wuxga vs lcd display price

Yep, its basically for the higher resolutions that the LCD is capable of displaying. All have similar viewing angles and brightness capabilities. If you are planning on the i8600 model then I would steer clear of the WSXGA at the moment becuase there are some problems with Hitachi displays, but all reports on the WUXGA"s in the i8600 are good.

wuxga vs lcd display price

WUXGA stands for widescreen ultra extended graphics array and is a type of display resolution. Resolution explains how many pixels a display has in width x height format (the more pixels, the sharper the image quality). WUXGA displays have a resolution of 1920 x 1200.

Today"s laptops mostly stick to 1080p(opens in new tab)or 4K(opens in new tab)resolution. On the other hand, there are a few PC monitors that offer WUXGA, which is a nice little step up from the most common resolution of 1080p. It"s rate, but that extra screen real estate means that you"ll see more of your favorite documents and web pages without scrolling.

wuxga vs lcd display price

The graphics display resolution is the width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized (e.g. by VESA) and typically given a name and an initialism that is descriptive of its dimensions. A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.

The favored aspect ratio of mass-market display industry products has changed gradually from 4:3, then to 16:10, then to 16:9, and is now changing to 18:9 for smartphones.cathode ray tube (CRT). The 16:10 aspect ratio had its largest use in the 1995–2010 period, and the 16:9 aspect ratio tends to reflect post-2010 mass-market computer monitor, laptop, and entertainment products displays. On CRTs, there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non-square pixels (e.g. 320 × 200 or 1280 × 1024 on a 4:3 display).

The 4:3 aspect ratio was common in older television cathode ray tube (CRT) displays, which were not easily adaptable to a wider aspect ratio. When good quality alternate technologies (i.e., liquid crystal displays (LCDs) and plasma displays) became more available and less costly, around the year 2000, the common computer displays and entertainment products moved to a wider aspect ratio, first to the 16:10 ratio. The 16:10 ratio allowed some compromise between showing older 4:3 aspect ratio broadcast TV shows, but also allowing better viewing of widescreen movies. However, around the year 2005, home entertainment displays (i.e., TV sets) gradually moved from 16:10 to the 16:9 aspect ratio, for further improvement of viewing widescreen movies. By about 2007, virtually all mass-market entertainment displays were 16:9. In 2011, 1920 × 1080 (Full HD, the native resolution of Blu-ray) was the favored resolution in the most heavily marketed entertainment market displays. The next standard, 3840 × 2160 (4K UHD), was first sold in 2013.

Also in 2013, displays with 2560 × 1080 (aspect ratio 64:27 or 2.370, however commonly referred to as "21:9" for easy comparison with 16:9) appeared, which closely approximate the common CinemaScope movie standard aspect ratio of 2.35–2.40. In 2014, "21:9" screens with pixel dimensions of 3440 × 1440 (actual aspect ratio 43:18 or 2.38) became available as well.

The computer display industry maintained the 16:10 aspect ratio longer than the entertainment industry, but in the 2005–2010 period, computers were increasingly marketed as dual-use products, with uses in the traditional computer applications, but also as means of viewing entertainment content. In this time frame, with the notable exception of Apple, almost all desktop, laptop, and display manufacturers gradually moved to promoting only 16:9 aspect ratio displays. By 2011, the 16:10 aspect ratio had virtually disappeared from the Windows laptop display market (although Mac laptops are still mostly 16:10, including the 2880 × 1800 15" Retina MacBook Pro and the 2560 × 1600 13" Retina MacBook Pro). One consequence of this transition was that the highest available resolutions moved generally downward (i.e., the move from 1920 × 1200 laptop displays to 1920 × 1080 displays).

In response to usability flaws of now common 16:9 displays in office/professional applications, Microsoft and also Huawei started to offer notebooks with a 3:2 aspect ratio. By 2021, Huawei also offers a monitor display offering this aspect ratio, targeted towards professional uses.

All standard HD resolutions share a 16∶9 aspect ratio, although some derived resolutions with smaller or larger ratios also exist. Most of the narrower resolutions are only used for storing, not for displaying videos.

nHD (ninth HD) is a display resolution of 640 × 360 pixels, which is exactly one-ninth of a Full HD (1080p) frame and one-quarter of a HD (720p) frame. Pixel doubling (vertically and horizontally) nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame.

To avoid storing the eight lines of padded pixels, some people prefer to encode video at 624 × 352, which only has one stored padded line. When such video streams are either encoded from HD frames or played back on HD displays in full-screen mode (either 720p or 1080p) they are scaled by non-integer scale factors. True nHD frames on the other hand has integer scale factors, for example Nokia 808 PureView with nHD display.

One of the few tabletop TVs to use this as its native resolution was the Sony XEL-1. Similar to DVGA, this resolution became popular for high-end smartphone displays in early 2011. Mobile phones including the Jolla, Sony Xperia C, HTC Sensation, Motorola Droid RAZR, LG Optimus L9, Microsoft Lumia 535 and Samsung Galaxy S4 Mini have displays with the qHD resolution, as does the PlayStation Vita portable game system.

This resolution is often referred to as p (which stands for progressive scan and is important for transmission formats) is irrelevant for labeling digital display resolutions. When distinguishing 1280 × 720 from 1920 × 1080, the pair has sometimes been labeled HD1 or HD-1 and HD2 or HD-2, respectively.

The 27-inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of 2560 × 1440, as does its successor, the 27-inch Apple Thunderbolt Display.

The resolution is also used in portable devices. In September 2012, Samsung announced the Series 9 WQHD laptop with a 13-inch 2560 × 1440 display.LG announced a 5.5-inch QHD smartphone display, which was used in the LG G3.Vivo announced a smartphone with a 2560 × 1440 display.Galaxy Note 4,GoogleMotorolaNexus 6HTC 10, the Lumia 950, and the Galaxy S6

This resolution is equivalent to two Full HD (1920 × 1080) displays side by side or one vertical half of a 4K UHD (3840 × 2160) display. It has an aspect ratio of 32:9 (3.5:1), close to the 3.6:1 ratio of IMAX UltraWideScreen 3.6. Samsung monitors at this resolution contain built-in firmware to divide the screen into two 1920 × 1080 screens, or one 2560 × 1080 and one 1280 × 1080 screen.

3840 × 2160 was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036-1,4K UHDTV system defined in ITU-R BT.2020UHD-1 broadcast standard from DVB.Ultra HD display.QFHD (Quad Full HD).

The first commercial displays capable of this resolution include an 82-inch LCD TV revealed by Samsung in early 2008,PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010.Toshiba announced the REGZA 55x3,

DisplayPort supports 3840 × 2160 at 30Hz in version 1.1 and added support for up to 75Hz in version 1.2 (2009) and 120Hz in version 1.3 (2014),HDMI added support for 3840 × 2160 at 30Hz in version 1.4 (2009)Hz in version 2.0 (2013).

When support for 4K at 60Hz was added in DisplayPort 1.2, no DisplayPort timing controllers (TCONs) existed which were capable of processing the necessary amount of data from a single video stream. As a result, the first 4K monitors from 2013 and early 2014, such as the Sharp PN-K321, Asus PQ321Q, and Dell UP2414Q and UP3214Q, were addressed internally as two 1920 × 2160 monitors side by side instead of a single display and made use of DisplayPort"s Multi-Stream Transport (MST) feature to multiplex a separate signal for each half over the connection, splitting the data between two timing controllers.Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60Hz,

This resolution is equivalent to 4K UHD (3840 × 2160) extended in width by 33%, giving it a 64:27 aspect ratio (2.370 or 21.3:9, commonly marketed as simply "21:9") and 11,059,200 total pixels. It is exactly double the size of 2560 × 1080 in both dimensions, for a total of four times as many pixels. The first displays to support this resolution were 105-inch televisions, the LG 105UC9 and the Samsung UN105S9W.5120 × 2160 monitor, the 34WK95U,5K2K WUHD.

DisplayPort version 1.3 added support for 5K at 60Hz over a single cable, whereas DisplayPort1.2 was only capable of 5K at 30Hz. Early 5K 60Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort1.3 support required two DisplayPort1.2 connections to operate at 60Hz, in a tiled display mode similar to early 4K displays using DP MST.

DisplayPort1.3, finalized by VESA in late 2014, added support for 7680 × 4320 at 30Hz (or 60Hz with Y′CBCR 4:2:0 subsampling). VESA"s Display Stream Compression (DSC), which was part of early DisplayPort1.3 drafts and would have enabled 8K at 60Hz without subsampling, was cut from the specification prior to publication of the final draft.

DSC support was reintroduced with the publication of DisplayPort1.4 in March 2016. Using DSC, a "visually lossless" form of compression, formats up to 7680 × 4320 (8K UHD) at 60Hz with HDR and 30bit/px color depth are possible without subsampling.

Quarter-QVGA (QQVGA or qqVGA) denotes a resolution of 160 × 120 or 120 × 160 pixels, usually used in displays of handheld devices. The term Quarter-QVGA signifies a resolution of one fourth the number of pixels in a QVGA display (half the number of vertical and half the number of horizontal pixels) which itself has one fourth the number of pixels in a VGA display.

Half-QVGA denotes a display screen resolution of 240 × 160 or 160 × 240 pixels, as seen on the Game Boy Advance. This resolution is half of QVGA, which is itself a quarter of VGA, which is 640 × 480 pixels.

Quarter VGA (QVGA or qVGA) is a popular term for a computer display with 320 × 240 display resolution. QVGA displays were most often used in mobile phones, personal digital assistants (PDA), and some handheld game consoles. Often the displays are in a "portrait" orientation (i.e., taller than they are wide, as opposed to "landscape") and are referred to as 240 × 320.

The name comes from having a quarter of the 640 × 480 maximum resolution of the original IBM Video Graphics Array display technology, which became a de facto industry standard in the late 1980s. QVGA is not a standard mode offered by the VGA BIOS, even though VGA and compatible chipsets support a QVGA-sized Mode X. The term refers only to the display"s resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use.

While QVGA is a lower resolution than VGA, at higher resolutions the "Q" prefix commonly means quad(ruple) or four times higher display resolution (e.g., QXGA is four times higher resolution than XGA). To distinguish quarter from quad, lowercase "q" is sometimes used for "quarter" and uppercase "Q" for "Quad", by analogy with SI prefixes like m/M and p/P, but this is not a consistent usage.

Wide QVGA or WQVGA is any display resolution having the same height in pixels as QVGA, but wider. This definition is consistent with other "wide" versions of computer displays.

WQVGA has also been used to describe displays that are not 240 pixels high, for example, Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high. This may be due to WQVGA having the nearest screen height.

Video Graphics Array (VGA) refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987.D-subminiature VGA connector, or the 640 × 480 resolution itself. While the VGA resolution was superseded in the personal computer market in the 1990s, it became a popular resolution on mobile devices in the 2000s.

Wide VGA or WVGA, sometimes just WGA is any display resolution with the same 480-pixel height as VGA but wider, such as 720 × 480 (3:2 aspect ratio), 800 × 480 (5:3), 848 × 480, 852 × 480, 853 × 480, or 854 × 480 (≈16:9).

It is a common resolution among LCD projectors and later portable and hand-held internet-enabled devices (such as MID and Netbooks) as it is capable of rendering websites designed for an 800 wide window in full page-width. Examples of hand-held internet devices, without phone capability, with this resolution include: Spice stellar nhance mi-435, ASUS Eee PC 700 series, Dell XCD35, Nokia 770, N800, and N810.

FWVGA is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of 854 × 480 pixels. 854 × 480 is approximately the 16:9 aspect ratio of anamorphically "un-squeezed" NTSC DVD widescreen video and is considered a "safe" resolution that does not crop any of the image. It is called Full WVGA to distinguish it from other, narrower WVGA resolutions which require cropping 16:9 aspect ratio high-definition video (i.e. it is full width, albeit with a considerable reduction in size).

In 2010, mobile phones with FWVGA display resolution started to become more common. A list of mobile phones with FWVGA displays is available. In addition, the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6.2-inch FWVGA display.

Super Video Graphics Array, abbreviated to Super VGA or SVGA, also known as Ultra Video Graphics Array,Ultra VGA or UVGA, is a broad term that covers a wide range of computer display standards.

Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4, where the screen is called the "Retina Display".

The Extended Graphics Array (XGA) is an IBM display standard introduced in 1990. Later it became the most common appellation of the 1024 × 768 pixels display resolution, but the official definition is broader than that. It was not a new and improved replacement for Super VGA, but rather became one particular subset of the broad range of capabilities covered under the "Super VGA" umbrella.

Wide XGA (WXGA) is a set of non-standard resolutions derived from the XGA display standard by widening it to a widescreen aspect ratio. WXGA is commonly used for low-end LCD TVs and LCD computer monitors for widescreen presentation. The exact resolution offered by a device described as "WXGA" can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases.

When referring to televisions and other monitors intended for consumer entertainment use, WXGA is generally understood to refer to a resolution of 1366 × 768,1024 × 768 pixels, 4:3 aspect) extended to give square pixels on the increasingly popular 16:9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock, or manufacturing changes other than extending panel width by one third. As 768 is not divisible by 9, the aspect ratio is not quite 16:9 – this would require a horizontal width of 13651⁄3 pixels. However, at only 0.05%, the resulting error is insignificant.

In 2006, 1366 × 768 was the most popular resolution for liquid crystal display televisions (versus XGA for Plasma TVs flat panel displays);1920 × 1080.

A common variant on this resolution is 1360 × 768, which confers several technical benefits, most significantly a reduction in memory requirements from just over to just under 1MB per 8-bit channel (1366 × 768 needs 1024.5KB per channel; 1360 × 768 needs 1020KB; 1MB is equal to 1024KB), which simplifies architecture and can significantly reduce the amount–and speed–of VRAM required with only a very minor change in available resolution, as memory chips are usually only available in fixed megabyte capacities. For example, at 32-bit color, a 1360 × 768 framebuffer would require only 4MB, whilst a 1366 × 768 one may need 5, 6 or even 8MB depending on the exact display circuitry architecture and available chip capacities. The 6-pixel reduction also means each line"s width is divisible by 8 pixels, simplifying numerous routines used in both computer and broadcast/theatrical video processing, which operate on 8-pixel blocks. Historically, many video cards also mandated screen widths divisible by 8 for their lower-color, planar modes to accelerate memory accesses and simplify pixel position calculations (e.g. fetching 4-bit pixels from 32-bit memory is much faster when performed 8 pixels at a time, and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word), and this convention persisted in low-end hardware even into the early days of widescreen, LCD HDTVs; thus, most 1366-width displays also quietly support display of 1360-width material, with a thin border of unused pixel columns at each side. This narrower mode is of course even further removed from the 16:9 ideal, but the error is still less than 0.5% (technically, the mode is either 15.94:9.00 or 16.00:9.04) and should be imperceptible.

When referring to laptop displays or independent displays and projectors intended primarily for use with computers, WXGA is also used to describe a resolution of 1280 × 800 pixels, with an aspect ratio of 16:10.both dimensions vs. the old standard (especially useful in portrait mode, or for displaying two standard pages of text side by side), a perceptibly "wider" appearance and the ability to display 720p HD video "native" with only very thin letterbox borders (usable for on-screen playback controls) and no stretching. Additionally, like 1360 × 768, it required only 1000KB (just under 1MB) of memory per 8-bit channel; thus, a typical double-buffered 32-bit colour screen could fit within 8MB, limiting everyday demands on the complexity (and cost, energy use) of integrated graphics chipsets and their shared use of typically sparse system memory (generally allocated to the video system in relatively large blocks), at least when only the internal display was in use (external monitors generally being supported in "extended desktop" mode to at least 1600 × 1200 resolution). 16:10 (or 8:5) is itself a rather "classic" computer aspect ratio, harking back to early 320 × 200 modes (and their derivatives) as seen in the Commodore 64, IBM CGA card and others. However, as of mid-2013, this standard is becoming increasingly rare, crowded out by the more standardised and thus more economical-to-produce 1366 × 768 panels, as its previously beneficial features become less important with improvements to hardware, gradual loss of general backwards software compatibility, and changes in interface layout. As of August 2013, the market availability of panels with 1280 × 800 native resolution had been generally relegated to data projectors or niche products such as convertible tablet PCs and LCD-based eBook readers.

First, the HDTV-standard 1280 × 720720p"), which offers an exact 16:9 aspect with square pixels; naturally, it displays standard 720p HD video material without stretching or letterboxing and 1080i/1080p with a simple 2:3 downscale. This resolution has found some use in tablets and modern, high-pixel-density mobile phones, as well as small-format "netbook" or "ultralight" laptop computers. However, its use is uncommon in larger, mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines. For certain uses such as word processing, it can even be considered a slight downgrade (reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width, especially with the addition of subpixel anti-aliasing).

Widespread availability of 1280 × 800 and 1366 × 768 pixel resolution LCDs for laptop monitors can be considered an OS-driven evolution from the formerly popular 1024 × 768 screen size, which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for "traditional" screens. In Microsoft Windows operating system specifically, the larger taskbar of Windows Vista and 7 occupies an additional 16-pixel lines by default, which may compromise the usability of programs that already demanded a full 1024 × 768 (instead of, e.g. 800 × 600) unless it is specifically set to use small icons; an "oddball" 784-line resolution would compensate for this, but 1280 × 800 has a simpler aspect and also gives the slight bonus of 16 more usable lines. Also, the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational "widgets" without compromising the display width of other programs, and Windows 8 is specifically designed around a "two-pane" concept where the full 16:9 or 16:10 screen is not required. Typically, this consists of a 4:3 main program area (typically 1024 × 768, 1000 × 800 or 1440 × 1080) plus a narrow sidebar running a second program, showing a toolbox for the main program or a pop-out OS shortcut panel taking up the remainder.

XGA+ stands for Extended Graphics Array Plus and is a computer display standard, usually understood to refer to the 1152 × 864 resolution with an aspect ratio of 4:3. Until the advent of widescreen LCDs, XGA+ was often used on 17-inch desktop CRT monitors. It is the highest 4:3 resolution not greater than 220 pixels (≈1.05 megapixels), with its horizontal dimension a multiple of 32 pixels. This enables it to fit closely into a video memory or framebuffer of 1MB (1 × 220 bytes), assuming the use of one byte per pixel. The common multiple of 32 pixels constraint is related to alignment.

Historically, the resolution also relates to the earlier standard of 1152 × 900 pixels, which was adopted by Sun Microsystems for the Sun-2 workstation in the early 1980s. A decade later, Apple Computer selected the resolution of 1152 × 870 for their 21-inch CRT monitors, intended for use as two-page displays on the Macintosh II computer. These resolutions are even closer to the limit of a 1MB framebuffer, but their aspect ratios differ slightly from the common 4:3.

WXGA+ and WSXGA are non-standard terms referring to a computer display resolution of 1440 × 900. Occasionally manufacturers use other terms to refer to this resolution.1440 × 900 resolution as WXGA(II).

WXGA+ (1440 × 900) resolution is common in 19-inch widescreen desktop monitors (a very small number of such monitors use WSXGA+), and is also optional, although less common, in laptop LCDs, in sizes ranging from 12.1 to 17 inches.

Super XGA (SXGA) is a standard monitor resolution of 1280 × 1024 pixels. This display resolution is the "next step" above the XGA resolution that IBM developed in 1990.

SXGA is the most common native resolution of 17-inch and 19-inch LCD monitors. An LCD monitor with SXGA native resolution will typically have a physical 5:4 aspect ratio, preserving a 1:1 pixel aspect ratio.

Any CRT that can run 1280 × 1024 can also run 1280 × 960, which has the standard 4:3 ratio. A flat panel TFT screen, including one designed for 1280 × 1024, will show stretching distortion when set to display any resolution other than its native one, as the image needs to be interpolated to fit in the fixed grid display. Some TFT displays do not allow a user to disable this, and will prevent the upper and lower portions of the screen from being used forcing a "letterbox" format when set to a 4:3 ratio.

SXGA+ stands for Super Extended Graphics Array Plus and is a computer display standard. An SXGA+ display is commonly used on 14-inch or 15-inch laptop LCD screens with a resolution of 1400 × 1050 pixels. An SXGA+ display is used on a few 12-inch laptop screens such as the ThinkPad X60 and X61 (both only as tablet) as well as the Toshiba Portégé M200 and M400, but those are far less common. At 14.1 inches, Dell offered SXGA+ on many of the Latitude C-Series laptops, such as the C640, and IBM since the ThinkPad T21. Sony also used SXGA+ in their Z1 series, but no longer produce them as widescreen has become more predominant.

In desktop LCDs, SXGA+ is used on some low-end 20-inch monitors, whereas most of the 20-inch LCDs use UXGA (standard screen ratio), or WSXGA+ (widescreen ratio).

WSXGA+ stands for Widescreen Super Extended Graphics Array Plus. WSXGA+ displays were commonly used on Widescreen 20-, 21-, and 22-inch LCD monitors from numerous manufacturers (and a very small number of 19-inch widescreen monitors), as well as widescreen 15.4-inch and 17-inch laptop LCD screens like the Thinkpad T61p, the late 17" Apple PowerBook G4 and the unibody Apple 15" MacBook Pro. The resolution is 1680 × 1050 pixels (1,764,000 pixels) with a 16:10 aspect ratio.

WSXGA+ is the widescreen version of SXGA+, but it is not approved by any organization. The next highest resolution (for widescreen) after it is WUXGA, which is 1920 × 1200 pixels.

UXGA has been the native resolution of many fullscreen monitors of 15 inches or more, including laptop LCDs such as the ones in the IBM ThinkPad A21p, A30p, A31p, T42p, T43p, T60p, Dell Inspiron 8000/8100/8200 and Latitude/Precision equivalents; some Panasonic Toughbook CF-51 models; and the original Alienware Area 51M gaming laptop. However, in more recent times, UXGA is not used in laptops at all but rather in desktop UXGA monitors that have been made in sizes of 20 inches and 21.3 inches. Some 14-inch laptop LCDs with UXGA have also existed (such as the Dell Inspiron 4100), but these are very rare.

WUXGA stands for Widescreen Ultra Extended Graphics Array and is a display resolution of 1920 × 1200 pixels (2,304,000 pixels) with a 16:10 screen aspect ratio. It is a wide version of UXGA, and can be used for viewing high-definition television (HDTV) content, which uses a 16:9 aspect ratio and a 1280 × 720 (720p) or 1920 × 1080 (1080i or 1080p) resolution.

The 16:10 aspect ratio (as opposed to the 16:9 used in widescreen televisions) was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side.

WUXGA resolution has a total of 2,304,000 pixels. One frame of uncompressed 8BPC RGB WUXGA is 6.75MiB (6.912MB). Initially, it was available in widescreen CRTs such as the Sony GDM-FW900 and the Hewlett-Packard A7217A (introduced in 2003), and in 17-inch laptops. Most QXGA displays support 1920 × 1200. WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem.

The next lower standard resolution (for widescreen) before it is WSXGA+, which is 1680 × 1050 pixels (1,764,000 pixels, or 30.61% fewer than WUXGA); the next higher resolution widescreen is an unnamed 2304 × 1440 resolution (supported by the above GDM-FW900 and A7217A) and then the more common WQXGA, which has 2560 × 1600 pixels (4,096,000 pixels, or 77.78% more than WUXGA).

The QXGA, or Quad Extended Graphics Array, display standard is a resolution standard in display technology. Some examples of LCD monitors that have pixel counts at these levels are the Dell 3008WFP, the Apple Cinema Display, the Apple iMac (27-inch 2009–present), the iPad (3rd generation), the iPad Mini 2, and the MacBook Pro (3rd generation). Many standard 21–22-inch CRT monitors and some of the highest-end 19-inch CRTs also support this resolution.

QWXGA (Quad Wide Extended Graphics Array) is a display resolution of 2048 × 1152 pixels with a 16:9 aspect ratio. A few QWXGA LCD monitors were available in 2009 with 23- and 27-inch displays, such as the Acer B233HU (23-inch) and B273HU (27-inch), the Dell SP2309W, and the Samsung 2343BWX. As of 2011, most 2048 × 1152 monitors have been discontinued, and as of 2013, no major manufacturer produces monitors with this resolution.

QXGA (Quad Extended Graphics Array) is a display resolution of 2048 × 1536 pixels with a 4:3 aspect ratio. The name comes from it having four times as many pixels as an XGA display. Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens, but in CRT monitors this resolution is much more common; some examples include the Sony F520, ViewSonic G225fB, NEC FP2141SB or Mitsubishi DP2070SB, Iiyama Vision Master Pro 514, and Dell and HP P1230. Of these monitors, none are still in production. A related display size is WQXGA, which is a widescreen version. CRTs offer a way to achieve QXGA cheaply. Models like the Mitsubishi Diamond Pro 2045U and IBM ThinkVision C220P retailed for around US$200, and even higher performance ones like the ViewSonic PerfectFlat P220fB remained under $500. At one time, many off-lease P1230s could be found on eBay for under $150. The LCDs with WQXGA or QXGA resolution typically cost four to five times more for the same resolution. IDTech manufactured a 15-inch QXGA IPS panel, used in the IBM ThinkPad R50p. NEC sold laptops with QXGA screens in 2002–05 for the Japanese market.iPad (starting from 3rd generation and Mini 2) also has a QXGA display.

WQXGA (Wide Quad Extended Graphics Array) is a display resolution of 2560 × 1600 pixels with a 16:10 aspect ratio. The name comes from it being a wide version of QXGA1280 × 800) display.

To obtain a vertical refresh rate higher than 40Hz with DVI, this resolution requires dual-link DVI cables and devices. To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in. Many video cards support this resolution. One feature that is currently unique to the 30-inch WQXGA monitors is the ability to function as the centerpiece and main display of a three-monitor array of complementary aspect ratios, with two UXGA (1600 × 1200) 20-inch monitors turned vertically on either side. The resolutions are equal, and the size of the 1600 resolution edges (if the manufacturer is honest) is within a tenth of an inch (16-inch vs. 15.89999"), presenting a "picture window view" without the extreme lateral dimensions, small central panel, asymmetry, resolution differences, or dimensional difference of other three-monitor combinations. The resulting 4960 × 1600 composite image has a 3.1:1 aspect ratio. This also means one UXGA 20-inch monitor in portrait orientation can also be flanked by two 30-inch WQXGA monitors for a 6320 × 1600 composite image with an 11.85:3 (79:20, 3.95:1) aspect ratio. Some WQXGA medical displays (such as the Barco Coronis 4MP or the Eizo SX3031W) can also be configured as two virtual 1200 × 1600 or 1280 × 1600 seamless displays by using both DVI ports at the same time.

An early consumer WQXGA monitor was the 30-inch Apple Cinema Display, unveiled by Apple in June 2004. At the time, dual-link DVI was uncommon on consumer hardware, so Apple partnered with Nvidia to develop a special graphics card that had two dual-link DVI ports, allowing simultaneous use of two 30-inch Apple Cinema Displays. The nature of this graphics card, being an add-in AGP card, meant that the monitors could only be used in a desktop computer, like the Power Mac G5, that could have the add-in card installed, and could not be immediately used with laptop computers that lacked this expansion capability.

In March 2009, Apple updated several Macintosh computers with a Mini DisplayPort adapter, such as the Mac mini and iMac. These allow an external connection to 2560x1600 display.

In 2010, WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market. Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution, alleviating the need for an anamorphic lens to achieve 1:2.35 image projection. Many manufacturers have 27–30-inch models that are capable of WQXGA, albeit at a much higher price than lower resolution monitors of the same size. Several mainstream WQXGA monitors are or were available with 30-inch displays, such as the Dell 3007WFP-HC, 3008WFP, U3011, U3014, UP3017, the Hewlett-Packard LP3065, the Gateway XHD3000, LG W3000H, and the Samsung 305T. Specialist manufacturers like NEC, Eizo, Planar Systems, Barco (LC-3001), and possibly others offer similar models. As of 2016, LG Display make a 10-bit 30-inch AH-IPS panel, with wide color gamut, used in monitors from Dell, NEC, HP, Lenovo and Iiyama.

Released in November 2012, Google"s Nexus 10 is the first consumer tablet to feature WQXGA resolution. Before its release, the highest resolution available on a tablet was QXGA (2048 × 1536), available on the Apple iPad 3rd and 4th generations devices. Several Samsung Galaxy tablets, including the Note 10.1 (2014 Edition), Tab S 8.4, 10.5 and TabPRO 8.4, 10.1 and Note Pro 12.2, as well as the Gigaset QV1030, also feature a WQXGA resolution display.

QSXGA (Quad Super Extended Graphics Array) is a display resolution of 2560 × 2048 pixels with a 5:4 aspect ratio. Grayscale monitors with a 2560 × 2048 resolution, primarily for medical use, are available from Planar Systems (Dome E5), Eizo (Radiforce G51), Barco (Nio 5, MP), WIDE (IF2105MP), IDTech (IAQS80F), and possibly others.

Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of 4096 × 2560. These are driven by two dual-link DVI or DisplayPort outputs. They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual-link DVI or DisplayPort since one dual-link DVI or DisplayPort cannot single-handedly display 10 megapixels. A similar resolution of 2560 × 1920 (4:3) was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card.

WQSXGA (Wide Quad Super Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2048 pixels, assuming a 1.5625:1 (25:16) aspect ratio. The Coronis Fusion 6MP DL by Barco supports 3280 × 2048 (approximately 16:10).

QUXGA (Quad Ultra Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2400 pixels, assuming a 4:3 aspect ratio.

WQUXGA (Wide Quad Ultra Extended Graphics Array) describes a display standard that supports a resolution of 3840 × 2400 pixels, which provides a 16:10 aspect ratio. This resolution is exactly four times 1920 × 1200 (in pixels). On their XPS 13 2‑in‑1 (7390) laptop computer Dell seems to have referred to this resolution as "UHD+".

Most display cards with a DVI connector are capable of supporting the 3840 × 2400 resolution. However, the maximum refresh rate will be limited by the number of DVI links connected to the monitor. 1, 2, or 4 DVI connectors are used to drive the monitor using various tile configurations. Only the IBM T221-DG5 and IDTech MD22292B5 support the use of dual-link DVI ports through an external converter box. Many systems using these monitors use at least two DVI connectors to send video to the monitor. These DVI connectors can be from the same graphics card, different graphics cards, or even different computers. Motion across the tile boundary(ies) can show tearing if the DVI links are not synchronized. The display panel can be updated at a speed between 0Hz and 41Hz (48Hz for the IBM T221-DG5, -DGP, and IDTech MD22292B5). The refresh rate of the video signal can be higher than 41Hz (or 48Hz) but the monitor will not update the display any faster even if graphics card(s) do so.

In June 2001, WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech. LCD displays that support WQUXGA resolution include: IBM T220, IBM T221, Iiyama AQU5611DTBK, ViewSonic VP2290,Hz and 48Hz, made them less attractive for many applications.

Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios, e.g. Samsung"s various Infinity displays with 37:18 = 18+1/2:9 (Galaxy S8/S9 and A8/A9), i.e. 2960 × 1440 (Quad HD+, WQHD+) or 2220 × 1080 (Full HD+), and 19:9 (S10) aspect ratios: 3040 × 1440 and 2280 × 1080 (S10e).

Some air traffic control monitors use displays with a resolution of 2048 x 2048, with an aspect ratio of 1:1,Eizo is major supplier of panels and monitors in this aspect ratio. Also in 2022, a 16:18 (2560x2880) monitor was released for general productivity work by LG Electronics.

VESA CVT 1.2 from 2003 recommends only 4:3, 16:9 and 16:10 (8:5) aspect ratios for newly introduced display resolutions. The discouraged legacy aspect ratios 5:4 and 15:9 (5:3) are only kept for SXGA and WXGA. VESA CVT 1.2

Bhagat, Hitesh Raj; Bajaj, Karan (26 January 2018). "The 18:9 display dilemma: Will the new smartphone screens make our lives easier or do the opposite?". The Economic Times. Bennett, Coleman & Co. Retrieved 2018-10-01.

"CMO showcases latest "green" and "innovative" LCD panels". Chi Mei Optoelectronics. 24 October 2008. Archived from the original on 2010-03-13. Retrieved 2008-10-26.

Anthony, Sebastian (5 September 2014). "Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display". ExtremeTech. Ziff Davis. Retrieved 2014-10-19.

Shin, Min-Seok; Choi, Jung-Whan; Kim, Yong-Jae; Kim, Kyong-Rok; Lee, Inhwan; Kwon, Oh-Kyong (2007). "Accurate Power Estimation of LCD Panels for Notebook Design of Low-Cost 2.2-inch qVGA LTPS TFT-LCD Panel". SID 2007 Digest. 38 (1): 260–263. doi:10.1889/1.2785279.

"ViewSonic Brings World"s Highest Resolution Monitor To Its LCD Lineup" (Press release). ViewSonic. 25 June 2002. Archived from the original on 2002-12-07. Retrieved 2013-05-22.

wuxga vs lcd display price

If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.

The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays.  We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.

These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.

Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.

IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.

These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.

Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.

Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.

As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.

Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.

Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even better color reproduction, clear image quality, better color gamut, less power consumption when compared to LCD technology.

This kind of touch technology was first introduced by Steve Jobs in the first-generation iPhone. Of course, a TFT LCD display can always meet the basic needs at the most efficient price. An IPS display can make your monitor standing out.

wuxga vs lcd display price

The product is 13.3" Full HD 1080P IPS LCD with Bottom Left connector. If resolution of your existing screen is WXGA HD or WXGA++, and you"re considering to upgrade it to Full HD or IPS, you"d better to think it twice. Regardless how people share their positive experience in upgrading, it is for sure the product will not be working properly when you attempt to replace your existing WXGA HD or WXGA++ screen. It will be ending up with fuzzy, white and dull display on the new Full HD 1080P IPS screen.

wuxga vs lcd display price

A 10.1” TFT display module, featuring WUXGA (1920x1200px) resolution, has been introduced by KOE. The TX26D202VM0BAA has a pixel pitch of 0.11325x0.11325, which equates to a pixel density of 224ppi.

The 16:10 aspect ratio display features IPS technology and a 16.7m colour palette, which enables highly accurate representation of image detail such as colour gradients and authentic colour reproduction. Outstanding optical performance is maintained with a contrast ratio of 800:1 and a brightness specification of 800cd/m², enabling bright, sharp display images.

The compact 10.1” display has mechanical outline dimensions of 232.0x153.0x4.7mm and an active display area of 217.44x135.9mm. A 50-pin, 2-channel LVDS interface supports 8-bit RGB, which enables a colour palette of up to 16.7m colours. The LED backlight is specified at 40,000 hours to half brightness lifetime and features an integrated dimming function. The operating temperature range of the TX26D202VM0BAA module is -30 to +80°C.

Typical applications for the WUXGA display include diagnostic systems, compact broadcast and video monitors, medical imaging, and test and measurement instrumentation. The TX126D202VM0BAA TFT display module is available now.

Mark Stephenson, Technical Marketing Manager, KOE Europe, said "KOE are one of the first LCD manufacturers to introduce compact, high resolution display modules developed specifically for industrial and professional applications. This reflects the trend for higher pixel density and enhanced image clarity found in consumer devices such as monitors, tablets and smartphones. The use of higher resolution displays with greater pixel density enables accurate reproduction and representation of graphical information such as measurement and diagnostic images, and video reproduction."

wuxga vs lcd display price

It is such a waste to only use the LCD for desktop computers. Connecting it up with a laptop PC has many merits for the user and can also bring out the latent power of the laptop.

Note: Below is the translation from the Japanese of the ITmedia article "The dual display in Windows 7 is now even more convenient" published March 1, 2010. Copyright 2011 ITmedia Inc. All Rights Reserved.

Most laptops have a handy "external display output" port. It can be used in the home to transmit videos played on the laptop to a large screen TV or, in the office, to connect up with a projector for presentations. In fact, there must be many users who already use it like this. However, people tend to use just the laptop in their daily routine and there are probably not so many cases where they use the external display output.

A laptop can be put to more effective use if it is connected to an external LCD. The photograph shows an EIZO 23-inch wide-screen LCD connected by HDMI to a Sony VAIO C laptop (VPCCW28FJ/R).

This time we would like to suggest a style that can be used in both the home and the office, where a laptop and stand-alone LCD remain connected. A laptop already has an LCD, but using it with an additional stand-alone LCD offers various merits. Not only does it make the laptop environment more pleasant and convenient, it also expands the potential of the computer itself, for example by making it possible to use it for new purposes.

Even if the LCD is already connected to a desktop computer and being used for something other than the laptop, most monitors nowadays have two or more video inputs and they tend not to use this capability to the full. It is such a waste to let the laptop"s external display output function and the monitor"s video input function remain dormant, so we would like them to be put to effective use. Of course, we would also recommend the introduction of a new LCD to connect to your laptop.

The biggest merit of connecting a laptop with a stand-alone LCD is that it gives you a large screen and high resolution dual display environment. Standard laptop models usually come with a built-in 13-inch to 15-inch wide-screen LCD with a 1280 × 800 dot or 1366 × 768 dot resolution.

This level of resolution is good enough for basic Windows operations, but it goes without saying that a large, high-resolution computer screen is much more user-friendly. Combining a laptop with one of the latest wide-screen monitors enables you to easily construct a large-screen, high-resolution dual display environment. It is a real boon to dramatically boost the screen size and resolution while continuing to use your familiar laptop.

In particular, the increased vertical resolution makes applications such as web browsers and document display and editing far easier to use. For example, you can do things like check things with the web browser, refer to pdf files, organize data using word processing or presentation software, and create spread sheets and documents without having to change windows.

Another plus is that you can create the luxury of a "watching while" environment where you run the web browser, for instance, on the laptop"s built-in LCD and watch the video content on the large screen of the external monitor. This can be really useful for hobbies too. For example, while playing a game on the large external LCD screen you can check out strategies on websites, post information on a BBS or communicate with other users.

You can smoothly use multiple applications at the same time in the large workspace provided by a dual display. The photograph shows an EIZO 24.1-inch wide-screen LCD, the FlexScan SX2462W connected to a VAIO C. By supplementing the laptop"s built-in 1366 × 768 dot 14-inch wide-screen LCD with a 1920 × 1200 dot 24.1-inch wide-screen, it is possible to show more data at a time, a huge boost to work efficiency.

With two screens it"s easy to have full-screen display of the video content on one screen while you operate the computer on the other. The photograph shows an EIZO 23-inch wide-screen LCD monitor connected to a VAIO C. The VAIO C has HDMI output and the LCD monitor has HDMI input so visuals and sound can be transmitted by a single HDMI cable. The LCD monitor has full HD screen resolution (1920 × 1080 dot), making it the perfect match for HD video content.

At the office, it is very helpful for presentations to use "clone view" for the laptop"s built-in LCD and the external LCD screen. Clone view means showing exactly the same content on two display screens. It is normally set by a graphics driver function.

When holding small meetings it is certainly very convenient to be able to offer simple explanations of the presentation materials displayed on the external LCD, rather than having to ready a projector. Being able to explain about what is displayed on the screen means fewer documents to distribute, helping your office to "go paperless", which can only be a good thing.

We would like to point out here that you should check in advance the maximum resolution that the laptop"s external display output can handle. This can be found in documents such as the laptop"s specifications chart and support information. This is because, although most laptops can handle output up to 1920 × 1080 dots or 1920 × 1200 dots, some slightly older computers have an upper limit of 1680 × 1050 dots or 1600 × 1200 dots.

Even if the upper limit is 1680 × 1050 dots, the LCD can still display the data if its own resolution is 1680 × 1050 dots or higher. In such cases, it is better to use a monitor that offers dot-by-dot display, which displays the input resolution as it is, or enlarged display, which maintains the screen"s aspect ratio as it is. You do not need to worry because EIZO wide-screen LCDs can handle such display methods (although in some cases they do not function properly depending on the laptop computer or input resolution).

This is an example of a low-resolution display on the 1920 × 1200 dot display SX2462W. Since dot-by-dot display outputs the physical "1 dot" of the LCD and the input resolution "1 dot" without enlargement or reduction, it is shown small in the center of the screen (photo on the left). The display is a little blurred if it is enlarged while maintaining the aspect ratio, but this method is suitable for displaying images as they are shown large with low resolution to make the most of the screen size (photo on the right). Many monitors that cannot handle such display methods enlarge the display to full screen regardless of the input resolution. In such cases you have to be careful as the aspect ratio of the image is altered (for example, people appear to be thinner or fatter).

It is easy to set up a dual display in Windows 7. A menu is displayed when you right-click on the desktop. From "Screen resolution" it is possible to detect and align the external LCD, and set details such as resolution, display method and which will be the main display screen.

The "Screen resolution" menu. If the external LCD is not automatically recognized, click on "Detect". After the monitor has been recognized, you can select the display mode from the "Multiple displays" drop-down menu. Select "Extend display screen" to make the laptop screen and the external LCD into a single display screen (dual display).

Select "Duplicate display screen" from the "Multiple displays" drop-down menu to display the same content on the laptop screen and the external LCD screen (clone view). With this drop-down menu you can also set it to display video on one of the LCDs.

You can also call up a settings menu to decide the display method for a projector or external display by pressing the "Windows" and "P" keys. This is a tip worth remembering as selecting "Extension" for dual display or "Duplicate" for clone view here allows you to switch swiftly between them as necessary.

The menu launched by simultaneously pressing the "Windows" and "P" keys. You can easily switch between display methods such as dual display or clone view.

It is also worth noting that Windows 7 has added functions so that dual display can be used more effectively. An active window can be moved to the screen of another LCD by simultaneously pushing "Windows" + "Shift" + "→" (or "←"). It is also possible to maximize the window by pressing "Windows" + "↑", minimize it by pressing "Windows" + "↓", and shift it to the left or right of each screen by pressing "Windows" + "→" (or "←"). Making good use of these shortcuts should enable the efficient placing of windows in the two screens.

We would recommend a wide-screen model with a screen resolution of 1920 × 1080 dots (Full HD) or 1920 × 1200 dots (WUXGA) as the LCD to connect to a laptop, so that you can make full use of the advantages of dual display. EIZO has an extensive line up of wide-screen LCDs which can offer many benefits, in addition to the merits of a large screen and high resolution, when used with a laptop for dual display.

One such feature is the flexible stand adjustment. For example, the tilt, swivel and height can be adjusted for the FlexScan SX2462W, a 24.1-inch WUXGA model, and the FlexScan EV2333, a 23-inch full HD model. This enables users to adjust the screen position for easy viewing according to their own posture, which not only boosts work efficiency but also reduces physical strain.

The SX2462W is also equipped with vertical display function, turning the screen through 90 degrees. Vertical display is really handy when viewing elongated documents, graphics or web pages. In addition, when used as a standard horizontal screen, a 24.1 wide-screen, with its 518.4 × 324.0 mm display area, can display two A4 sheets, in other words one A3 (420 × 297 mm) in actual size. As well as being very useful in areas such as graphics or desk top publishing, this is also bound to come in handy when checking large business or accounting documents.

Setting the connected monitor into a vertical position is very convenient when displaying elongated web pages and documents or photographs that were taken vertically

With a 24.1 inch wide-screen like the SX2462W, an A3 sheet (two A4 sheets side by side) can be viewed in actual size, particularly effective for paper-based creative work ITmedia LCD Course II, Lesson 3: Which is better, 16:10 or 16:9 ? – "Screen size / resolution / aspect ratio"

We must not forget that EIZO"s wide-screen LCDs have non-glare screens (processed to reduce ambient light reflection). Nowadays the trend is for laptops to have an LCD with glare (glossy) surface treatment. While these can display images in bright color, reflected ambient light can sometimes be distracting.

A laptop screen is not so large and adjusting its angle can avoid the reflection of lights and so on, however it is not so easy with the large screen of an external LCD. When it comes to the large screen of an LCD in habitual use, a non-glare type that is not reflective is probably easier to see, as well as being kinder on the eyes. A large screen, high resolution and non-glare ensure that you can comfortably continue viewing over a prolonged period of time.

The surface treatment of an LCD makes a difference to the background reflection. Glare panels do not diffuse background light, making it easier to achieve high color purity, but easily reflect the user or lights (photo on the left). If the lights are similarly trained on a non-glare panel they do not have much effect, only appearing as a fuzzy brightness (photo on the right).

Another distinctive feature of EIZO wide-screen LCDs is a commitment to energy saving. They incorporate various power saving features that support "EcoView". A pivotal feature is the "EcoView Sense" adopted in the FlexScan EV series, such as the EV2333W.

This is the motion sensor on the front of the LCD. It constantly monitors the user"s movements to automatically take finely-tuned power saving measures. To be more precise, if the user"s presence is not detected for a specified period of time, for example if he leaves his seat, the monitor automatically switches to power save mode, and then automatically switches back when the user"s presence is detected again.

Other features include "Auto EcoView", which automatically optimizes the brightness of the LCD based on ambient lighting, and "EcoView Index", which displays a meter on the screen showing how much power is being saved. All these features can be expected to have a strong energy saving effect and to boost the user"s awareness of power saving, making them particularly useful in the office.

A standard laptop computer switches to sleep mode if the built-in LCD is closed while it is running but, if this function is turned off, a laptop can be treated as a "small desktop computer."

It can be set to use only the connected external LCD and not to react when the laptop"s built-in LCD is closed. The transformation into a small desktop PC is complete if you add a keyboard and mouse connected to the laptop via USB ports, for example. The OS is still running even though the laptop"s built-in LCD is closed, so you can carry out normal operations using the external keyboard and mouse, and also use the laptop"s built-in optical drives.

The idea is to use a large screen, high resolution external LCD at home or in the office, and to use the laptop"s built-in LCD as usual for mobile purposes. This helps to boost the longevity of the laptop"s built-in LCD and many people do use their laptop in this way. If you feel reluctant to use a dual display environment, where the screen is split in two, why not give this a try?

Select "Only show the desktop on 2" from the "Multiple displays" list in the "Screen resolution" menu. The laptop"s built-in LCD will be switched off and the external LCD will become the main display.

By making this simple setting your laptop can be used as a space saving desktop computer. Another plus is that the laptop"s built-in LCD will last longer.

Recently some high-end laptop computers, such as the Sony VAIO F, are insisting on good display quality for their LCDs. However, a typical laptop"s built-in LCD does not have as good image quality as a stand-alone LCD. This is only natural since the costs allowed for display quality are completely different for an LCD incorporated into the PC as one of its parts and a specialized LCD.

However, by using an EIZO wide-screen LCD a laptop user can still fully enjoy such benefits of a stand-alone high-quality LCD as excellent color reproduction, a wide viewing angle, more even display and a wealth of items that can be adjusted to improve image quality. This is a crucial point for people who use their computer for photographs and videos in particular.

EIZO"s wide-screen LCDs emphasize color reproduction, and the coloration in sRGB mode has a high degree of accuracy. The standard color gamut used in PC environments and Internet content is sRGB, so you need have no worries about viewing or editing videos and photographs. They can also display images on web pages, such as products in online shops or goods for sale in online auctions, in colors that are very close to the real thing. (This is also influenced by how the seller took the photographs and processed the images, so we cannot say that the colors will always be accurate.)

An example of sRGB color gamut image data displayed on a standard laptop and on the SX2462W. The SX2462W"s reproducibility of sRGB mode is of a considerably high standard but the color balance on the laptop has been lost. This would make it difficult to perform rigorous photo retouching.

In this case, if the image is edited on the external LCD with its high color reproducibility and the many tool palettes in the application are grouped in the laptop"s built-in LCD, there is less need to display or hide the tool palettes or to switch back and forth, and the image data to be edited can be displayed in a large form, making for more efficient work.

In this case, if the image is edited on the external LCD with its high color reproducibility and the many tool palettes in the application are grouped in the laptop"s built-in LCD, there is less need to display or hide the tool palettes or to switch back and forth, and the image data to be edited can be displayed in a large form, making for more efficient work.

When doing things like photo retouching, using software where there is a lot of switching between tool palettes it is very handy to display the image data to be edited on the external LCD with its high color reproducibility, and to gather the palette tools to be used on the laptop"s built-in LCD.

Going back to the subject of laptop computers, it is not going too far to say that applications and functions are being spoiled in laptops whose built-in LCD"s image quality is not too good. Connecting a laptop to a monitor with high image quality dispels any concerns about work that deals with colors and also helps to bring out the laptop"s potential.

Combining an EIZO wide-screen LCD with a laptop computer makes viewing videos and images even more fun. Just being able to see them on a large screen is a pleasure, but what makes it even better is that our LCDs are equipped with Fine Contrast, the optimum image quality mode for video and visuals. You can also use the Custom mode to create the image quality you prefer.

We expect that you now understand how displaying screens from a laptop computer on a stand-alone LCD can create a very pleasant environment. It feels as if your everyday laptop has been transformed into a completely different desktop machine. Even if you only use laptop computers, it is definitely worthwhile to add a stand-alone LCD.

When choosing the type of LCD the most important consideration is to choose one with overall high quality. When it comes to that, we can recommend EIZO wide-screen LCDs to a broad range of laptop users. In addition to their high image quality, EIZO wide-screen LCD are built with careful attention to detail, including non-glare screens, versatile stand features, dot-by-dot capability, abundant image quality modes, and our proprietary eco-functions. We want you to make full use of your beloved laptop computer along with an EIZO wide-screen LCD.

This time we have spoken about how an external LCD can be connected to a laptop computer, but if your main machine is a desktop computer then you probably already have a LCD.

In which case, why not consider adding a full HD (1920 × 1080 dot) or WUXGA (1920 × 1200 dot) wide-screen LCD and creating a more advanced dual display environment to further enhance your computer"s usability.

Recently many computers can handle dual display output with their chipset integrated graphics function, and nearly all of the