in your chairs or view the screen from different angles, because the edge-lit LED may lose visibility as you move away from the center viewing angle (please notice the full-array LED monitors don’t have such issue so it is the best choice for gaming).

1.Thicker and heavier structurebecause of the different backlight. There are two methods of LED backlight: direct and edge. The main advantage of edge lighting is that it can be used to make LED screens incredibly thin cause the LEDs are at the side and not behind the screen.

2.Many monitors can not support 4K. Nowadays, 4K videos are one of a trend, however, many LCD displays can not load such video sources so there are more limitations on the content.

3.More energy consumption. As compared with LED display of the same size, LCD may consume 20% to 50% electricity more than that of LED display screens.

4.Lower contrast results in a less clear image. As what we have discussed above, LED display has special lighting methods that can increase the contrast to display pictures more clearly.

This article introduces the differences between LED and LCD, and the advantages and disadvantages of both.When you try to make the best choice for your project, consider these different features carefully.

Generally speaking, an LED display holds advantages due to many functions it has, such as longer working life, lower consumption, easier maintenance, better display performance and so on.

These qualities contribute to the higher initial price point, while in the long run, the investment may be more cost-effective. But if you are looking for something cheaper just without many requirements, that may have you considering the LCD.

led versus lcd display factory

Sometimes the distance between good and great seems like hardly any distance at all — such as liquid crystal displays (LCDs) versus light-emitting diode (LED) displays. Both are suitable for retail window signage, campus wayfinding or large video walls. But LCD and LED have significant differences, and their specific benefits are worth understanding so you can choose the best displays for your business needs.

LCD is the broader category; LED is a subset. In other words, all LED displays are LCDs, but not all LCDs are LED. LCDs are made up of hundreds of thousands — even millions — of individual pixels built from liquid crystals. Each pixel is capable of displaying a color when it receives an electrical charge. Like a mosaic, the displayed image is built from tiny elements that combine to form the overall picture.

But the liquid crystals don’t produce any light of their own, so in order for the image to be illuminated, the liquid crystals need to be backlit. LCDs are illuminated by cold cathode fluorescent lamps (CCFLs), evenly positioned behind the pixels so that, at least in theory, every part of the screen is evenly lit and at consistent brightness.

Up to a point, LED displays are much the same. An LED screen also uses liquid crystals to generate color — or pure black (no color), by not charging a specific pixel. So LED displays have the same need for backlighting. But rather than CCFL, tiny individual lights (light-emitting diodes) illuminate the liquid crystals.

The individual LEDs can be arranged one of two ways: full-array or edge-lit. For edge lighting, the LEDs are arranged around the edges of the back of the screen. Full-array, on the other hand, calls for many LEDs to be lined up evenly across the back of the screen, where they can be arranged into zones (usually called “dimming zones” or “local dimming”).

Is LED just plain better than LCD? Well, for a while, LCD screens represented the cutting edge of digital signage. But now, about the only meaningful advantage of LCD over LED is price point. As LCD is becoming outdated, it tends to be less of an upfront investment. In every other respect, though, LED displays have the advantage.

No matter the arrangement of the backlighting, LED has a greater nit value than LCD, which means it’s brighter (“nit” comes from the Latin “nitere,” meaning “to shine”). The average nit value for LCDs is between 500 and 700 nits, while LEDs are typically between 1,200 and 2,400 nits. With greater brightness comes greater contrast, and all-day visibility on outdoor displays.

Despite the energy output, higher brightness doesn’t necessarily mean a shorter lifespan. In fact, LED displays have an average lifespan of 10 years — double the average five-year lifespan of LCDs. Factoring longevity into the cost of your signage, LED’s longer lifespan can make it cheaper than LCD in the long run.

Even with edge lighting, LED produces more vividly lifelike images than CCFL-backlit LCDs — and with sleeker hardware, thanks to their minimalist design. And while LCD bezels have drastically reduced over time, they’re still greater than zero. LED has no bezels at all.

Full-array backlighting requires a little more depth to the screen, but with discrete dimming zones, LEDs can be illuminated far more precisely — which, in turn, means more accurate and engaging visuals.

LED isn’t the first technology to realize miniaturization is the way forward. Even as screens get bigger, the next big step is made of smaller parts: microLEDs.

Up to 40 times smaller than regular LEDs, microLEDs allow backlighting to be even more precisely targeted, with many times more diodes. This, in turn, delivers a more accurate picture, with greater contrast and highly focused areas of brightness. Samsung’s The Wall is a spectacular example of what microLED is capable of.

Whether you need your digital signage to entertain, inform or simply impress, understanding the differences between LCD and LED will allow you to make a better-informed decision.

With best-in-class picture quality and exceptional durability,Samsung LED displayscan help your business deliver content that engages, informs and entertains.Samsung’s trade-in program makes it easy for businesses to upgrade their video wall with LED technology. Once you’ve chosen your displays, learn how you can configure and tailor their real-time messaging using an integrated CMSin this free guide.

led versus lcd display factory

This isn"t the same technology they use for the giant screens at football games; in fact, the LED screens you see in shops are actually LCDs, and the term "LED" is the invention of Samsung"s marketing department.

How do they get away with this? Samsung"s televisions use a series of Light Emitting Diodes (LEDs) — like the ones used in LED torches and alarm clocks — to "backlight" the LCD panel, and it"s not the only company that does this. But what is backlighting, anyway?

As a consumer technology, LCD has been in widespread use since the early "70s where it first appeared in digital watches. As its name suggests, Liquid Crystal Display is a liquid that has been sandwiched between two plates, and it changes when a current is applied to it.

While we"ve had black-and-white LCDs for years, colour LCDs are a lot more recent, but the technology is the same. As we all know, you need to press a button to read a watch in the dark, and an LCD TV is no different. It needs a light behind it because it emits no light of its own.

It"s helpful to think of an LCD panel as a sandwich, consisting of different layers. On a typical TV you have a polarised filter, followed by a protective glass layer, followed by the LCD sheet, and then a light source at the back.

At present, there are two main methods of backlighting in LCD flat-panels: Cold-Cathode Fluorescent Lamp (CCFL) and LED (light-emitting diode). There are several others, and this includes Sony"s Hot Cathode Fluorescent Lamp (HCFL), but only

CCFL backlighting consists of a series of tubes laid horizontally behind the screen. It used to be the most common method of backlighting for LCD televisions, but it is quickly being superseded by LED.

LED backlighting has been in use in televisions since 2004 when it first appeared on Sony WEGA models. Though there are several different ways of backlighting using LEDs (as we"ll explain shortly), the idea is the same: a series of LED bulbs throw light from behind to illuminate the LCD panel.

There are two different methods of LED backlighting: direct and edge. The main advantage of direct lighting is that it can be used to increase contrast levels by turning some LEDs off — thus increasing the amount of black in parts of the picture. LG is one of the champions of direct lighting.

In comparison, edge lighting"s main advantage is that it can be used to make screens that are incredibly thin — the LEDs are at the side and not behind the screen. Of course, you lose the ability to switch off parts of the backlighting for better contrast, and picture quality could also suffer if light isn"t sufficiently well dispersed.

White LED is very similar to CCFL, and is meant to simulate the white light of the sun for a more "natural" result. But the LEDs aren"t actually white; this approach uses a blue light source that is made to look white by the presence of a sulphur coating on the bulb. CCFLs work in the same way.

As a result, the television could potentially be stronger in the green portion of the spectrum, but some CCFL technologies enable better red and blue response, so better white LEDs could also be possible. The

RGB LEDs, on the other hand, are potentially capable of a broader colour range because they use three LEDs coloured red, blue and green, which is a broadcast standard. RGB"s proponents argue that there is less of a green "push" as a result, and the colour spectrum is more evenly distributed. The Sony Bravia KDL-46XBR45 is an example of a television that used RGB LEDs in its backlight.

Here we have Samsung"s edge-lit LED unit, which comprises of two major components: a long LED module of tiny white diodes and a thin screen-sized plastic sheet known as a light guide plate. Four of these LED modules are deployed along the left, right, top and bottom of the television. The combined light output is then funnelled and redistributed evenly across the screen by the light guide.

We find it interesting that TV manufacturers are still asking for a higher price for LED-backlighting when many cheap devices — particularly mobile phones and netbooks — use LEDs as backlights. As of 2009, Samsung said that LED backlights cost three times more in large sizes than the equivalent CCFL arrangement, and this is mostly due to a lower number of manufacturers. Presumably, as the technology continues to take a firmer hold, the price will keep coming down.

In 2011, only the budget LCD televisions use CCFL backlighting, and all of the major manufacturers use LED lighting in their mid-range and premium models. It won"t be too long before it will become the default method of backlighting. While some people still prefer the look of a plasma, the LED"s combination of thin design and sharp picture quality will soon find favour with many people. If you"re looking for a further explanation of how LCD screens work, then you can try this video on the 3M site.

led versus lcd display factory

Digital panel meters (or DPM) typically uses either an LCD (Liquid Crystal Display) or LED (Light-Emitting Diodes) to display information in an alphanumerical format. What are the differences between LCD’s and LED’s and how do you know which one to pick for your application? Read on to find out!

The Liquid Crystal Display (or LCD) is a form of visual display used in electronic devices in which a layer of a liquid crystal is sandwiched between two transparent electrodes. The application of an electric current to a small area of the layer alters the alignment of its molecules, which affects its reflectivity or its transmission of polarized light. Liquid crystals do not emit light directly. Instead, they use a backlight or reflector to produce images in color or monochrome.

To take it a step further, LCD displays also come in two different variations: Positive LCD and Negative LCD. Essentially, a positive LCD display features dark-colored or black numbers/letters on a light-colored background while a negative LCD display features light-colored numbers/letters on a dark background.

Light-Emitting Diode (or LED) is a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light is determined by the energy required for electrons to cross the bandgap of the semiconductor.

While the underlying technology is the main difference between LCD’s and LED’s, there are other features that set these 2 apart from each other and could help to determine which one is right for your application.

Color: DPMs traditionally have a red, green or amber/yellow display. LEDs are also available in blue or white. Tri-color (RGB) LEDs can be used to create any color. The color of a transmissive LCD is determined by the backlight LED. Therefore, color-changing digital displays are more easily implemented with LCD technology. Some high-end DPMs provide a full-color graphic display. These use LCD technology similar to what is used in a color TV.

Brightness: The typical LED display is significantly brighter than an LCD. So viewing in a bright room or in a crowded instrument cluster favors LED. The LED’s higher brightness coupled with higher contrast gives enhance readability over LCDs. However, in direct sunlight, a reflective LCD is more visible.

Viewing Angle: LED displays to have a much wider viewing angle than LCDs. When viewing an LCD display, the image clarity will become diminished when viewing the display off to the side from the center point in either direction.

Temperature: LEDs are semiconductors, so they have a wide temperature range. Other components in the meter will determine its operating temperature limits. The chemical action in the LCD slows down at low temperatures (typically <0°C), so it may require a heater for these situations. Depending on the type of LCD, the maximum temperature of an LCD meter may also be more restricted than an LED meter.

Burn-In Issues: Neither LCD nor LED displays to have burn-in issues. That is, an image is “burned in” to the display if left unchanged for an extended time. Because of this, both types of displays are considered suitable for static images, which are typical with digital panel meters.

Life: Either display type will provide years of continuous operation. However, LCDs can degrade in high humidity due to an imperfect seal between the glass plates.

Both LCD and LED technologies have their own set of advantages and disadvantages. Be sure to consider all of these factors when deciding on the right type of display for your DPM application.

At Weschler Instruments, we carry a wide selection of digital panel meters from an assortment of manufacturers in both LCD and LED displays. We also recognize that every application is different and can sometimes require custom input ranges/scales. Contact us today with your needs and one of our highly qualified salespeople will assist you.

led versus lcd display factory

While a standard LCD screen uses fluorescent backlights, an LED screen uses light-emitting diodes for backlights. LCD screens usually have superior picture quality, but they less brightness than the LED screens. And some backlight configurations create better images than the LED screens. So, LCD display is good for Indoor of Commercial Display and LED display is good for outdoor of Commercial Display.

In the traditional sense, Digital Signage Media Solution products in a broad sense refer to display terminals that publish information or product advertisements in public places. At present, these products are mainly used for "indoor" commercial advertising applications. The indoor display mainly uses LCD display technology, because of its high resolution, fine colors, stable product performance, and easy installation and maintenance. Due to the "outdoor" special use environment, commercial advertising display products are required to have high brightness, protection, and durability.

Outdoor Billboard Advertising has been around since the mid-nineteenth century and may seem a bit dated, but the advent of digital billboards has witnessed a sudden rise in the popularity of these displays. In fact, billboards and digital advertising are the only growing advertising areas, while the radio, television, and print advertising markets are shrinking. Many companies have discovered that the presence of huge displays can mean a huge impact, and they are using the functions of digital billboards in creative ways. For example, the billboard of a coffee chain can adapt to real-time weather conditions: on a cold day, it will show a cup of hot coffee and a doughnut; on a hot day, it will show a cup of iced coffee drink.

The COVID-19 has made 2020 a turning point for the entire industry. Due to the further development of LCD panel display technology, the cost of high-brightness products continues to drop, and many digital signage product suppliers are also turning their attention to the outdoor advertising market. During the period of low demand for traditional applications, we saw new opportunities for digital signage products in the outdoor advertising application market.

According to research by relevant institutions, due to the impact of the epidemic in the first half of the year, the shipments of outdoor digital signage machines dropped sharply. In order to improve corporate profitability, most digital signage product manufacturers are turning their attention to the rising demand for outdoor markets, mainly in the transportation sector (Bus stations and other land transportation platforms), and the fast-growing self-service ordering display in the fast-food (QSR) retail application scenario. Secondly, during the epidemic, many stores added Digital Signage with Hand Sanitizer that can display posters, videos, and highly interactive in order to attract traffic. The creation of digital stores also promoted the growth of digital signage demand to a certain extent. Furthermore, due to the need for prevention, control, and isolation, manufacturers have taken longer to develop products. Therefore, during the epidemic period, the maturity of display terminal technology is catalyzed. The LCD & LED display technological competition during the epidemic has promoted the maturity of the technology and the decline in market prices, thereby stimulating the overall market.

The lineup of public displays and signage displays for "outdoor" or "semi-outdoor" applications with a brightness of more than 1,000 nits is growing steadily. The above display products need to work for a long time in a complex environment, usually with 1000nit or more, and adjust the brightness according to the ambient light; work around the clock (24/7); adapt to changes in high temperature, independently adjust the machine temperature; three protection (Waterproof), Dustproof, Anti-collision) and other characteristics.

In recent years, LED direct light-emitting display products with high brightness, high contrast, high response speed, customization, and strong protection have been in large scenes, and the outdoor application market for long-distance viewing can be said to be booming. It has grown into the preferred display product for outdoor sports, transportation, and building advertising markets. In 2019, LCD and LED direct light-emitting display technologies have joined hands in the "semi-outdoor" market, especially in retail and public places. In recent years, small-pitch GOB LED Display Technology has matured and costs have fallen. , The price of this product has also recently begun to show a downward trend.

Digital Signage is generally a small-size display terminal device that needs to be viewed from a close distance. The advantage of LCD is its small size and delicate display. Therefore, before the birth of small-pitch LED displays, LCD was the mainstream display terminal product for digital signage. At the same time, the entire industry has been committed to reducing chip size and pixel pitch. With the improvement of product resolution, small-pitch LED display products have begun to enter the indoor market and begin to compete on the same stage with LCD splicing walls, industrial projections, and other products.

Although LCD occupies part of the digital signage market, its low-brightness characteristics limit its application in outdoor advertising scenes. Therefore, in order to seize the opportunity of outdoor digital signage, digital signage manufacturers have come in to introduce brightness higher than 4000nit and IP protection level Products higher than 56, but their price is close to or even higher than that of P2-P5 LED displays, and their protection level is far less than that of outdoor LED displays. Therefore, in the field of outdoor digital signage with P2-P5 dot pitch, LED displays have advantages in price, brightness, and protection performance. However, in the field of fine-pitch products with higher pixel specifications, its price advantage is still inferior to LCD products. Therefore, major companies in the LED industry are trying to reduce the price difference and seize more digital signage market share.

In addition to regular comparisons o