lcd screen history factory

The liquid crystal research of the 1960s was characterized by the discovery of and experiments on the properties of the liquid crystals. George H. Heilmeier of the RCA based his research on that of Williams, diving into the electro-optical nature of the crystals. After many attempts to use the liquid crystals to display different colors, he created the first working LCD using something called a dynamic scattering mode (DSM) that, when voltage is applied, turns the clear liquid crystal layer into a more translucent state. Heilmeier was thus deemed the inventor of the LCD.

In the late 1960s, the United Kingdom Royal Radar Establishment (RRE) discovered the cyanobiphenyl liquid crystal, a type that was fitting for LCD usage in terms of stability and temperature. In 1968, Bernard Lechner of RCA created the idea of a TFT-based LCD, and in that same year, he and several others brought that idea into reality using Heilmeier’s DSM LCD.

After the LCD’s entrance into the field of display technology, the 1970s were full of expansive research into improving the LCD and making it appropriate for a greater variety of applications. In 1970, the twisted nematic field effect was patented in Switzerland with credited inventors being Wolfgang Helfrich and Martin Schadt. This twisted nematic (TN) effect soon conjoined with products that entered the international markets like Japan’s electronic industry. In the US, the same patent was filed by James Fergason in 1971. His company, ILIXCO, known today as LXD Incorporated, manufactured TN-effect LCDs which grew to overshadow the DSM models. TN LCDs offered better features like lower operating voltages and power consumption.

From this, the first digital clock, or more specifically an electronic quartz wristwatch, using a TN-LCD and consisting of four digits was patented in the US and released to consumers in 1972. Japan’s Sharp Corporation, in 1975, began mass production of digital watch and pocket calculator TN LCDs, and eventually, other Japanese corporations began to rise in the market for wristwatch displays. Seiko, as an example, developed the first six-digit TN-based LCD quartz watch, an upgrade from the original four-digit watch.

Nevertheless, the DSM LCD was not rendered completely useless. A 1972 development by the North American Rockwell Microelectronics Corp integrated the DSM LCD into calculators marketed by Lloyds Electronics. These required a form of internal light to show the display, and so backlightswere also incorporated into these calculators. Shortly after, in 1973, Sharp Corporation brought DSM LCD pocket-sized calculators into the picture. A polymer called polyimide was used as the orientation layer of liquid crystal molecules.

In the 1980s, there was rapid progress made in creating usable products with this new LCD research. Color LCD television screens were first developed in Japan during this decade. Because of the limit in response times due to large display size (correlated with a large number of pixels), the first TVs were handheld/pocket TVs. Seiko Epson, or Epson, created the first LCD TV, releasing it to the public in 1982, which was soon followed by their first fully colored display pocket LCD TV in 1984. Also in 1984 was the first commercial TFT LCD display: Citizen Watch’s 2.7 inch color LCD TV. Shortly after, in 1988, Sharp Corporation created a 14 inch full-color TFT LCD that used an active matrix and had full-motion properties. Large-size LCDs now made LCD integration into large flat-panel displays like LCD screens and LCD monitors possible. LCD projection technology, first created by Epson, became readily available to consumers in compact and fully colored modes in 1989.

The LCD growth in the 1990s focused more on the optical properties of these new displays in attempts to advance their quality and abilities. Hitachi engineers were integral to the analysis of the LCD industry, previously centered in Japan, began expanding and moving towards South Korea, Taiwan, and later China as well.

As we entered the new century, the prominence of LCDs boomed. They surpassed the previously popular cathode-ray tube (CRT) displays in both image quality and sales across the world in 2007. Other developments continued to be made, such as the manufacturing of even larger displays, adoption of transparent and flexible materials for LCD hardware, and creation of more methods to

As of today, as LCD displays have developed quite a bit, but have remained consistent in structure. Illuminated by a backlight, the display consists of, from outermost to innermost two polarizers, two substrates (typically glass), electrodes, and the liquid crystal layer. Closer to the surface is sometimes a color filter as well, using an RGB scheme. As light passes through the polarizer closest to the backlight, it enters the liquid crystal layer. Now, depending on whether an electric field directed by the electrodes is present, the liquid crystal will behave differently. Whether using a TN, IPS, or MVS LCD, the electrode electric field will alter the orientation of the liquid crystal molecules to then affect the polarization of the passing light. If the light is polarized properly, it will pass completely through the color filter and surface polarizer, displaying a certain color. If partially polarized correctly, it will display a medium level of light, or a less bright color. If not polarized properly, the light will not pass the surface, and no color will be displayed.

1927: Vsevolod Frederiks in Russian devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology.

1967: Bernard Lechner, Frank Marlowe, Edward Nester and Juri Tults built the first LCD to operate at television rates using discrete MOS transistors wired to the device.

1968: A research group at RCA laboratories in the US, headed by George Heilmeier, developed the first LCDs based on DSM (dynamic scattering mode) and the first bistable LCD using a mixture of cholesteric and nematic liquid crystals. The result sparked a worldwide effort to further develop LCDs. George H. Heilmeier was inducted in the National Inventors Hall of Fame and credited with the invention of LCDs. Heilmeier’s work is an IEEE Milestone.

1979, Peter Le Comber and Walter Spear at University of Dundee discovered that hydrogenated amorphous silicon (Alpha-Si:H) thin film transistors were suitable to drive LCDs. This is the major breakthrough that led to LCD television and computer displays.

1972: Tadashi Sasaki and Tomio Wada at Sharp Corporation built a prototype desktop calculator with a dynamic scattering LCD and started a program to build the first truly portable handheld calculator.

lcd screen history factory

Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is switched ON. Vertical ridges etched on the surface are smooth.

A liquid-crystal display (LCD) is a flat-panel display or other electronically modulated optical device that uses the light-modulating properties of liquid crystals combined with polarizers. Liquid crystals do not emit light directlybacklight or reflector to produce images in color or monochrome.seven-segment displays, as in a digital clock, are all good examples of devices with these displays. They use the same basic technology, except that arbitrary images are made from a matrix of small pixels, while other displays have larger elements. LCDs can either be normally on (positive) or off (negative), depending on the polarizer arrangement. For example, a character positive LCD with a backlight will have black lettering on a background that is the color of the backlight, and a character negative LCD will have a black background with the letters being of the same color as the backlight. Optical filters are added to white on blue LCDs to give them their characteristic appearance.

LCDs are used in a wide range of applications, including LCD televisions, computer monitors, instrument panels, aircraft cockpit displays, and indoor and outdoor signage. Small LCD screens are common in LCD projectors and portable consumer devices such as digital cameras, watches, digital clocks, calculators, and mobile telephones, including smartphones. LCD screens are also used on consumer electronics products such as DVD players, video game devices and clocks. LCD screens have replaced heavy, bulky cathode-ray tube (CRT) displays in nearly all applications. LCD screens are available in a wider range of screen sizes than CRT and plasma displays, with LCD screens available in sizes ranging from tiny digital watches to very large television receivers. LCDs are slowly being replaced by OLEDs, which can be easily made into different shapes, and have a lower response time, wider color gamut, virtually infinite color contrast and viewing angles, lower weight for a given display size and a slimmer profile (because OLEDs use a single glass or plastic panel whereas LCDs use two glass panels; the thickness of the panels increases with size but the increase is more noticeable on LCDs) and potentially lower power consumption (as the display is only "on" where needed and there is no backlight). OLEDs, however, are more expensive for a given display size due to the very expensive electroluminescent materials or phosphors that they use. Also due to the use of phosphors, OLEDs suffer from screen burn-in and there is currently no way to recycle OLED displays, whereas LCD panels can be recycled, although the technology required to recycle LCDs is not yet widespread. Attempts to maintain the competitiveness of LCDs are quantum dot displays, marketed as SUHD, QLED or Triluminos, which are displays with blue LED backlighting and a Quantum-dot enhancement film (QDEF) that converts part of the blue light into red and green, offering similar performance to an OLED display at a lower price, but the quantum dot layer that gives these displays their characteristics can not yet be recycled.

Since LCD screens do not use phosphors, they rarely suffer image burn-in when a static image is displayed on a screen for a long time, e.g., the table frame for an airline flight schedule on an indoor sign. LCDs are, however, susceptible to image persistence.battery-powered electronic equipment more efficiently than a CRT can be. By 2008, annual sales of televisions with LCD screens exceeded sales of CRT units worldwide, and the CRT became obsolete for most purposes.

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, often made of Indium-Tin oxide (ITO) and two polarizing filters (parallel and perpendicular polarizers), the axes of transmission of which are (in most of the cases) perpendicular to each other. Without the liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer. Before an electric field is applied, the orientation of the liquid-crystal molecules is determined by the alignment at the surfaces of electrodes. In a twisted nematic (TN) device, the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This induces the rotation of the polarization of the incident light, and the device appears gray. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The chemical formula of the liquid crystals used in LCDs may vary. Formulas may be patented.Sharp Corporation. The patent that covered that specific mixture expired.

Most color LCD systems use the same technique, with color filters used to generate red, green, and blue subpixels. The LCD color filters are made with a photolithography process on large glass sheets that are later glued with other glass sheets containing a TFT array, spacers and liquid crystal, creating several color LCDs that are then cut from one another and laminated with polarizer sheets. Red, green, blue and black photoresists (resists) are used. All resists contain a finely ground powdered pigment, with particles being just 40 nanometers across. The black resist is the first to be applied; this will create a black grid (known in the industry as a black matrix) that will separate red, green and blue subpixels from one another, increasing contrast ratios and preventing light from leaking from one subpixel onto other surrounding subpixels.Super-twisted nematic LCD, where the variable twist between tighter-spaced plates causes a varying double refraction birefringence, thus changing the hue.

LCD in a Texas Instruments calculator with top polarizer removed from device and placed on top, such that the top and bottom polarizers are perpendicular. As a result, the colors are inverted.

The optical effect of a TN device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, TN displays with low information content and no backlighting are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). As most of 2010-era LCDs are used in television sets, monitors and smartphones, they have high-resolution matrix arrays of pixels to display arbitrary images using backlighting with a dark background. When no image is displayed, different arrangements are used. For this purpose, TN LCDs are operated between parallel polarizers, whereas IPS LCDs feature crossed polarizers. In many applications IPS LCDs have replaced TN LCDs, particularly in smartphones. Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

Displays for a small number of individual digits or fixed symbols (as in digital watches and pocket calculators) can be implemented with independent electrodes for each segment.alphanumeric or variable graphics displays are usually implemented with pixels arranged as a matrix consisting of electrically connected rows on one side of the LC layer and columns on the other side, which makes it possible to address each pixel at the intersections. The general method of matrix addressing consists of sequentially addressing one side of the matrix, for example by selecting the rows one-by-one and applying the picture information on the other side at the columns row-by-row. For details on the various matrix addressing schemes see passive-matrix and active-matrix addressed LCDs.

LCDs, along with OLED displays, are manufactured in cleanrooms borrowing techniques from semiconductor manufacturing and using large sheets of glass whose size has increased over time. Several displays are manufactured at the same time, and then cut from the sheet of glass, also known as the mother glass or LCD glass substrate. The increase in size allows more displays or larger displays to be made, just like with increasing wafer sizes in semiconductor manufacturing. The glass sizes are as follows:

Until Gen 8, manufacturers would not agree on a single mother glass size and as a result, different manufacturers would use slightly different glass sizes for the same generation. Some manufacturers have adopted Gen 8.6 mother glass sheets which are only slightly larger than Gen 8.5, allowing for more 50 and 58 inch LCDs to be made per mother glass, specially 58 inch LCDs, in which case 6 can be produced on a Gen 8.6 mother glass vs only 3 on a Gen 8.5 mother glass, significantly reducing waste.AGC Inc., Corning Inc., and Nippon Electric Glass.

The origins and the complex history of liquid-crystal displays from the perspective of an insider during the early days were described by Joseph A. Castellano in Liquid Gold: The Story of Liquid Crystal Displays and the Creation of an Industry.IEEE History Center.Peter J. Wild, can be found at the Engineering and Technology History Wiki.

In 1922, Georges Friedel described the structure and properties of liquid crystals and classified them in three types (nematics, smectics and cholesterics). In 1927, Vsevolod Frederiks devised the electrically switched light valve, called the Fréedericksz transition, the essential effect of all LCD technology. In 1936, the Marconi Wireless Telegraph company patented the first practical application of the technology, "The Liquid Crystal Light Valve". In 1962, the first major English language publication Molecular Structure and Properties of Liquid Crystals was published by Dr. George W. Gray.RCA found that liquid crystals had some interesting electro-optic characteristics and he realized an electro-optical effect by generating stripe-patterns in a thin layer of liquid crystal material by the application of a voltage. This effect is based on an electro-hydrodynamic instability forming what are now called "Williams domains" inside the liquid crystal.

In the late 1960s, pioneering work on liquid crystals was undertaken by the UK"s Royal Radar Establishment at Malvern, England. The team at RRE supported ongoing work by George William Gray and his team at the University of Hull who ultimately discovered the cyanobiphenyl liquid crystals, which had correct stability and temperature properties for application in LCDs.

The idea of a TFT-based liquid-crystal display (LCD) was conceived by Bernard Lechner of RCA Laboratories in 1968.dynamic scattering mode (DSM) LCD that used standard discrete MOSFETs.

On December 4, 1970, the twisted nematic field effect (TN) in liquid crystals was filed for patent by Hoffmann-LaRoche in Switzerland, (Swiss patent No. 532 261) with Wolfgang Helfrich and Martin Schadt (then working for the Central Research Laboratories) listed as inventors.Brown, Boveri & Cie, its joint venture partner at that time, which produced TN displays for wristwatches and other applications during the 1970s for the international markets including the Japanese electronics industry, which soon produced the first digital quartz wristwatches with TN-LCDs and numerous other products. James Fergason, while working with Sardari Arora and Alfred Saupe at Kent State University Liquid Crystal Institute, filed an identical patent in the United States on April 22, 1971.ILIXCO (now LXD Incorporated), produced LCDs based on the TN-effect, which soon superseded the poor-quality DSM types due to improvements of lower operating voltages and lower power consumption. Tetsuro Hama and Izuhiko Nishimura of Seiko received a US patent dated February 1971, for an electronic wristwatch incorporating a TN-LCD.

In 1972, the concept of the active-matrix thin-film transistor (TFT) liquid-crystal display panel was prototyped in the United States by T. Peter Brody"s team at Westinghouse, in Pittsburgh, Pennsylvania.Westinghouse Research Laboratories demonstrated the first thin-film-transistor liquid-crystal display (TFT LCD).high-resolution and high-quality electronic visual display devices use TFT-based active matrix displays.active-matrix liquid-crystal display (AM LCD) in 1974, and then Brody coined the term "active matrix" in 1975.

In 1972 North American Rockwell Microelectronics Corp introduced the use of DSM LCDs for calculators for marketing by Lloyds Electronics Inc, though these required an internal light source for illumination.Sharp Corporation followed with DSM LCDs for pocket-sized calculators in 1973Seiko and its first 6-digit TN-LCD quartz wristwatch, and Casio"s "Casiotron". Color LCDs based on Guest-Host interaction were invented by a team at RCA in 1968.TFT LCDs similar to the prototypes developed by a Westinghouse team in 1972 were patented in 1976 by a team at Sharp consisting of Fumiaki Funada, Masataka Matsuura, and Tomio Wada,

In 1983, researchers at Brown, Boveri & Cie (BBC) Research Center, Switzerland, invented the passive matrix-addressed LCDs. H. Amstutz et al. were listed as inventors in the corresponding patent applications filed in Switzerland on July 7, 1983, and October 28, 1983. Patents were granted in Switzerland CH 665491, Europe EP 0131216,

The first color LCD televisions were developed as handheld televisions in Japan. In 1980, Hattori Seiko"s R&D group began development on color LCD pocket televisions.Seiko Epson released the first LCD television, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD television.dot matrix TN-LCD in 1983.Citizen Watch,TFT LCD.computer monitors and LCD televisions.3LCD projection technology in the 1980s, and licensed it for use in projectors in 1988.compact, full-color LCD projector.

In 1990, under different titles, inventors conceived electro optical effects as alternatives to twisted nematic field effect LCDs (TN- and STN- LCDs). One approach was to use interdigital electrodes on one glass substrate only to produce an electric field essentially parallel to the glass substrates.Germany by Guenter Baur et al. and patented in various countries.Hitachi work out various practical details of the IPS technology to interconnect the thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.

Hitachi also improved the viewing angle dependence further by optimizing the shape of the electrodes (Super IPS). NEC and Hitachi become early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and In Plane Switching subsequently remain the dominant LCD designs through 2006.South Korea and Taiwan,

In 2007 the image quality of LCD televisions surpassed the image quality of cathode-ray-tube-based (CRT) TVs.LCD TVs were projected to account 50% of the 200 million TVs to be shipped globally in 2006, according to Displaybank.Toshiba announced 2560 × 1600 pixels on a 6.1-inch (155 mm) LCD panel, suitable for use in a tablet computer,transparent and flexible, but they cannot emit light without a backlight like OLED and microLED, which are other technologies that can also be made flexible and transparent.

In 2016, Panasonic developed IPS LCDs with a contrast ratio of 1,000,000:1, rivaling OLEDs. This technology was later put into mass production as dual layer, dual panel or LMCL (Light Modulating Cell Layer) LCDs. The technology uses 2 liquid crystal layers instead of one, and may be used along with a mini-LED backlight and quantum dot sheets.

Since LCDs produce no light of their own, they require external light to produce a visible image.backlight. Active-matrix LCDs are almost always backlit.Transflective LCDs combine the features of a backlit transmissive display and a reflective display.

CCFL: The LCD panel is lit either by two cold cathode fluorescent lamps placed at opposite edges of the display or an array of parallel CCFLs behind larger displays. A diffuser (made of PMMA acrylic plastic, also known as a wave or light guide/guiding plateinverter to convert whatever DC voltage the device uses (usually 5 or 12 V) to ≈1000 V needed to light a CCFL.

EL-WLED: The LCD panel is lit by a row of white LEDs placed at one or more edges of the screen. A light diffuser (light guide plate, LGP) is then used to spread the light evenly across the whole display, similarly to edge-lit CCFL LCD backlights. The diffuser is made out of either PMMA plastic or special glass, PMMA is used in most cases because it is rugged, while special glass is used when the thickness of the LCD is of primary concern, because it doesn"t expand as much when heated or exposed to moisture, which allows LCDs to be just 5mm thick. Quantum dots may be placed on top of the diffuser as a quantum dot enhancement film (QDEF, in which case they need a layer to be protected from heat and humidity) or on the color filter of the LCD, replacing the resists that are normally used.

WLED array: The LCD panel is lit by a full array of white LEDs placed behind a diffuser behind the panel. LCDs that use this implementation will usually have the ability to dim or completely turn off the LEDs in the dark areas of the image being displayed, effectively increasing the contrast ratio of the display. The precision with which this can be done will depend on the number of dimming zones of the display. The more dimming zones, the more precise the dimming, with less obvious blooming artifacts which are visible as dark grey patches surrounded by the unlit areas of the LCD. As of 2012, this design gets most of its use from upscale, larger-screen LCD televisions.

RGB-LED array: Similar to the WLED array, except the panel is lit by a full array of RGB LEDs. While displays lit with white LEDs usually have a poorer color gamut than CCFL lit displays, panels lit with RGB LEDs have very wide color gamuts. This implementation is most popular on professional graphics editing LCDs. As of 2012, LCDs in this category usually cost more than $1000. As of 2016 the cost of this category has drastically reduced and such LCD televisions obtained same price levels as the former 28" (71 cm) CRT based categories.

Monochrome LEDs: such as red, green, yellow or blue LEDs are used in the small passive monochrome LCDs typically used in clocks, watches and small appliances.

Today, most LCD screens are being designed with an LED backlight instead of the traditional CCFL backlight, while that backlight is dynamically controlled with the video information (dynamic backlight control). The combination with the dynamic backlight control, invented by Philips researchers Douglas Stanton, Martinus Stroomer and Adrianus de Vaan, simultaneously increases the dynamic range of the display system (also marketed as HDR, high dynamic range television or FLAD, full-area local area dimming).

The LCD backlight systems are made highly efficient by applying optical films such as prismatic structure (prism sheet) to gain the light into the desired viewer directions and reflective polarizing films that recycle the polarized light that was formerly absorbed by the first polarizer of the LCD (invented by Philips researchers Adrianus de Vaan and Paulus Schaareman),

Due to the LCD layer that generates the desired high resolution images at flashing video speeds using very low power electronics in combination with LED based backlight technologies, LCD technology has become the dominant display technology for products such as televisions, desktop monitors, notebooks, tablets, smartphones and mobile phones. Although competing OLED technology is pushed to the market, such OLED displays do not feature the HDR capabilities like LCDs in combination with 2D LED backlight technologies have, reason why the annual market of such LCD-based products is still growing faster (in volume) than OLED-based products while the efficiency of LCDs (and products like portable computers, mobile phones and televisions) may even be further improved by preventing the light to be absorbed in the colour filters of the LCD.

A pink elastomeric connector mating an LCD panel to circuit board traces, shown next to a centimeter-scale ruler. The conductive and insulating layers in the black stripe are very small.

A standard television receiver screen, a modern LCD panel, has over six million pixels, and they are all individually powered by a wire network embedded in the screen. The fine wires, or pathways, form a grid with vertical wires across the whole screen on one side of the screen and horizontal wires across the whole screen on the other side of the screen. To this grid each pixel has a positive connection on one side and a negative connection on the other side. So the total amount of wires needed for a 1080p display is 3 x 1920 going vertically and 1080 going horizontally for a total of 6840 wires horizontally and vertically. That"s three for red, green and blue and 1920 columns of pixels for each color for a total of 5760 wires going vertically and 1080 rows of wires going horizontally. For a panel that is 28.8 inches (73 centimeters) wide, that means a wire density of 200 wires per inch along the horizontal edge.

The LCD panel is powered by LCD drivers that are carefully matched up with the edge of the LCD panel at the factory level. The drivers may be installed using several methods, the most common of which are COG (Chip-On-Glass) and TAB (Tape-automated bonding) These same principles apply also for smartphone screens that are much smaller than TV screens.anisotropic conductive film or, for lower densities, elastomeric connectors.

Monochrome and later color passive-matrix LCDs were standard in most early laptops (although a few used plasma displaysGame Boyactive-matrix became standard on all laptops. The commercially unsuccessful Macintosh Portable (released in 1989) was one of the first to use an active-matrix display (though still monochrome). Passive-matrix LCDs are still used in the 2010s for applications less demanding than laptop computers and TVs, such as inexpensive calculators. In particular, these are used on portable devices where less information content needs to be displayed, lowest power consumption (no backlight) and low cost are desired or readability in direct sunlight is needed.

A comparison between a blank passive-matrix display (top) and a blank active-matrix display (bottom). A passive-matrix display can be identified when the blank background is more grey in appearance than the crisper active-matrix display, fog appears on all edges of the screen, and while pictures appear to be fading on the screen.

STN LCDs have to be continuously refreshed by alternating pulsed voltages of one polarity during one frame and pulses of opposite polarity during the next frame. Individual pixels are addressed by the corresponding row and column circuits. This type of display is called response times and poor contrast are typical of passive-matrix addressed LCDs with too many pixels and driven according to the "Alt & Pleshko" drive scheme. Welzen and de Vaan also invented a non RMS drive scheme enabling to drive STN displays with video rates and enabling to show smooth moving video images on an STN display.

Bistable LCDs do not require continuous refreshing. Rewriting is only required for picture information changes. In 1984 HA van Sprang and AJSM de Vaan invented an STN type display that could be operated in a bistable mode, enabling extremely high resolution images up to 4000 lines or more using only low voltages.

High-resolution color displays, such as modern LCD computer monitors and televisions, use an active-matrix structure. A matrix of thin-film transistors (TFTs) is added to the electrodes in contact with the LC layer. Each pixel has its own dedicated transistor, allowing each column line to access one pixel. When a row line is selected, all of the column lines are connected to a row of pixels and voltages corresponding to the picture information are driven onto all of the column lines. The row line is then deactivated and the next row line is selected. All of the row lines are selected in sequence during a refresh operation. Active-matrix addressed displays look brighter and sharper than passive-matrix addressed displays of the same size, and generally have quicker response times, producing much better images. Sharp produces bistable reflective LCDs with a 1-bit SRAM cell per pixel that only requires small amounts of power to maintain an image.

Segment LCDs can also have color by using Field Sequential Color (FSC LCD). This kind of displays have a high speed passive segment LCD panel with an RGB backlight. The backlight quickly changes color, making it appear white to the naked eye. The LCD panel is synchronized with the backlight. For example, to make a segment appear red, the segment is only turned ON when the backlight is red, and to make a segment appear magenta, the segment is turned ON when the backlight is blue, and it continues to be ON while the backlight becomes red, and it turns OFF when the backlight becomes green. To make a segment appear black, the segment is always turned ON. An FSC LCD divides a color image into 3 images (one Red, one Green and one Blue) and it displays them in order. Due to persistence of vision, the 3 monochromatic images appear as one color image. An FSC LCD needs an LCD panel with a refresh rate of 180 Hz, and the response time is reduced to just 5 milliseconds when compared with normal STN LCD panels which have a response time of 16 milliseconds.

Samsung introduced UFB (Ultra Fine & Bright) displays back in 2002, utilized the super-birefringent effect. It has the luminance, color gamut, and most of the contrast of a TFT-LCD, but only consumes as much power as an STN display, according to Samsung. It was being used in a variety of Samsung cellular-telephone models produced until late 2006, when Samsung stopped producing UFB displays. UFB displays were also used in certain models of LG mobile phones.

In-plane switching is an LCD technology that aligns the liquid crystals in a plane parallel to the glass substrates. In this method, the electrical field is applied through opposite electrodes on the same glass substrate, so that the liquid crystals can be reoriented (switched) essentially in the same plane, although fringe fields inhibit a homogeneous reorientation. This requires two transistors for each pixel instead of the single transistor needed for a standard thin-film transistor (TFT) display. The IPS technology is used in everything from televisions, computer monitors, and even wearable devices, especially almost all LCD smartphone panels are IPS/FFS mode. IPS displays belong to the LCD panel family screen types. The other two types are VA and TN. Before LG Enhanced IPS was introduced in 2001 by Hitachi as 17" monitor in Market, the additional transistors resulted in blocking more transmission area, thus requiring a brighter backlight and consuming more power, making this type of display less desirable for notebook computers. Panasonic Himeji G8.5 was using an enhanced version of IPS, also LGD in Korea, then currently the world biggest LCD panel manufacture BOE in China is also IPS/FFS mode TV panel.

In 2011, LG claimed the smartphone LG Optimus Black (IPS LCD (LCD NOVA)) has the brightness up to 700 nits, while the competitor has only IPS LCD with 518 nits and double an active-matrix OLED (AMOLED) display with 305 nits. LG also claimed the NOVA display to be 50 percent more efficient than regular LCDs and to consume only 50 percent of the power of AMOLED displays when producing white on screen.

This pixel-layout is found in S-IPS LCDs. A chevron shape is used to widen the viewing cone (range of viewing directions with good contrast and low color shift).

Vertical-alignment displays are a form of LCDs in which the liquid crystals naturally align vertically to the glass substrates. When no voltage is applied, the liquid crystals remain perpendicular to the substrate, creating a black display between crossed polarizers. When voltage is applied, the liquid crystals shift to a tilted position, allowing light to pass through and create a gray-scale display depending on the amount of tilt generated by the electric field. It has a deeper-black background, a higher contrast ratio, a wider viewing angle, and better image quality at extreme temperatures than traditional twisted-nematic displays.

Blue phase mode LCDs have been shown as engineering samples early in 2008, but they are not in mass-production. The physics of blue phase mode LCDs suggest that very short switching times (≈1 ms) can be achieved, so time sequential color control can possibly be realized and expensive color filters would be obsolete.

Some LCD panels have defective transistors, causing permanently lit or unlit pixels which are commonly referred to as stuck pixels or dead pixels respectively. Unlike integrated circuits (ICs), LCD panels with a few defective transistors are usually still usable. Manufacturers" policies for the acceptable number of defective pixels vary greatly. At one point, Samsung held a zero-tolerance policy for LCD monitors sold in Korea.ISO 13406-2 standard.

Dead pixel policies are often hotly debated between manufacturers and customers. To regulate the acceptability of defects and to protect the end user, ISO released the ISO 13406-2 standard,ISO 9241, specifically ISO-9241-302, 303, 305, 307:2008 pixel defects. However, not every LCD manufacturer conforms to the ISO standard and the ISO standard is quite often interpreted in different ways. LCD panels are more likely to have defects than most ICs due to their larger size. For example, a 300 mm SVGA LCD has 8 defects and a 150 mm wafer has only 3 defects. However, 134 of the 137 dies on the wafer will be acceptable, whereas rejection of the whole LCD panel would be a 0% yield. In recent years, quality control has been improved. An SVGA LCD panel with 4 defective pixels is usually considered defective and customers can request an exchange for a new one.

Some manufacturers, notably in South Korea where some of the largest LCD panel manufacturers, such as LG, are located, now have a zero-defective-pixel guarantee, which is an extra screening process which can then determine "A"- and "B"-grade panels.clouding (or less commonly mura), which describes the uneven patches of changes in luminance. It is most visible in dark or black areas of displayed scenes.

The zenithal bistable device (ZBD), developed by Qinetiq (formerly DERA), can retain an image without power. The crystals may exist in one of two stable orientations ("black" and "white") and power is only required to change the image. ZBD Displays is a spin-off company from QinetiQ who manufactured both grayscale and color ZBD devices. Kent Displays has also developed a "no-power" display that uses polymer stabilized cholesteric liquid crystal (ChLCD). In 2009 Kent demonstrated the use of a ChLCD to cover the entire surface of a mobile phone, allowing it to change colors, and keep that color even when power is removed.

In 2004, researchers at the University of Oxford demonstrated two new types of zero-power bistable LCDs based on Zenithal bistable techniques.e.g., BiNem technology, are based mainly on the surface properties and need specific weak anchoring materials.

Resolution The resolution of an LCD is expressed by the number of columns and rows of pixels (e.g., 1024×768). Each pixel is usually composed 3 sub-pixels, a red, a green, and a blue one. This had been one of the few features of LCD performance that remained uniform among different designs. However, there are newer designs that share sub-pixels among pixels and add Quattron which attempt to efficiently increase the perceived resolution of a display without increasing the actual resolution, to mixed results.

Spatial performance: For a computer monitor or some other display that is being viewed from a very close distance, resolution is often expressed in terms of dot pitch or pixels per inch, which is consistent with the printing industry. Display density varies per application, with televisions generally having a low density for long-distance viewing and portable devices having a high density for close-range detail. The Viewing Angle of an LCD may be important depending on the display and its usage, the limitations of certain display technologies mean the display only displays accurately at certain angles.

Temporal performance: the temporal resolution of an LCD is how well it can display changing images, or the accuracy and the number of times per second the display draws the data it is being given. LCD pixels do not flash on/off between frames, so LCD monitors exhibit no refresh-induced flicker no matter how low the refresh rate.

Color performance: There are multiple terms to describe different aspects of color performance of a display. Color gamut is the range of colors that can be displayed, and color depth, which is the fineness with which the color range is divided. Color gamut is a relatively straight forward feature, but it is rarely discussed in marketing materials except at the professional level. Having a color range that exceeds the content being shown on the screen has no benefits, so displays are only made to perform within or below the range of a certain specification.white point and gamma correction, which describe what color white is and how the other colors are displayed relative to white.

Brightness and contrast ratio: Contrast ratio is the ratio of the brightness of a full-on pixel to a full-off pixel. The LCD itself is only a light valve and does not generate light; the light comes from a backlight that is either fluorescent or a set of LEDs. Brightness is usually stated as the maximum light output of the LCD, which can vary greatly based on the transparency of the LCD and the brightness of the backlight. Brighter backlight allows stronger contrast and higher dynamic range (HDR displays are graded in peak luminance), but there is always a trade-off between brightness and power consumption.

Usually no refresh-rate flicker, because the LCD pixels hold their state between refreshes (which are usually done at 200 Hz or faster, regardless of the input refresh rate).

No theoretical resolution limit. When multiple LCD panels are used together to create a single canvas, each additional panel increases the total resolution of the display, which is commonly called stacked resolution.

As an inherently digital device, the LCD can natively display digital data from a DVI or HDMI connection without requiring conversion to analog. Some LCD panels have native fiber optic inputs in addition to DVI and HDMI.

As of 2012, most implementations of LCD backlighting use pulse-width modulation (PWM) to dim the display,CRT monitor at 85 Hz refresh rate would (this is because the entire screen is strobing on and off rather than a CRT"s phosphor sustained dot which continually scans across the display, leaving some part of the display always lit), causing severe eye-strain for some people.LED-backlit monitors, because the LEDs switch on and off faster than a CCFL lamp.

Only one native resolution. Displaying any other resolution either requires a video scaler, causing blurriness and jagged edges, or running the display at native resolution using 1:1 pixel mapping, causing the image either not to fill the screen (letterboxed display), or to run off the lower or right edges of the screen.

Fixed bit depth (also called color depth). Many cheaper LCDs are only able to display 262144 (218) colors. 8-bit S-IPS panels can display 16 million (224) colors and have significantly better black level, but are expensive and have slower response time.

Input lag, because the LCD"s A/D converter waits for each frame to be completely been output before drawing it to the LCD panel. Many LCD monitors do post-processing before displaying the image in an attempt to compensate for poor color fidelity, which adds an additional lag. Further, a video scaler must be used when displaying non-native resolutions, which adds yet more time lag. Scaling and post processing are usually done in a single chip on modern monitors, but each function that chip performs adds some delay. Some displays have a video gaming mode which disables all or most processing to reduce perceivable input lag.

Dead or stuck pixels may occur during manufacturing or after a period of use. A stuck pixel will glow with color even on an all-black screen, while a dead one will always remain black.

In a constant-on situation, thermalization may occur in case of bad thermal management, in which part of the screen has overheated and looks discolored compared to the rest of the screen.

Loss of brightness and much slower response times in low temperature environments. In sub-zero environments, LCD screens may cease to function without the use of supplemental heating.

The production of LCD screens uses nitrogen trifluoride (NF3) as an etching fluid during the production of the thin-film components. NF3 is a potent greenhouse gas, and its relatively long half-life may make it a potentially harmful contributor to global warming. A report in Geophysical Research Letters suggested that its effects were theoretically much greater than better-known sources of greenhouse gasses like carbon dioxide. As NF3 was not in widespread use at the time, it was not made part of the Kyoto Protocols and has been deemed "the missing greenhouse gas".

Kawamoto, H. (2012). "The Inventors of TFT Active-Matrix LCD Receive the 2011 IEEE Nishizawa Medal". Journal of Display Technology. 8 (1): 3–4. Bibcode:2012JDisT...8....3K. doi:10.1109/JDT.2011.2177740. ISSN 1551-319X.

Hirohisa Kawamoto (2013), The history of liquid-crystal display and its industry, HISTory of ELectro-technology CONference (HISTELCON), 2012 Third IEEE, Institute of Electrical and Electronics Engineers, DOI 10.1109/HISTELCON.2012.6487587

Explanation of CCFL backlighting details, "Design News — Features — How to Backlight an LCD" Archived January 2, 2014, at the Wayback Machine, Randy Frank, Retrieved January 2013.

Energy Efficiency Success Story: TV Energy Consumption Shrinks as Screen Size and Performance Grow, Finds New CTA Study; Consumer Technology Association; press release 12 July 2017; https://cta.tech/News/Press-Releases/2017/July/Energy-Efficiency-Success-Story-TV-Energy-Consump.aspx Archived November 4, 2017, at the Wayback Machine

LCD Television Power Draw Trends from 2003 to 2015; B. Urban and K. Roth; Fraunhofer USA Center for Sustainable Energy Systems; Final Report to the Consumer Technology Association; May 2017; http://www.cta.tech/cta/media/policyImages/policyPDFs/Fraunhofer-LCD-TV-Power-Draw-Trends-FINAL.pdf Archived August 1, 2017, at the Wayback Machine

New Cholesteric Colour Filters for Reflective LCDs; C. Doornkamp; R. T. Wegh; J. Lub; SID Symposium Digest of Technical Papers; Volume 32, Issue 1 June 2001; Pages 456–459; http://onlinelibrary.wiley.com/doi/10.1889/1.1831895/full

K. H. Lee; H. Y. Kim; K. H. Park; S. J. Jang; I. C. Park & J. Y. Lee (June 2006). "A Novel Outdoor Readability of Portable TFT-LCD with AFFS Technology". SID Symposium Digest of Technical Papers. 37 (1): 1079–1082. doi:10.1889/1.2433159. S2CID 129569963.

Jack H. Park (January 15, 2015). "Cut and Run: Taiwan-controlled LCD Panel Maker in Danger of Shutdown without Further Investment". www.businesskorea.co.kr. Archived from the original on May 12, 2015. Retrieved April 23, 2015.

NXP Semiconductors (October 21, 2011). "UM10764 Vertical Alignment (VA) displays and NXP LCD drivers" (PDF). Archived from the original (PDF) on March 14, 2014. Retrieved September 4, 2014.

"Samsung to Offer "Zero-PIXEL-DEFECT" Warranty for LCD Monitors". Forbes. December 30, 2004. Archived from the original on August 20, 2007. Retrieved September 3, 2007.

"Display (LCD) replacement for defective pixels – ThinkPad". Lenovo. June 25, 2007. Archived from the original on December 31, 2006. Retrieved July 13, 2007.

Explanation of why pulse width modulated backlighting is used, and its side-effects, "Pulse Width Modulation on LCD monitors", TFT Central. Retrieved June 2012.

An enlightened user requests Dell to improve their LCD backlights, "Request to Dell for higher backlight PWM frequency" Archived December 13, 2012, at the Wayback Machine, Dell Support Community. Retrieved June 2012.

Timothy J. Sluckin History of Liquid Crystals, a presentation and extracts from the book Crystals that Flow: Classic papers from the history of liquid crystals.

Oleg Artamonov (January 23, 2007). "Contemporary LCD Monitor Parameters: Objective and Subjective Analysis". X-bit labs. Archived from the original on May 16, 2008. Retrieved May 17, 2008.

lcd screen history factory

Here at Phoenix Display, we talk about LCD displays every day. With LCDs being such a big part of our daily lives, we thought it would be useful to explore the history of this important technology and where we see it going in the future.

In 1973, Sharp Corporation made use of LCD displays in calculators. Shortly after, the company followed BBC’s lead and mass produced TN LCD displays for watches in 1975.

1980s. After wristwatches came televisions (TVs), with the first color LCD TVs being developed as handheld TVs in Japan. In 1982, Seiko Epson released the first LCD TV, the Epson TV Watch, a wristwatch equipped with a small active-matrix LCD TV.

1990s. The 90s gave way to technology acceleration in the LCD space. Through multiple breakthroughs, researchers and inventors were able to improve contrast and viewing angles, as well as bring costs down.

2000s. After 30+ years of competition, LCD technology surpassed longstanding CRTs. Namely, in 2007, LCD TVs could claim better image quality than CRT-based TVs. Subsequently, in the fourth quarter of 2007,

Next, let’s take a brief look at how the technology works. Essentially, the LCD glass is just a light valve whose sole purpose is to either block light or allow light to go through it. We go into greater details in our post,

Finally, let’s look at the LCD display landscape in the near future. There’s three big areas that are being explored with LCD displays: Flexible displays, 3D displays, and reel-to-reel manufacturing.

lcd screen history factory

Though studied extensively in the years following Reinitzer’s discovery, it wasn’t until 1927 that Vsevolod Frederiks first devised an electrically-switched light valve called the “Fréedericksz Transition”. This is the essential effect of all LCD (Liquid Crystal Display) technology. In 1936, the first practical application of the technology was patented by the Marconi Wireless Telegraph company as “The Liquid Crystal Light Valve”.

In 1984, Terry Scheffer and J. Nehring published and patented super twisted nematic (STN) LCDs, which allowed much higher information content in passive displays.

In 1972, T. Peter Brody and his team at Westinghouse developed the first AM (Active Matrix) LCD displays, employing thin film transistors in each picture element to independently control the state of the liquid crystal in each pixel. Today, virtually all color LCD panels manufactured are of the AM type.

Twenty years later, in 1992 NEC and Hitachi became the first AM LCD manufacturers to use IPS technology. This was a breakthrough for large-screen LCDs with an acceptable visual performance for flat-panel computer screens and television applications. By the end of 2007, LCD television sales surpassed those of CRTs for the first time. Within one year, the CRT was considered obsolete for television manufacturing and just about every other practical application.

At around the same time that LCDs were overtaking CRTs in television application, Apple launched their original iPhone equipped with a revolutionary user interface (UI) primarily enabled through a projected capacitive touch screen bonded to the LCD. Today, the vast majority of smartphones and tablets employ the same TFT LCD with capacitive touch screen module integration as the central component of their user interface design.

lcd screen history factory

Liquid crystal displays mainly use electro-optic effects, including dynamic scattering, distortion effects, phase change effects, guest-host effects, and electrically controlled birefringence effects. From the perspective of technological development, the liquid crystal display device (Liquid Crystal Display device, LCD) has mainly experienced four development stages.

In 1968, G.H. Heilmeier of the Princeton Institute of Radio Corporation of America (RCA) discovered the dynamic scattering phenomenon of liquid crystals. In the same year, the company successfully developed the world"s first dynamic scattering liquid crystal display (Dynamic Scattering LCD, DS-LCD). From 1971 to 1972, the first watch using DS-LCD was developed, marking the practical stage of LCD technology. Since the movement of ions in dynamic scattering easily destroys liquid crystal molecules, this display mode is quickly eliminated.

In 1971, Swiss M. Schadt et al. disclosed the twisting effect of nematic liquid crystals for the first time. In 1973, Japan"s Shengbao Company developed the Twisted Nematic-Liquid Crystal Display (TN-LCD), which was used to make digital displays for electronic calculators. Due to the low manufacturing cost and low price, TN-LCD was mass-produced in the 1970s and 1980s, mainly used for pen-segment digital display and simple character display.

In 1984, T. Scheffer discovered the super twisted birefringence effect and invented the super twisted nematic liquid crystal display (Su per Twisted Nematic-LCD, STN-LCD) technology. Compared with TN-LCD, STN-LCD has greatly improved display capacity and viewing angle. Because STN-LCD has the characteristics of high resolution, wide viewing angle and good contrast, it will soon be widely used in notebook computers, graphics processors and other office and communication equipment with large information capacity display, and become the mainstream product of this era.

In the late 1980s, Japanese manufacturers mastered the production technology of Thin Film Transistor LCD (TFT-LCD) and began mass production. In 1988, 10.4in TFT-LCD was born; in 1990, notebook computers using TFT-LCD were mass-produced; in 1998, liquid crystal display technology entered the application field of desktop displays, and reflective TFT-LCD began production. Based on the rapid development of active-matrix liquid crystal displays, LCD technology has begun to enter the stage of high-quality liquid crystal displays. With the further development of technology, the production cost of TFT-LCD has dropped significantly, eventually surpassing the market share of CRT. After entering the 21st century, with the development of TFT-LCD production lines from the 8.5th generation line to the 10th generation line, the increasing popularity of large-screen LCD TVs has fundamentally changed the face of the display industry. The liquid crystal display industry has developed into a new industry with an annual output value of hundreds of billions of dollars, occupying a leading position in the field of information display.

lcd screen history factory

Surely, those who are part of the so-called Z generation have never used a screen other than liquid crystal or LCD (liquid crystal display). Even so, many people do not know how this relatively recent technology arises, and that it has become an irreplaceable element in our day to day. For this reason, and to make you even more familiar with it, today we bring you a few brief points on the history of the LCD and its predecessors. They will surprise you, we assure you!

Before entering fully into the history of the LCD, it does not hurt to know how and when the first screens were created. To do this, we traveled to the 1880s. At that time, three researchers – the French Constantin Senlecq, the Portuguese Adriano de Paiva and the American George R. Carey – made in parallel an important discovery: that an image could be transmitted if projected on a photosensitive surface of selenium, due to the photoelectric properties of this material. This principle would be the base of any system of emission of images in movement.

A few years later, in 1897, an advance would come that has survived practically to this day, and that can still be seen in some houses: the cathode ray tube (CRT). Its architect was another German inventor, Karl Ferdinand Braun, which is why it is also called Braun tube. The first cathode ray screen was powered by a cold cathode diode, which was an improvement on the so-called Crookes tube, to which a layer of phosphor was added. The cathode is the source that produces electrons, that is, a negatively charged metal electrode with one or more anodes. The first hot cathode diode was developed by J. B. Johnson and H. W. Weinhart, from the company Western Electric, and was marketed from 1922 by this company.

Before continuing with the history of LCD and liquid crystal precursors, this concept should be clarified: what is a cathode ray tube? Roughly, it is a technology that allows images to be visualised by means of a cathode ray beam – that is, electron currents in empty tubes – directed against a glass screen that has a lead and phosphor coating. One of its main components, the electron gun, is formed by a cathode, that is, a negatively charged metal electrode, with one or more anodes (positively charged electrodes). The cathode emits electrons attracted to the anode, thus acting as an accelerator and as a concentrator for the electrons. In this way, a flow of electrons directed towards the screen is created. A magnetic field is responsible for diverting the electrons from left to right and from bottom to top.

Returning to the history of the LCD, we reached a key date: 1959, when Mohamed M. Atalla and Dawon Kahng, from Bell Labs, brought to light the MOSFET, a transmitter that would be presented the following year and that would be improved in 1962 by American Paul K. Weimer, who would create the thin-film transistor called TFT. Soon after, in 1968, the idea of ​​an LCD, or liquid crystal display, based on the aforementioned TFT would be presented by Bernard J. Lechner of RCA Laboratories. Lechner, F. J. Marlowe, E. O. Nester, and J. Tults would implement Lechner’s proposal that same year.

The first LCD screens were introduced to the market in 1971,but it was not until 1985 when the firm Matsushita Electric would manufacture a flat screen with a size and resolution sufficient to incorporate it into personal computers.

But there is no need to anticipate events. Back in the 1970s, in 1973, Peter Brody, JA Asars, and GD Dixon, employees of Westinghouse Research Laboratories, tested the first thin-film transistor LCD (TFT LCD) screen, and the following year Brodyy Fang-Chen Luo developed successfully the first active matrix LCD (or AM, a type of addressing used in flat panel displays), using a TFT transistor for this.

In 1982, Japan began marketing the first pocket LCD televisions, based on active matrix technology. In 1984, the Thomson Central Laboratory developed the first colour LCD monitor, and in 1988, a team from Sharp Company led by Japanese engineer T. Nagayasu introduced a 14-inch (35.6 cm) full-colour LCD screen, which would put an expiration date on monitors that worked with tubes in cathode rays. Its sale in Europe began in late 1995, at a price equivalent to about € 750. Today, all high-quality, high-resolution LCD displays employ TFT-based active matrix displays.

lcd screen history factory

They filed a Swiss patent for the idea on Dec. 4, 1970. Though it attracted scant attention at the time, the milestone now stands as the birthdate of the liquid crystal display (LCD) – the technological platform which has transformed consumer electronics and presented a brilliant new way to view the world.

Early LCD developers took a few years to figure out that specialty glass, not plastic, was the best stable substrate for the delicate LCD circuitry and the color backplane component. Once they did, they turned increasingly to Corning to supply them with extraordinarily stable, flat, fusion-formed glass, able to preserve the critical properties of the liquid crystal and withstand high processing temperatures.

And LCDs rapidly transformed from “passive matrix” models, mostly used in pocket calculators and digital watches, to “active matrix” LCDs in which each sub-pixel was controlled with an isolated thin-film transistor. AMLCDs enabled wide viewing angles; brilliant, fast-moving images; and high-resolution images that had never been possible before.

Corning Incorporated was a critical player in this development, and eventually became the world’s leading supplier of LCD glass substrates. And Corning® EAGLE XG® Glass, the world’s first LCD substrate with no arsenic or other heavy metals, went on to exceed sales of 25 billion square feet, making it one of the most successful products in Corning’s history.

lcd screen history factory

In 1968 a team of scientists and engineers from the Radio Corporation of America (RCA) announced the creation of a new form of electronic display that relied on an obscure set of materials known as liquid crystals. At a time when televisions used bulky cathode-ray tubes to produce an image, these researchers demonstrated how liquid crystals could electronically control the passage of light. One day, they predicted, liquid-crystal displays (LCDs) would find a home in clocks, calculators, and maybe even televisions that could hang on the wall. Half a century later RCA’s dreams have become a reality, and liquid crystals are now the basis for a multibillion-dollar global industry. Yet the company responsible for producing the first LCDs was unable to capitalize on its invention.

This talk considers how RCA scientists and engineers attempted to transform their early LCD prototypes into commercial products. Drawing on laboratory notebooks and internal reports from RCA’s corporate archive, as well as oral history interviews and artifacts from the Science History Institute’s collections, Gross explores the manufacturing and managerial challenges confronting members of RCA’s technical staff and the factors that led to the company’s ultimate withdrawal from the LCD market.

Benjamin Gross is vice president for research and scholarship at the Linda Hall Library. He was previously a research fellow at the Science History Institute and consulting curator of the Sarnoff Collection at the College of New Jersey. His first book, The TVs of Tomorrow: How RCA’s Flat-Screen Dreams Led to the First LCDs, was published in 2018 by the University of Chicago Press as part of the Science History Institute’s Synthesis series. He earned a BA in history from Yale University and a PhD in the history of science from Princeton University.

Lunchtime Lectures are a series of (mostly) weekly, informal talks on the history of chemistry or related subjects, including the history and social studies of science, technology, and medicine. Based on original research (sometimes still in progress), these talks are given by scholars for an audience of the Institute staff and fellows and interested members of the public.