hd vs lcd display price
Then there are the technical terms to deal with, such as LED TV, LCD TV, QLED TV, UHD TV, OLED TV, and more. You might feel like you need to be a tech pro just to watch your favourite TV show in the evening or enjoy a game with your friend.
First, an important thing to understand is that the LED (Light Emitting Diode) monitor is an improvised version of the LCD (Liquid Crystal Display). This is why all LED monitor is LCD in nature, but not all LCDs are LED monitors.
LCD technology revolutionized monitors by using cold cathode fluorescent lamps for backlighting to create the picture displayed on the screen. A cold cathode fluorescent lamp (CCFL) is a tiny fluorescent bulb. In the context of this article, LCDs refer to this traditional type of CCFL LCD TVs.
The quality of direct-view LED screens is measured by pixel pitch. The pixel pitch is the distance between two adjacent LEDs on the display. The smaller the pixel pitch, the better the quality of the image.
Since LEDs replace fluorescent bulbs with light-emitting diodes, LED TVs are more energy-efficient than LCDs. A 32-inch LED TV screen consumes 10 watts less power than the same size LCD screen. The difference in power consumption increases as the size of the display increases.
Light-emitting diodes are considerably smaller than fluorescent lamps used in LCD monitors. Fluorescent lamps have a considerable thickness, but the thickness of diodes is next to none. Moreover, countless diodes are assembled in the same plane, so the thickness of the array isn’t increased no matter how many diodes are present.
Edge-lit LEDs have a slight drawback in viewing angle compared to LCDs, because of the position of the light source. However, direct-view LEDs offer a better angle for viewing than LCDs as the light source is evenly spread on the screen.
Since LED displays use full-array LED backlighting rather than one big backlight, LED TVs offer significantly better contrast than LCDs. LCD backlighting technology only shows white and black, but LED backlighting can emit the entire RGB spectrum, thereby providing a deeper RGB contrast.
If you wonder which display will last longer, this debate is also won by LED displays. LED televisions have a longer lifespan of 100,000 hours on average, compared to 50,000 hours provided by LCD televisions.
An LED display provides the option to dim the backlight, along with other eye comfort features. Not only that, it provides a wider viewing angle without harming image quality. Therefore, an LED display is far better for your eyes than an LCD.
In an LED display, a lot of smaller diodes are used and if a diode is damaged, it can be replaced. In an LCD, you will need to replace the entire bulb in case of damage. Therefore, an LED display is easier and cheaper to maintain than an LCD.
Since LEDs are a better and newer technology, the price of an LED display is higher than an LCD. However, this is only when we are considering the purchase cost.
The picture quality of an LED display is far better than an LCD. Due to modular light-emitting diodes, an LED screen produces better control over the contrast, rendering a clear picture. Also, LED provides RGB contrast, which can show truer blacks and truer whites.
Not to forget, they provide a shorter response time as well. Both of these factors result inLED displays having a better picture quality compared to LCD displays.
Since LED displays are considerably thinner than LCDs, they weigh considerably less. On average, an LED screen weighs about half of an LCD screen of the same size.
As you might have noticed by now, LED wins the battle with LCD without any doubt. This is because LED displays have an advantage in all the factors that matter when considering a purchase, except price.
They are more attractive too. With the increasing shortage of space in new residential complexes, what better solution than an ultra-thin LED display giving a cinematic experience in the comfort of your home.
LED screens are the first choice among the public today, across generations. All are opting to switch to LED from LCD to make their lives more enjoyable and better.
There are plenty of new and confusing terms facing TV shoppers today, but when it comes down to the screen technology itself, there are only two: Nearly every TV sold today is either LCD or OLED.
The biggest between the two is in how they work. With OLED, each pixel provides its own illumination so there"s no separate backlight. With an LCD TV, all of the pixels are illuminated by an LED backlight. That difference leads to all kinds of picture quality effects, some of which favor LCD, but most of which benefit OLED.
LCDs are made by a number of companies across Asia. All current OLED TVs are built by LG Display, though companies like Sony and Vizio buy OLED panels from LG and then use their own electronics and aesthetic design.
So which one is better? Read on for their strengths and weaknesses. In general we"ll be comparing OLED to the best (read: most expensive) LCD has to offer, mainly because there"s no such thing as a cheap OLED TV (yet).
The better LCDs have local dimming, where parts of the screen can dim independently of others. This isn"t quite as good as per-pixel control because the black areas still aren"t absolutely black, but it"s better than nothing. The best LCDs have full-array local dimming, which provides even finer control over the contrast of what"s onscreen -- but even they can suffer from "blooming," where a bright area spoils the black of an adjacent dark area.
Here"s where it comes together. Contrast ratio is the difference between the brightest and the darkest a TV can be. OLED is the winner here because it can get extremely bright, plus it can produce absolute black with no blooming. It has the best contrast ratio of any modern display.
Contrast ratio is the most important aspect of picture quality. A high contrast-ratio display will look more realistic than one with a lower contrast ratio.
One of the main downsides of LCD TVs is a change in picture quality if you sit away from dead center (as in, off to the sides). How much this matters to you certainly depends on your seating arrangement, but also on how much you love your loved ones.
A few LCDs use in-plane switching (IPS) panels, which have better off-axis picture quality than other kinds of LCDs, but don"t look as good as other LCDs straight on (primarily due to a lower contrast ratio).
OLED doesn"t have the off-axis issue LCDs have; its image looks basically the same, even from extreme angles. So if you have a wide seating area, OLED is the better option.
Nearly all current TVs are HDR compatible, but that"s not the entire story. Just because a TV claims HDR compatibility doesn"t mean it can accurately display HDR content. All OLED TVs have the dynamic range to take advantage of HDR, but lower-priced LCDs, especially those without local-dimming backlights, do not. So if you want to see HDR content it all its dynamic, vibrant beauty, go for OLED or an LCD with local dimming.
In our tests comparing the best new OLED and LCD TVs with HDR games and movies, OLED usually looks better. Its superior contrast and lack of blooming win the day despite LCD"s brightness advantage. In other words LCD TVs can get brighter, especially in full-screen bright scenes and HDR highlights, but none of them can control that illumination as precisely as an OLED TV.
The energy consumption of LCD varies depending on the backlight setting. The lower the backlight, the lower the power consumption. A basic LED LCD with its backlight set low will draw less power than OLED.
LG has said their OLED TVs have a lifespan of 100,000 hours to half brightness, a figure that"s similar to LED LCDs. Generally speaking, all modern TVs are quite reliable.
Does that mean your new LCD or OLED will last for several decades like your parent"s last CRT (like the one pictured). Probably not, but then, why would you want it to? A 42-inch flat panel cost $14,000 in the late 90"s, and now a 65-inch TV with more than 16x the resolution and a million times better contrast ratio costs $1,400. Which is to say, by the time you"ll want/need to replace it, there will be something even better than what"s available now, for less money.
OLED TVs are available in sizes from 48 to 88 inches, but LCD TVs come in smaller and larger sizes than that -- with many more choices in between -- so LCD wins. At the high end of the size scale, however, the biggest "TVs" don"t use either technology.
If you want something even brighter, and don"t mind spending a literal fortune to get it, Samsung, Sony, and LG all sell direct-view LED displays. In most cases these are
You can get 4K resolution, 50-inch LCDs for around $400 -- or half that on sale. It"s going to be a long time before OLEDs are that price, but they have come down considerably.
LCD dominates the market because it"s cheap to manufacture and delivers good enough picture quality for just about everybody. But according to reviews at CNET and elsewhere, OLED wins for overall picture quality, largely due to the incredible contrast ratio. The price difference isn"t as severe as it used to be, and in the mid- to high-end of the market, there are lots of options.
LCD stands for Liquid Crystal Displays. Liquid crystal displays, or LCDs, are a type of screen that is superior to the cathode ray tubes that were once used in television sets. LCDs are used in a variety of devices, including televisions, smartphones, laptops, and more.
LCDs have several flaws, which is one of the most significant issues they face. However, stuck or dead pixels can occur on these panels. HDTV stands for High Definition Television.
HDTVs, or High Definition Televisions, are the next generation of the decades-old SDTV standard. Users of HDTVs benefit from larger displays and higher-resolution images. LCD televisions are still more popular than HDTVs.
The main difference between LCD and HDTV is that Liquid Crystal Displays is the abbreviation for this technology. Liquid crystal displays, or LCDs, are a type of screen that is superior to the cathode ray tubes that were formerly used in television sets. On the contrary, High Definition Television is abbreviated as HDTV. HDTVs, or High Definition Televisions, are the next generation of the long-established SDTV standard.
LCDs have smaller screen sizes and fine images with a range of resolutions from normal to high. In comparison to HDTV, LCDs gained popularity much faster. In terms of mobile phones and other handheld devices that cannot employ CRT technology, their use is unrivalled. LCDs are expensive to produce. Hence they cost more in any product that uses them. As a result, LCDs are extremely costly to produce, making gadgets much more so.
HDTVs may or may not be manufactured with LCD. Depending on the type of display used, the price of the appliances will be higher if they use LCDs and lower if they don’t. If the screen size is less than 40 inches, HDTVs typically use LCDs; otherwise, plasma technology is used for larger screens. “Burn-ins” are a common problem with HDTVs with larger screens or plasma technology build-up. Plasma has difficulty with this.
Liquid Crystal Displays (LCD) is an abbreviation for liquid crystal displays. Liquid crystal displays, or LCDs, are a type of screen that is far superior to the cathode ray tubes that were formerly used in television sets. LCDs have smaller panels and fine images with normal to high resolution. In comparison to HDTV, LCDs grew in popularity much faster.
In terms of mobile phones and other handheld devices where CRT technology is not available, their use is unrivalled. LCDs have a high manufacturing cost. Hence they are more expensive in whatever products they are used in. As a result, LCDs are prohibitively expensive to produce, making the appliances prohibitively expensive as well.
LCDs, or Liquid Crystal Displays, are used not only in television sets but also in mobile phones, computers, and a variety of other devices. LCDs have several flaws, which is one of the most serious issues they face. However, these screens are occasionally plagued with stuck or dead pixels.
HDTV is an abbreviation for High Definition Television. High Definition Televisions, or HDTVs, are the next generation of the SDTV standard, which has been in use for decades. HDTVs give their customers larger monitors and higher-resolution images.
HDTVs are still not as common as LCDs. LCD may or may not be used in the production of HDTVs. Depending on the type of display used, the cost of the appliances will be higher if they use LCDs and lower if they don’t.
If the screen size is less than 40 inches, LCDs are used; otherwise, plasma technology is used for larger screen television sets. “Burn-ins” are common on HDTVs with larger displays or that have a build-up of plasma technology. This is a problem that plasma has a lot of.
Liquid crystal displays or LCD belongs to a family of screens, which are much better and have the edge over cathode ray tubes that were used with the TV sets in old times. On the other hand, HDTV or High Definition TVs are kinds of the next version of the SDTV standard ones which have been in use for decades.
LCDs provide comparatively smaller displays, fine images of normal to high resolution. On the other hand, HDTVs provide their users with bigger displays, better images of higher resolution.
LCDs gained popularity way ahead as compared to HDTV. Their use is unparalleled in terms of mobile phones and other handheld devices where CRT technology can not be used. On the other hand, HDTVs is still not as popular as LCDs are.
The cost of manufacture of LCDs are high, thus in whichever devices LCDs are used are cost higher. Thus, LCDs are highly expensive to make, which makes the appliances expensive as well. On the other hand, the manufacture of HDTVs may use LCD or may not. If they use LCDs, then the cost of the appliances will be more, otherwise less, depending upon the type of display used.
The use of LCDs or Liquid Crystal Displays can be seen not in the case of television sets only, but also in the case of mobile phones, computers and many more. On the other hand, HDTVs generally use LCDs if the screen size is below 40 inches. Otherwise, it uses plasma technology for bigger screen television sets.
One of the main problems suffered by LCDs is that they possess inherent defects. However, these displays sometimes also suffer from stuck or dead pixels. On the other hand, HDTVs with bigger screens or having a build-up of plasma technology usually suffers from “burn-ins”. This is a problem that is prominent with plasma.
LCDs have smaller displays and fine images with a range of resolutions from normal to high. When opposed to HDTV, LCDs grew in popularity far faster. They are unrivalled in terms of mobile phones and other handheld gadgets that cannot employ CRT technology. LCDs have a high manufacturing cost. Hence they cost more in whatever products they are used in.
As a result, LCDs are extremely expensive to produce, making the appliances even more so. LCDs, or Liquid Crystal Displays, are used in a variety of applications, including televisions, mobile phones, computers, and more. LCDs have intrinsic flaws, which is one of their key issues. These displays, however, are sometimes plagued with stuck or dead pixels.
HDTVs give customers larger monitors and higher-resolution images. HDTVs are still not as common as LCD TVs. LCD may or may not be used in the manufacture of HDTVs. Depending on the type of display used, the cost of the appliances will be higher if they use LCDs and lower if they don’t.
If the screen size is less than 40 inches, HDTVs typically use LCDs; otherwise, plasma technology is used for larger screen television sets. “Burn-ins” are common on HDTVs with larger panels or plasma technology build-up. This is a common issue with plasma.
But how do you know which technology is right for your project? As we look at digital signage solutions, there’s one question that always seems to pop up. What’s the difference between Direct View LED and LCD displays?
LED and LCD displays are both good technologies, and which is better depends on your application. LCD is a liquid crystal display. Commercial LED displays are a grid or group of Light-Emitting Diodes or LEDs that make up the image itself. To make things even more confusing commercial, or Direct-View LEDs, are actually very different than their consumer LED cousins. Here are the basics to help you understand what’s the difference between LED and LCD displays and which is better for your project.
LCD displays are an option for either indoor or outdoor signage. The LCD screen is a series of layers, like an onion. LCD displays have lighting on the base layer. Then comes the LCD sheet, which is a liquid housed between two plates. On top is a protective glass layer. If the display is meant for the outdoors, a final coating is added to protect against the elements- whether they’re natural, like weather, or human-caused, like vandalism.
Here’s where the difference starts to get muddy. LCD screens can be back-lit by LEDs. Meaning the lighting layer consists of many little LEDs that light the LCD sheet from behind. In the consumer world, these are marketed as LED screens. While accurate, it’s not the same as a commercial LED screen. When we talk about commercial LED’s we’re talking about Direct View LEDs, but we’ll get into that more later.
LCD displays come in Full-HD (1080p) or Ultra-HD (4K) resolution. 4K resolution has four times the pixels as 1080p. What does this mean in the real world? At about thirteen feet away from a 98 inch 1080p display, you can begin to see pixels. With 4K resolution, this decreases to seven feet before seeing pixels.
A Direct View LED display is made up of different panels. These panels can be grouped into various shapes providing flexibility and scalability. Unlike LCD displays, Direct View LED video walls don’t have bezel lines between each panel. Various Direct View LEDs feature bezel-less panels which are placed together like building blocks. This LED technology creates a seamless viewing experience even for large-scale video walls.
Sizes:LCD Displays come in sizes provided by the manufacturer and aren’t that easy to customize. Some manufacturers have stretch sizes, but most of the options are at a 16x9 aspect ratio.
Resolution: LCD Displays typically have a higher resolution than LED screens. So, a customer can view the screen at a closer distance without seeing the pixels.
Bezels:If you’re looking for a video wall option, LCD displays do have bezels around each display. Conversely, some Direct View LEDs don’t have any visible bezels, so there will be no line breaks in your content.
Brightness:Direct View LEDs can range from 800–8,500 nits, which exceeds the brightness of most LCDs. Brightness may or may not be an issue, depending on if the display will be indoors or outdoors.
These basic features outline the difference between commercial LED vs. LCD displays. Which is better? It’s a question that can’t be answered without context. The specifics around your project and what you’re trying to achieve will define which technology should be used. Work with an integrator that understands both technologies and can make a recommendation based upon your project. There’s no one-size-fits all solution, but developing a better understanding of commercial LED vs. LCD displays will help you formulate the right questions to ask an integration partner.
Even though some say the picture quality of an LED TV is better, there is no straight answer for which has better picture quality since both TVs use the same kind of screen. For instance, a higher-end LCD TV can have a better quality than a low-end LED TV, but if you look at high-end models of either TV, the picture quality will be comparable.
LED TVs use energy-efficient light emitting diodes (LED) for backlighting. These consume less power than cold cathode fluorescent lamps (CCFL) used in traditional LCD televisions. Power savings are typically 20-30%.
Flat Screen LCDs, about an inch or two thick are more expensive, but also more popular because of their sleek look and the flexible options of standing on a surface or mounting on a wall.
Front projection LCDs or projectors, which project an image onto the front of the screen. The TV itself is just a box installed anywhere in a room, which projects the image onto a flat screen hung on the wall as large as 300 inches.
Rear projection LCDs, where the image is sent from the rear of the TV to the screen in front. Rear projection LCDs are wide, heavy and only available in large sizes (60" and up).
Shopping for a new TV is like wading through a never-ending pool of tech jargon, display terminology, and head-spinning acronyms. It was one thing when 4K resolution landed in the homes of consumers, with TV brands touting the new UHD viewing spec as a major marketing grab. But over the last several years, the plot has only continued to thicken when it comes to three- and four-letter acronyms with the introduction of state-of-the-art lighting and screen technology. But between OLEDs, QLEDs, mini-LEDs, and now QD-OLEDs, there’s one battle of words that rests at the core of TV vocabulary: LED versus LCD.
Despite having a different acronym, LED TV is just a specific type of LCD TV, which uses a liquid crystal display (LCD) panel to control where light is displayed on your screen. These panels are typically composed of two sheets of polarizing material with a liquid crystal solution between them. When an electric current passes through the liquid, it causes the crystals to align, so that light can (or can’t) pass through. Think of it as a shutter, either allowing light to pass through or blocking it out.
Since both LED and LCD TVs are based around LCD technology, the question remains: what is the difference? Actually, it’s about what the difference was. Older LCD TVs used cold cathode fluorescent lamps (CCFLs) to provide lighting, whereas LED LCD TVs used an array of smaller, more efficient light-emitting diodes (LEDs) to illuminate the screen.
Since the technology is better, all LCD TVs now use LED lights and are colloquially considered LED TVs. For those interested, we’ll go deeper into backlighting below, or you can move onto the Local Dimming section.
Three basic illumination forms have been used in LCD TVs: CCFL backlighting, full-array LED backlighting, and LED edge lighting. Each of these illumination technologies is different from one another in important ways. Let’s dig into each.
CCFL backlighting is an older, now-abandoned form of display technology in which a series of cold cathode lamps sit across the inside of the TV behind the LCD. The lights illuminate the crystals fairly evenly, which means all regions of the picture will have similar brightness levels. This affects some aspects of picture quality, which we discuss in more detail below. Since CCFLs are larger than LED arrays, CCFL-based LCD TVs are thicker than LED-backlit LCD TVs.
Full-array backlighting swaps the outdated CCFLs for an array of LEDs spanning the back of the screen, comprising zones of LEDs that can be lit or dimmed in a process called local dimming. TVs using full-array LED backlighting to make up a healthy chunk of the high-end LED TV market, and with good reason — with more precise and even illumination, they can create better picture quality than CCFL LCD TVs were ever able to achieve, with better energy efficiency to boot.
Another form of LCD screen illumination is LED edge lighting. As the name implies, edge-lit TVs have LEDs along the edges of a screen. There are a few different configurations, including LEDs along just the bottom, LEDs on the top and bottom, LEDs left and right, and LEDs along all four edges. These different configurations result in picture quality differences, but the overall brightness capabilities still exceed what CCFL LCD TVs could achieve. While there are some drawbacks to edge lighting compared to full-array or direct backlight displays, the upshot is edge lighting that allows manufacturers to make thinner TVs that cost less to manufacture.
To better close the local-dimming quality gap between edge-lit TVs and full-array back-lit TVs, manufacturers like Sony and Samsung developed their own advanced edge lighting forms. Sony’s technology is known as “Slim Backlight Master Drive,” while Samsung has “Infinite Array” employed in its line of QLED TVs. These keep the slim form factor achievable through edge-lit design and local dimming quality more on par with full-array backlighting.
Local dimming is a feature of LED LCD TVs wherein the LED light source behind the LCD is dimmed and illuminated to match what the picture demands. LCDs can’t completely prevent light from passing through, even during dark scenes, so dimming the light source itself aids in creating deeper blacks and more impressive contrast in the picture. This is accomplished by selectively dimming the LEDs when that particular part of the picture — or region — is intended to be dark.
Local dimming helps LED/LCD TVs more closely match the quality of modern OLED displays, which feature better contrast levels by their nature — something CCFL LCD TVs couldn’t do. The quality of local dimming varies depending on which type of backlighting your LCD uses, how many individual zones of backlighting are employed, and the quality of the processing. Here’s an overview of how effective local dimming is on each type of LCD TV.
TVs with full-array backlighting have the most accurate local dimming and therefore tend to offer the best contrast. Since an array of LEDs spans the entire back of the LCD screen, regions can generally be dimmed with more finesse than on edge-lit TVs, and brightness tends to be uniform across the entire screen. Hisense’s impressive U7G TVs are great examples of relatively affordable models that use multiple-zone, full-array backlighting with local dimming.
“Direct local dimming” is essentially the same thing as full-array dimming, just with fewer LEDs spread further apart in the array. However, it’s worth noting that many manufacturers do not differentiate “direct local dimming” from full-array dimming as two separate forms of local dimming. We still feel it’s important to note the difference, as fewer, further-spaced LEDs will not have the same accuracy and consistency as full-array displays.
Because edge lighting employs LEDs positioned on the edge or edges of the screen to project light across the back of the LCD screen, as opposed to coming from directly behind it, it can result in very subtle blocks or bands of lighter pixels within or around areas that should be dark. The local dimming of edge-lit TVs can sometimes result in some murkiness in dark areas compared with full-array LED TVs. It should also be noted that not all LED edge-lit TVs offer local dimming, which is why it is not uncommon to see glowing strips of light at the edges of a TV and less brightness toward the center of the screen.
Since CCFL backlit TVs do not use LEDs, models with this lighting style do not have dimming abilities. Instead, the LCD panel of CCFL LCDs is constantly and evenly illuminated, making a noticeable difference in picture quality compared to LED LCDs. This is especially noticeable in scenes with high contrast, as the dark portions of the picture may appear too bright or washed out. When watching in a well-lit room, it’s easier to ignore or miss the difference, but in a dark room, it will be, well, glaring.
As if it wasn’t already confusing enough, once you begin exploring the world of modern display technology, new acronyms crop up. The two you’ll most commonly find are OLED and QLED.
An OLED display uses a panel of pixel-sized organic compounds that respond to electricity. Since each tiny pixel (millions of which are present in modern displays) can be turned on or off individually, OLED displays are called “emissive” displays (meaning they require no backlight). They offer incredibly deep contrast ratios and better per-pixel accuracy than any other display type on the market.
Because they don’t require a separate light source, OLED displays are also amazingly thin — often just a few millimeters. OLED panels are often found on high-end TVs in place of LED/LCD technology, but that doesn’t mean that LED/LCDs aren’t without their own premium technology.
QLED is a premium tier of LED/LCD TVs from Samsung. Unlike OLED displays, QLED is not a so-called emissive display technology (lights still illuminate QLED pixels from behind). However, QLED TVs feature an updated illumination technology over regular LED LCDs in the form of Quantum Dot material (hence the “Q” in QLED), which raises overall efficiency and brightness. This translates to better, brighter grayscale and color and enhances HDR (High Dynamic Range) abilities.
For a further description of QLED and its features, read our list of the best TVs you can buy. The article further compares the qualities of both QLED and OLED TV; however, we also recommend checking outfor a side-by-side look at these two top-notch technologies.
There are more even displays to become familiar with, too, including microLED and Mini-LED, which are lining up to be the latest head-to-head TV technologies. Consider checking out how the two features compare to current tech leaders in
High Definition TV is the next step for the ageing SDTV standard that has been in place for decades. It gives considerably better images, especially with bigger displays, by using a higher resolution if the video signal is also compatible. Liquid Crystal Displays are a class of screens that offers significant advantages over the older cathode ray tubes that were predominanly in use with TV sets.
LCDs developed separately from HDTV and achieved mainstream acceptance way ahead of the HDTV technology did. LCDs gained early prominence in handheld devices and mobile phones where CRT technology is simply not an option. The development of colored and bigger LCD screens made it a viable replacement for CRT monitors in computers.
In TVs, the application of LCDs was greatly hampered by a few technological limitations like the size and inherent defects. LCDs tended to be very small or very expensive at first due to the high cost of manufacturing the screens themselves. It also suffered from dead or stuck pixels, a problem that is unique to LCDs. But as the technology developed and production costs went down, LCDs appeared as a good option even for TV applications due to the high native resolutions that it can achieve.
With that said, HDTVs are not exclusively tied in with LCDs, there are also other display technologies in use with HDTV. One of these is plasma, which is excellent for larger displays where the use of LCDs is simply not practical or possible. Screens of over 40 inches are usually the territory of plasma technology as building LCD screens of this size is not only expensive but also very difficult to do, although advances in technology means that LCDs are already beginning to get bigger and bigger. LCDs are still the best choice for HDTV viewing when you can afford it. It doesn’t suffer from burn-ins which is the most prominent problem with plasma. Most of the larger LCD screens already have a native resolution of 1920 x 1080 which is also the resolution needed for 1080i and 1080p HD signals.
There are tons of screens available in the market today. However, LED screens and LCD screens are by far the most popular. But what is the difference between LCD vs. LED screens?
LED screens feature light-emitting diodes lights installed in the screens. The screens can be volatile or static, with some of them only responding to touch. Other LED screens will display pictures even when turned off.
Some of the benefits of LED monitors nclude enhanced picture quality and local dimming. Local dimming helps to dim down certain areas of your TV"s backlight. This helps to make the screen appear darker and better in displaying blacks.
The main difference between LCD and LED displays is that the LCD screens come with a layer of liquid crystals. The liquid crystal layer is put between two plates. Images are made when light passes through parts of the liquid crystal.
The liquid crystal part either block or enhance an area which helps to create the image. Most LCD panel types have LED lights that help bring out the image.
Older LCD screens and use Cold Cathode Fluorescent Lamps (CCFLs) to light the screen. The CCFLs use electron discharge and fluorescence to light the screen.
LEDs like the one from our "Dell Computer Ultrasharp 24.0-Inch Screen LED Monitor Review" are taking over the market while LCD screens with CCFLs are fading away. LCD screens are used in watches, some notebook computers, and calculators.
The Q in QLED stands for Quantum Dot (see Quantum Dot and IPS). The screens have an additional layer between the LCD screen and the backlight of the monitor. The layer allows light to pass through easily and produce better colors than an ordinary LED screen.
Slimmer design:LED screens to come in a slimmer design than their LCD counterparts. This gives them a sleek and elegant look, and it also takes less space.
Cheaper to run:If you are trying to cut down on energy cost, an LED screen will be a better option between the two as it is more energy-efficient. However, LED screens are more expensive than their LCD counterparts. As such, you can expect to pay more initially.
However, if you are working on a tight budget, you may consider an LCD screen. Besides the cost, LED performs better than the LCD screen in all the other aspects.
If you want to find out the type of screen you already have, you can check out the screen"s model number. The model number can tell you if the screen is an LED or LCD.
When it comes to picture quality, LED TVs look better than older LCD TVs. Manufacturers also make a big deal out of LED backlighting because sets that use the technology are usually more energy-efficient than CCFL LCD TVs. Therefore, the money you save on your power bill could eventually offset the extra cost of an LED TV.
You"ll be happy with the picture regardless of what kind of display you buy. Still, LED TV have a few practical advantages that make them a better purchase than the older LCD TVs.
Alternatively, you can go for LCD screens that offer arefresh rate of 120Hz or more. The LCD screens also offer a wider variety of viewing angles, which can offer better comfort.
When choosing between LED and LCD monitors, there are several factors to consider. Besides the backlighting technology, you should also consider the panel type - see also what types of monitors are there. Various panels have their benefits compared to others.
LED monitors tend to be more expensive than LCD screens, thanks to LED technology being newer and featuring pricier components. Additionally, there is a newer form of LED called the OLED, which stands for Organic Light-Emitting Diodes. These OLED displays are extremely expensive, especially at high resolutions. LED technology, on the other hand, is extremely cheap and readily available.
Are you lost on the best choice between LCD and LED monitors? If you spend a lot of time in front of your monitor, you should ensure you end up with the best quality screen. This will ensure that you get high-quality images and also minimize eye strain.
In the battle between LCD and LED displays, LED comes out as the better option. It offers more crisp and clear images, and it also comes with a sleek and elegant design. However, it can be a little expensive. If you are working on a budget, LCD monitors can make a perfect choice.
LED technology has improved drastically in recent years improving picture quality while driving costs down. LED is a bigger investment up front but generally has a lifespan of about 100,000 hours. LCD is cheaper and generally more familiar. A LCD screen typically has a lifespan of about 50,000 hours.
Sort of. Older technologies like LCD technology and Plasma displays are becoming obsolete due to the intrinsic properties of LEDs like brightness, efficiency, maintainability, and sustainability.
LCD screens emit blue light and thus negatively affects not only vision but also overall health. Continual extended screen time mainly can impact your eyes in two major ways. When we look at a screen, our blink rate drops significantly, thus causing digital eye strain.
A Liquid Crystal Display (LCD) is one of the most enduring and fundamental technologies found in monitors, televisions, tablets, and smartphones. TVs and monitors once used cathode ray tubes (CRTs) to provide the image on your screen. But CRTs were bulky and contained dangerous chemicals. Once LCDs became affordable, they replaced CRTs.
An LCD features a panel of liquid crystal molecules. The molecules can be induced using an electrical current to take certain patterns which either block or allow light to pass through. An LCD TV or monitor has a light source at the rear of the display, which lights up the crystals. LCDs commonly use Cold Cathode Fluorescent Lamps (CCFL) to provide the TV or monitor backlight.
To provide a color image on your screen, the LCD has red, green, and blue sub-pixels in each screen pixel. Transistors within the display control the direction of light each pixel emits, which then passes through either a red, green, or blue filter.
While manufacturers often use "LED" in place of "LCD," an LED TV is also a type of LCD. Instead of CCFL tubes to provide the LCDs backlight, rows of LEDs provide the backlight. The LEDs give better control of the light, as well as greater efficiency as it is possible to control individual LEDs.
For accuracy, a TV or monitor description should read "LED-Backlit LCD Monitor." But that is a) a mouthful and b) doesn"t allow for the creation of a separate marketable product. That"s not to say there aren"t differences between the two.
However, both LED and LCD monitors have different technologies that make certain panels more appealing to gamers, film buffs, designers, and so on. You should also note that on older screens, the difference between an LCD and LED TV or monitor is more pronounced, due to the relative age of the two lighting options.
There are several different types of LED and LCD monitors. When you"re trying to buy a new TV or monitor, understanding the differences and the terminology will help you bag a better deal. Here are some of the most common variations of the LED and LCD panels.
An Edge-Lit LED TV or monitor has its LEDs arranged around the rim of the display, behind the LCD panels facing the screen. The Edge-Lit option allows for slimmer designs, uses fewer LEDs, and can bring the cost of a new screen down. Light reflects across the screen uniformly to create the image.
One downside to an Edge-Lit screen is the dark contrast. Because the Edge-Lit LED display is brightest closer to the edges, color uniformity and black levels can become an issue, with some areas appearing darker than others.
A Full-Array LED display uses a grid of LED lights behind the LCD. The LEDs shine outwards directly towards the LCD, creating a bright and uniform picture. Full-Array LED panels enjoy the efficiency benefits of LEDs.
For the best image reproduction, a Full-Array LED display may include local dimming. Local dimming means that groups of LEDs can switch on and off as required to provide better overall control of the brightness level.
The display uses advanced electronics and programming to control the RGB LEDs accurately, along with more LEDs. The combination increases the cost of an RGB LED screen significantly for what most viewers would consider a marginal improvement. RGB LED displays never became mainstream because of their higher cost.
Organic Light-Emitting Diodes (OLED) are an advanced form of LED lighting found in some LED monitors. Each pixel of an OLED TV can glow or dim independently, resulting in much better black levels, extremely sharp colors, and better contrast ratios. The majority of OLED TVs and monitors have excellent viewing angles and color quality.
Without a doubt, OLED TVs and monitors (and even smartphone screens) have incredible color depth. But that does come at a cost. The latest generation of flagship smartphones all feature OLED screens, and it is a contributing factor to their massive cost. Another consideration is power. An OLED screen consumes more power than other LED-backlit screens and standard LCD screens.
The acronyms continue with QLED, which stands for Quantum Dot LED. Samsung"s QLED improves color accuracy as much as 90-percent from a regular LED TV or monitor and can hit the high levels of brightness and color depth that HDR requires.
Just as there are types of LED monitor technology, so is there LCD monitor and TV technology, too. The type of LCD tech powering your screen makes a difference to the final picture. Here"s what you need to look out for.
Twisted nematic (TN) was one of the first LCD panel types, dating back to the 1980s. TN panels have fast response time. Most of the fastest gaming monitors use a TN LCD panel to offer exceptionally fast refresh rates, up to 240Hz. That level of refresh isn"t necessary for most people, but it can make a difference for top-level gamers (for instance, in reducing motion blur and image transition smoothness).
While a VA LCD panel has a better color range than a TN panel, they also have a slower refresh rate. They also usually cost more and, as such, are rarely marketed toward gamers. Between TN panels and IPS panels (read below), VA is the least popular LCD panel technology.
In-Plane Switching (IPS) panels are considered the best LCD panel technology for a variety of reasons. An IPS panel offers very wide viewing angles with very fast refresh rates. They"re not as fast as a TN panel, but IPS panels are widely available at 144Hz. At the time of writing, the first few 240Hz IPS LCD panels are hitting the market, although they are extremely expensive for a marginal gain.
Color-wise, IPS panels are excellent. High-quality IPS LCD panel prices continue to fall. However, there are several reasons why you shouldn"t buy a ridiculously cheap IPS gaming monitor.
The type of LCD panel you need depends on its use. Gamers want fast response times and rich depth of color, which is why IPS panels are a great option. If you"re more concerned about picture quality for your favorite films, an OLED panel will perform extremely well.
Still, now you know the terminology behind LCD panels and the pros and cons to each type, you can make an informed decision for your TV or monitor upgrade. But wait, the type of LCD or LED panel isn"t the only thing to consider. Take a moment to learn about the differences between 4K, Ultra HD, and 8K screens.
From panel technology to refresh rates, there are a lot of things to consider when looking for a new gaming monitor. To aid you on your journey for the perfect setup, we"re breaking down two of the most common display technology terms: LED and LCD. Here"s what you need to know about LED and LCD screens, what the terms stand for, and how they factor into modern gaming monitors.
LCD stands for liquid-crystal display, which refers to how the monitor works. Behind the screen, liquid crystals are sandwiched between two layers of glass and used to change the colors of pixels to create the images that you see. The whole process is a lot more complicated, but that"s the gist of how LCDs function.
In the past, some LCDs were backlit by CCFLs (cold-cathode fluorescent lamps). LCDs with fluorescent backlighting have been around longer, so if you can find one, they will be cheaper than LED monitors. However, if you"re a gamer looking for decent refresh rates and response times, it"s going to be hard to find a monitor with fluorescent backlighting. They"ve almost completely been replaced by LCD monitors with LED backlights.
LEDs work in a similar way; in fact, you can consider LEDs a subcategory of LCDs. The only difference between some LCDs and LEDs is the type of backlighting: LEDs use LED (light-emitting diodes) backlighting.
In contrast to fluorescent backlighting, LED backlighting generally provides brighter colors and sharper contrast. The monitors are also thinner in size and, in the long run, more energy efficient than LCDs with fluorescent backlights. LED backlighting is the newer technology and the current standard for monitors with high refresh rates and fast response times. When you see LCD in product descriptions, they"re almost always LCD monitors that use LED (as opposed to fluorescent) backlighting. For example, BenQ"s EL2870U monitor is listed as an LCD, but it"s an LCD with LED backlighting.
You won"t have much of a choice between LED or LCD. Most monitors, regardless of whether they"re marked as LED or LCD, will use LED backlights. LED backlights became the new standard because they allow manufacturers to make thinner, more energy-efficient monitors with better graphics. It"s not worth going out of your way to find an LCD with fluorescent backlighting, unless you really, really hate LED lights.
Which backlights a monitor has isn"t as important as other factors such as panel technology, refresh rates and response time, G-Sync vs. FreeSync, and HDR --those are the characteristics you should pay more attention to when choosing a monitor. If you"re not looking to break the bank, a couple of great LED monitors at excellent price points we can recommend are the Asus VP249QGR, a nice budget 1080p monitor, and Acer XF250Q Cbmiiprx 24.5, a well-reviewed budget 240Hz monitor.
Check out our guide to the best cheap gaming monitors for more budget options; plus, see our picks for the best monitors for PS5 and Xbox Series X, best 144Hz monitors, and the best 4K gaming monitors for more LED displays worth picking up.
In recent years, smartphone displays have developed far more acronyms than ever before with each different one featuring a different kind of technology. AMOLED, LCD, LED, IPS, TFT, PLS, LTPS, LTPO...the list continues to grow.
There are many display types used in smartphones: LCD, OLED, AMOLED, Super AMOLED, TFT, IPS and a few others that are less frequently found on smartphones nowadays, like TFT-LCD. One of the most frequently found on mid-to-high range phones now is IPS-LCD. But what do these all mean?
LCD means Liquid Crystal Display, and its name refers to the array of liquid crystals illuminated by a backlight, and their ubiquity and relatively low cost make them a popular choice for smartphones and many other devices.
LCDs also tend to perform quite well in direct sunlight, as the entire display is illuminated from behind, but does suffer from potentially less accurate colour representation than displays that don"t require a backlight.
Within smartphones, you have both TFT and IPS displays. TFT stands for Thin Film Transistor, an advanced version of LCD that uses an active matrix (like the AM in AMOLED). Active matrix means that each pixel is attached to a transistor and capacitor individually.
The main advantage of TFT is its relatively low production cost and increased contrast when compared to traditional LCDs. The disadvantage of TFT LCDs is higher energy demands than some other LCDs, less impressive viewing angles and colour reproduction. It"s for these reasons, and falling costs of alternative options, that TFTs are not commonly used in smartphones anymore.Affiliate offer
IPS technology (In-Plane Switching) solves the problem that the first generation of LCD displays experience, which adopts the TN (Twisted Nematic) technique: where colour distortion occurs when you view the display from the side - an effect that continues to crop up on cheaper smartphones and tablets.
The PLS (Plane to Line Switching) standard uses an acronym that is very similar to that of IPS, and is it any wonder that its basic operation is also similar in nature? The technology, developed by Samsung Display, has the same characteristics as IPS displays - good colour reproduction and viewing angles, but a lower contrast level compared to OLED and LCD/VA displays.
According to Samsung Display, PLS panels have a lower production cost, higher brightness rates, and even superior viewing angles when compared to their rival, LG Display"s IPS panels. Ultimately, whether a PLS or IPS panel is used, it boils down to the choice of the component supplier.
This is a very common question after "LED" TVs were launched, with the short answer simply being LCD. The technology used in a LED display is liquid crystal, the difference being LEDs generating the backlight.
One of the highlights from TV makers at the CES 2021 tradeshow, mini-LED technology seemed far removed from mobile devices until Apple announced the 2021 iPad Pro. As the name implies, the technique is based on the miniaturization of the LEDs that form the backlight of the screen — which still uses an LCD panel.
Despite the improvement in terms of contrast (and potentially brightness) over traditional LCD/LED displays, LCD/mini-LEDs still divide the screen into brightness zones — over 2,500 in the case of the iPad and 2021 "QNED" TVs from LG — compared to dozens or hundreds of zones in previous-generation FALD (full-array local dimming) displays, on which the LEDs are behind the LCD panel instead of the edges.
AMOLED stands for Active Matrix Organic Light-Emitting Diode. While this may sound complicated it actually isn"t. We already encountered the active matrix in TFT LCD technology, and OLED is simply a term for another thin-film display technology.
OLED is an organic material that, as the name implies, emits light when a current is passed through it. As opposed to LCD panels, which are back-lit, OLED displays are "always off" unless the individual pixels are electrified.
This means that OLED displays have much purer blacks and consume less energy when black or darker colours are displayed on-screen. However, lighter-coloured themes on AMOLED screens use considerably more power than an LCD using the same theme. OLED screens are also more expensive to produce than LCDs.
Because the black pixels are "off" in an OLED display, the contrast ratios are also higher compared to LCD screens. AMOLED displays have a very fast refresh rate too, but on the downside are not quite as visible in direct sunlight as backlit LCDs. Screen burn-in and diode degradation (because they are organic) are other factors to consider.Affiliate offer
OLED stands for Organic Light Emitting Diode. An OLED display is comprised of thin sheets of electroluminescent material, the main benefit of which is they produce their own light, and so don"t require a backlight, cutting down on energy requirements. OLED displays are more commonly referred to as AMOLED displays when used on smartphones or TVs.
Super AMOLED is the name given by Samsung to its displays that used to only be found in high-end models but have now trickled down to more modestly specced devices. Like IPS LCDs, Super AMOLED improves upon the basic AMOLED premise by integrating the touch response layer into the display itself, rather than as an extra layer on top.
As a result, Super AMOLED displays handle sunlight better than AMOLED displays and also require less power. As the name implies, Super AMOLED is simply a better version of AMOLED. It"s not all just marketing bluster either: Samsung"s displays are regularly reviewed as some of the best around.
The latest evolution of the technology has been christened "Dynamic AMOLED". Samsung didn"t go into detail about what the term means, but highlighted that panels with such identification include HDR10+ certification that supports a wider range of contrast and colours, as well as blue light reduction for improved visual comfort.
The technology debuted with the obscure Royole FlexPai, equipped with an OLED panel supplied by China"s BOE, and was then used in the Huawei Mate X (pictured above) and the Motorola Razr (2019), where both also sport BOE"s panel - and the Galaxy Flip and Fold lines, using the component supplied by Samsung Display.Affiliate offer
Resolution describes the number of individual pixels (or points) displayed on the screen and is usually presented for phones by the number of horizontal pixels — vertical when referring to TVs and monitors. More pixels on the same display allow for more detailed images and clearer text.
To make it easier to compare different models, brands usually adopt the same naming scheme made popular by the TV market with terms like HD, FullHD and UltraHD. But with phones adopting a wide range of different screen proportions, just knowing that is not enough to know the total pixels displayed on the screen.Common phone resolutions
But resolution in itself is not a good measure for image clarity, for that we need to consider the display size, resulting in the pixel density by area measured by DPI/PPI (dots/points per inch).Affiliate offer
Speaking of pixel density, this was one of Apple"s highlights back in 2010 during the launch of the iPhone 4. The company christened the LCD screen (LED, TFT, and IPS) used in the smartphone as "Retina Display", thanks to the high resolution of the panel used (960 by 640 pixels back then) in its 3.5-inch display.
The name coined by Apple"s marketing department is applied to screens which, according to the company, the human eye is unable to discern the individual pixels from a normal viewing distance. In the case of iPhones, the term was applied to displays with a pixel density that is greater than 300 ppi (dots per inch).
With the iPhone 11 Pro, another term was introduced to the equation: "Super Retina XDR". Still using an OLED panel (that is supplied by Samsung Display or LG Display), the smartphone brings even higher specs in terms of contrast - with a 2,000,000:1 ratio and brightness level of 1,200 nits, which have been specially optimized for displaying content in HDR format.
As a kind of consolation prize for iPhone XR and iPhone 11 buyers, who continued relying on LCD panels, Apple classified the display used in the smartphones with a new term, "Liquid Retina". This was later applied also to the iPad Pro and iPad Air models, with the name defining screens that boast a high range and colour accuracy, at least based on the company"s standards.
Nit, or candela per square meter in the international system (cd/m²), is a unit of measurement of luminance, i.e. the intensity of light emitted. In the case of smartphone screens and monitors in general, such a value defines just how bright the display is - the higher the value, the more intense the light emitted by the screen.
The result is smoother animations on the phone, both during regular use and in games, compared to screens that have a 60 Hz refresh rate which remains the standard rate in the market when it comes to displays.
Originally touted to be a "gimmick" in 2017, with the launch of the Razer Phone, the feature gained more and more momentum in due time, even with a corresponding decrease in battery life. In order to make the most of this feature, manufacturers began to adopt screens with variable refresh rates, which can be adjusted according to the content displayed - which is 24 fps in most movies, 30 or 60 fps in home video recordings, and so forth.
TFT(Thin Film Transistor) - a type of LCD display that adopts a thin semiconductor layer deposited on the panel, which allows for active control of the colour intensity in each pixel, featuring a similar concept as that of active-matrix (AM) used in AMOLED displays. It is used in TN, IPS/PLS, VA/PVA/MVA panels, etc.
IGZO(Indium Gallium Zinc Oxide) - a semiconductor material used in TFT films, which also allows higher resolutions and lower power consumption, and sees action in different types of LCD screens (TN, IPS, VA) and OLED displays
LTPO(Low Temperature Polycrystaline Oxide) - a technology developed by Apple that can be used in both OLED and LCD displays, as it combines LTPS and IGZO techniques. The result? Lower power consumption. It has been used in the Apple Watch 4 and the Galaxy S21 Ultra.
LTPO allows the display to adjust its refresh rate, adapting dynamically to the content shown. Scrolling pages can trigger the fastest mode for a fluid viewing, while displaying a static image allows the phone to use a lower refresh rate, saving the battery.
Among televisions, the long-standing featured technology has always been miniLED - which consists of increasing the number of lighting zones in the backlight while still using an LCD panel. There are whispers going around that smartphones and smartwatches will be looking at incorporating microLED technology in their devices soon, with it being radically different from LCD/LED displays as it sports similar image characteristics to that of OLEDs.
A microLED display has one light-emitting diode for each subpixel of the screen - usually a set of red, green, and blue diodes for each dot. Chances are it will use a kind of inorganic material such as gallium nitride (GaN).
By adopting a self-emitting light technology, microLED displays do not require the use of a backlight, with each pixel being "turned off" individually. The result is impressive: your eyes see the same level of contrast as OLED displays, without suffering from the risk of image retention or burn-in of organic diodes.
On the other hand, the use of multiple diodes for each pixel poses a challenge in terms of component miniaturization. For example, a Full HD resolution has just over two million pixels (1,920 x 1,080 dots), which requires 6 million microscopic LEDs using a traditional RGB (red, green, and blue) structure.
Another thing to be wary of is the price - at 170 million Korean won (about US$150,330 after conversion), that is certainly a lot of money to cough up for a 110-inch display.
In addition, the organic diodes that give OLED screens their name can lose their ability to change their properties over time, and this happens when the same image is displayed for a long period of time. This problem is known as "burn-in", tends to manifest itself when higher brightness settings are applied for long periods of time.
In the case of LCD displays, the main advantage lies in the low manufacturing cost, with dozens of players in the market offering competitive pricing and a high production volume. Some brands have taken advantage of this feature to prioritize certain features - such as a higher refresh rate - instead of adopting an OLED panel, such as the Xiaomi Mi 10T.
If you want to buy a new monitor, you might wonder what kind of display technologies I should choose. In today’s market, there are two main types of computer monitors: TFT LCD monitors & IPS monitors.
The word TFT means Thin Film Transistor. It is the technology that is used in LCD displays. We have additional resources if you would like to learn more about what is a TFT Display. This type of LCDs is also categorically referred to as an active-matrix LCD.
These LCDs can hold back some pixels while using other pixels so the LCD screen will be using a very minimum amount of energy to function (to modify the liquid crystal molecules between two electrodes). TFT LCDs have capacitors and transistors. These two elements play a key part in ensuring that the TFT display monitor functions by using a very small amount of energy while still generating vibrant, consistent images.
Industry nomenclature: TFT LCD panels or TFT screens can also be referred to as TN (Twisted Nematic) Type TFT displays or TN panels, or TN screen technology.
IPS (in-plane-switching) technology is like an improvement on the traditional TFT LCD display module in the sense that it has the same basic structure, but has more enhanced features and more widespread usability.
These LCD screens offer vibrant color, high contrast, and clear images at wide viewing angles. At a premium price. This technology is often used in high definition screens such as in gaming or entertainment.
Both TFT display and IPS display are active-matrix displays, neither can’t emit light on their own like OLED displays and have to be used with a back-light of white bright light to generate the picture. Newer panels utilize LED backlight (light-emitting diodes) to generate their light hence utilizing less power and requiring less depth by design. Neither TFT display nor IPS display can produce color, there is a layer of RGB (red, green, blue) color filter in each LCD pixels to produce the color consumers see. If you use a magnifier to inspect your monitor, you will see RGB color in each pixel. With an on/off switch and different level of brightness RGB, we can get many colors.
Winner. the images that IPS displays create are much more pristine and original than that of the TFT screen. IPS displays do this by making the pixels function in a parallel way. Because of such placing, the pixels can reflect light in a better way, and because of that, you get a better image within the display.
As the display screen made with IPS technology is mostly wide-set, it ensures that the aspect ratio of the screen would be wider. This ensures better visibility and a more realistic viewing experience with a stable effect.
Winner. While the TFT LCD has around 15% more power consumption vs IPS LCD, IPS has a lower transmittance which forces IPS displays to consume more power via backlights. TFT LCD helps battery life.
Normally, high-end products, such as Apple Mac computer monitors and Samsung mobile phones, generally use IPS panels. Some high-end TV and mobile phones even use AMOLED (Active Matrix Organic Light Emitting Diodes) displays. This cutting edge technology provides even bett