sainsmart 3.2 tft lcd display library for sale

SainSmart 3.2" TFT LCD Displayis a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

sainsmart 3.2 tft lcd display library for sale

The 3.2 inch TFT LCD module is a special design for Raspberry Pi for portable application. It features a 3.2” display with 320x240 16bit color pixels and resistive touchscreen.

The 3.2 inch TFT LCD module is a special design for Raspberry Pi for portable application. It features a 3.2” display with 320x240 16bit color pixels and resistive touchscreen.

sainsmart 3.2 tft lcd display library for sale

The 3.2 inch TFT LCD module is a special design for Raspberry Pi for portable application. It features a 3.2�display with 320x240 16bit color pixels and resistive touch screen. The LCD is well mated with Pi board and interface with Pi via the high speed SPI port, and support console, X windows, displaying images or video etc. It also provides 4 press buttons for user defined functions.

sainsmart 3.2 tft lcd display library for sale

Reason: The hooks on the backight of ER-TFT032-3.1 is always complained by most customers for inconvenient assembly. So we cancel the hooks in the new version of ER-TFT032-3.2.That"s the only difference for these two versions.

ER-TFT032-3.2 is 240x320 dots 3.2" color tft lcd module display with ILI9341 controller and optional 4-wire resistive touch panel and 3.2 inch capactive touch panel with controller FT6236,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image.It supports 8080 8/16-bit parallel,3/4-wire serial interface. FPC with zif connector is easily to assemble or remove.Lanscape mode is also available.

Of course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.2"TFT Touch Shield with Libraries, Examples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and development kit at the bottom of this page.

sainsmart 3.2 tft lcd display library for sale

Great display, nice size and response. If you plan on using an Arduino, please get the shield also. It will save you a ton of time and studying( the 40 pin connector on the back must be broken out in groups and resistors put in that dump to ground. )..

sainsmart 3.2 tft lcd display library for sale

Arduino mega + 3.2" tft case. there are 2 different case bottoms, 1 without a hole and 1 with. both cases have a cutout for powering the Mega from a USB.

ER-TFTM032-3 is 240x320 pixels 3.2"tft lcd module display with ili9341 controller,adaptor board,optional touch panel,memory chip or card,font chip.Souce from EastRising/buydisplay.com

This is an update to the FreeTouchDeck case by Dustin Watts that holds a 3.2" TFT display since I bought a different size than Dustin used. I modified the Top_for_TFT_with_Headers.stl file. I"ve also uploaded the Fusion 360 file.... I use hot glue to...

Simplified model of a 3.5 inch LCD for Raspberry Pi. ...I used the usb connectors from this model: Raspberry Pi 3 Model B Reference Design Solidworks CAD Raspberry-Pi Raspberrypi Rpi

I needed an accurate model of the 2.8" TFT shield for the Arduino. ...It was a bit of a challenge as these are not manufactured to the tightest tolerances so I added some standard deviation to the model so that it should fit most use cases.- Pinheader...

Models from MSP2202 (2.2") and MSP3218 (3.2") TFT display modules (or similar), which might be handy for a placeholder in designs, for example enclosures. Please compare MSP2202 and MSP3218 datasheets with your displays to confirm that there are no...

adjustable angle mount for Sainsmart 12864 LCD case on 20x20 profile You can use the Display as a remote device.http://www.thingiverse.com/thing:327209 is perfect for using. Thanks. ...

After my first attempt to mount the 3.2" MKS TFT display instead of the Creality display in the original Creality CR10 electronics box (https://www.thingiverse.com/thing:3440802), I found the option "BABYSTEPS" could not be selected using the TFT...

Here you will find a simple frame for the 3.2 "TFT touch screen ILI9341. This frame is designed for gluing on a plastic box. Details of the display can be seen in the attached pictures. ... The display holds four M3x6 screws on the frame.

A small mountable holder for a fasttech LCD module. Mounting pins are a little tight but can be snapped off if not needed. Mount holes are designed for assorted leg or spacer designs. Holes are 5mm dia, 34mm apart and hole centre 5.5mm from edge if...

"lcd hinge" is for behind the lcd. "base hinge" fits into the duo case pins and takes the lcd hinge shaft My hinge snapped when I tried to jam the shaft into it, blue pvc pipe glue visible on assembled photos.. ...does the job.

Case for the ESP32 D1 mini and a TFT 3.2 inch (ILI9341). I designed this to connect a ham radio transceiver FT-817 or FT-818 to the display. The USB port of the ESP32 will later only be used for programming, while the cable on the back is connected...

ER-TFTM043A2-3 is 4.3" tft lcd module display with capacitive touch panel,serial and parallel interface,RA8875 controller,microsd card slot,font ic,flash chip.Souce from EastRising/buydisplay.com

ER-TFTM043-3 is 4.3" tft lcd module display with serial,spi,i2c and parallel interface,RA8875 controller,microsd card slot,font ic,flash chip.Souce from EastRising/buydisplay.com

ER-TFTM043-4 is 4.3" lcd touch screen module display tft with ssd1963 controller board, mcu 6800,8080 parallel interface,micro sd card slot,font,flash chip.Souce from EastRising/buydisplay.com

ER-TFTM043A2-7R is 4.3"800x480 tft lcd display with RA8875 controller board, optional touch panel,serial/parallel interface,micro sd card slot,font,flash chip.Souce from EastRising/buydisplay.com

ER-TFTM040-1 is 4"(3.97") tft lcd display with NT35510 controller,breadkout board,optional resisitive touch panel,memory chip or card,font chip.Souce from EastRising/buydisplay.com

ER-TFTM024-3 is 2.4"tft lcd touch shield qvga 320x240 dots,ili9341 controller,available for touch panel controller,sd card slot,font chip,flash,serial+parallel.Souce from EastRising/buydisplay.com

sainsmart 3.2 tft lcd display library for sale

3.2"inch TFT LCD Module Display Power than SainSmart w/Resistive Touch,Tutorial. 3.2"TFT LCD Display with Breakout Board andwith Resistive Touch Panel. 3.2"TFT LCD Display with Breakout Boardand with Capacitive Touch Panel. I t supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in optional microSD card slot, optional. Description E R-TFTM032-3 is 240x320 dots 3.2" color tft lcd module display with ILI9341 controller board,superior display quality,super wide viewing angle and easily controlled by MCU such as 8051, PIC, AVR, ARDUINO,ARM and Raspberry PI.It can be used in any embedded systems,industrial device,security and hand-held equipment which requires display in high quality and colorful image. I t supports 8080 8-bit /9-bit/16-bit /18-bit parallel ,3-wire,4-wire serial spi interface.Built-in optional microSD card slot, optional 3.2 inch 4-wire resistive touch panel with controller XPT2046 an d 3.2 inch capacitive touch panel with controller FT6236 . It"s optional for font chip, flash chip and microsd card. W e offer two types connection,one is pin header and the another is ZIF connector with flat cable mounting on board by default and suggested. Lanscape mode is also available. O f course, we wouldn"t just leave you with a datasheet and a "good luck!".Here is the link for 3.2"TFT Touch Shield with Libraries, EXxamples.Schematic Diagram for Arduino Due,Mega 2560 and Uno . For 8051 microcontroller user,we prepared the detailed tutorial such as interfacing, demo code and Development Kit at the bottom of this page.3D drawing is available. 3.2 inch Series TFT Display L ist ↓ Display Part Number Description ER-TFT032-2(RTP) 3.2" TFT LCD 240x320 Pixels Display with Controller ic ILI9320 and Resistive Touch Panel ER-TFT032-3.1(RTP) 3.2" TFT LCD 240x320 Pixels Display with Controller ic ILI9341 and Resistive Touch Panel ER-TFT032-3.1(CTP) 3.2" TFT LCD 240x320 Pixels Display with Controller ic ILI9341 and Capacitive Touch Panel ER-TFT032A3-3(RTP) 3.2" TFT LCD 240x320 Pixels Display with Controller ic ST7789V and Resistive Touch Panel ER-TFT032A3-3(CTP) 3.2" TFT LCD 240x320 Pixels Display with Controller ic ST7789V and Capacitive Touch Panel ER-TFTM032-3(RTP) 3.2"TFT LCD Display with Breakout Board and with Resistive Touch Panel ER-TFTM032-3CTP) 3.2"TFT LCD Display with Breakout Board and with Capacitive Touch Panel W hat"s inc luded in the package ↓ Num Accessory Name Qty 1 3.2 inch TFT Display with Breakout Board 1 2 3.2" Resistive Touch Panel with controller XPT2046 1 * The touch panel is attached on the display by default. * We default pin header connection , 5V power supply and 4-wire serial interface .Please send message if you want FFC connection , 3.3V power supply and other interface , or buy from our own store [link removed by eBay] . O ptional Accessory List (Click the part number to buy accessories) ↓ Category Part Number Description Flash Chip W25Q128FVSG WINBOND (P/N:25Q128FVSG) 128M Bit Flash Chip MicroSD Card ER3297 New Original MicroSD (TF) 1GB Memory Card Font 1 ER3300-1 15X16 dots fonts chip,it supports Chinese,Japanese(compatible with Unicode) and 150 countries character Font 2 ER3301-1 11X12,15X16 dots fonts chip, it supports Chinese,ASCII and 150 countries character Font 3 ER3303-1 11X12 , 15X16 , 24X24 dots Chinese font, It supports GB2312,GB12345 and ASCII character, also compatible with Unicode Font 4 ER3304-1 12x12,16x16,24x24,32x32 dot matrix Chinese font, supporting GB2312 Simplified Chinese and ASCII * If choose the above accessories,we"ll mount on display by default except the flash chip. Ebay doesn"t allow listings to contain external links,so the documents link may be invalid. Please copy the below entire link to your browser for checking our documents(at the bottom of the page) or for bulk order. https://www.buydisplay.com/default/3-2-inch-capacitive-touchscreen-240x320-tft-lcd-module-display D atasheet - TFT LCD Display,Controller,Connector ↓ Format Documents Name (Downloadable) Version Language Update Date Size 3.2 inch 240x320 Dots Display with Adaptor Board Datasheet 2.0 English Jan-09-2016 709K Controller ILI9341 Datasheet 1.0 English Jul-02-2013 3.2M 40 Pins 1.00mm Pitch ZIF Connector Drawing 1.0 English Apr-19-2013 268K Datasheet - Touch Panel with its Controller IC,Connector ↓ Format Documents Name (Downloadable) Version Language Update Date Size 3.2 inch 4-Wire Resistive Touch Panel Drawing 1.0 English Jun-06-2016 302K Resistive Touch Panel Controller XPT2046 Datasheet 1.0 English May-08-2007 579K 3.2 inch Capacitive Touch Panel Outline Drawing 1.0 English Dec-02-2015 254K Capacitive Touch Panel Controller FT6236 Datasheet 1.0 English Jul-24-2014 674K Datasheet for Flash Memory,MicroSD Card Slot ↓ Format Documents Name (Downloadable) Version Language Update Date Size 128M-BIT Flash W25Q128FV Datasheet 1.0 English Oct-01-2012 1.0M MicoSD Card Slot Drawing 1.0 English Dec-12-2013 1.2M Datasheet for Font Chip ↓ Format Documents Name (Downloadable) Version Language Update Date Size Summary for Font Chip 1.0 English Aug-07-2013 133K ER3300-1 Datasheet 1.0 English May-08-2010 621K ER3301-1 Datasheet 1.0 English Mar-27-2014 2.0M ER3303-1 Datasheet 1.0 English Oct-01-2013 688K ER3304-1 Datasheet 1.0 English Apr-12-2013 935K T utorial - 8051 Microcontroller Demo Code,Interfacing,Development Board&Kit ↓ Format Documents Name (Downloadable) Version Language Update Date Size 3-Wire SPI,Touch Panel,Font Chip,Flash,MicroSD Demo Code 1.0 English Nov-28-2014 180K 4-Wire SPI,Touch Panel,Font Chip,Flash,MicroSD Demo Code 1.0 English Nov-28-2014 180K 8080 8-Bit,Touch Panel,Font Chip,Flash,MicroSD Demo Code 1.0 English Nov-28-2014 179K 8080 16-Bit,Touch Panel,Font Chip,Flash,MicroSD Demo Code 1.0 English Nov-28-2014 179K ER-TFTM032-3 Interfacing Document 1.0 English Aug-2014-23 176K 8051 Microcontroller Development Board & Kit for ER-TFTM032-3 N/A N/A N/A N/A Specification Gross Weight (kg)0.0760 ManufacturerEastRising Continuity SupplyWe promise the long term continuity supply for this product no less than 10 years since 2015. Part NumberER-TFTM032-3 Display Format240x320 Dots Interface8080 8-bit Parallel , 8080 16-bit Parallel , 3-Wire Serial SPI, 4-Wire Serial SPI IC or EquivalentILI9341 AppearanceRGB on Black Diagonal Size3.2” ConnectionPin Header, FFC-Connector Outline Dimension64.9W)x89.4(H)mm Visual Area48.60x64.80mm Active Area48.60(W)x64.80(H)mm Character SizeNo Dot (Pixel) SizeNo Dot (Pixel) Pitch0.2025x0.2025 IC PackageSMT Display TypeTFT-LCD Color Touch Panel OptionalYes Sunlight ReadableNo Response Time(Typ)25ms Contrast Ratio(Typ)500:1 Colors65K/262K Viewing Direction12:00 Viewing Angle RangeLeft:60.0 , Right:60.0 , Up:50.0 , Down:50.0 degree Brightness(Typ)280cd/m2 Backlight ColorWhite Color Backlight Current (Typ)120mA Power Supply(Typ)3.3V, 5V Supply Current for LCM(Max)130mA (Vdd=3.3V) 150mA (Vdd=5V) Operating Temperature-20℃~70℃ Storage Temperature-30℃~80℃ Series NumberER-TFT032-3 About Us We"re China-based global display manufacturer named EastRising Technology Co.,Ltd. that has a worldwide business in design, produce and sell various displays for small to large companies since 2003. Our web site is [link removed by eBay] . Link for video and image of our production line and equipment. RoHS reports for all material we used on display module. Long Term Continuity Supply Warranty We promise the long terms continuity supply and would never end.Some controller IC may stop the production,we"ll try our efforts to find the completely compatible ones.If the equivalent is unavailable, we¡¯ll make the new tooling and use the most similar IC as replacement.So you don"t have to worry even your research time is very long. Shipping Policy All products will be checked carefully and packed in good condition before shipping.We e-mail all customers with tracking information immediately after the shipment for status tracking. Item will be shipped within 1 business day after the payment has been received. Customs fees and import duties for exports are buyer"s responsibility. Warranty All products are covered under our limited warranty, which provides all products are free of functional defects for a period of one year from the date of receipt and all products are free of visual defects and missing parts for a period of 30 days from the date of receipt.If a product was damaged during shipping or the order is incorrect,you must notify us within 2 days of receipt. How to return a product First request an RMA number from our sales with the information:part number,reason for return,order number. Our sales will then either issue an RMA number, ask you for more information, or offer to help you resolve a technical problem so that the product does not need to be returned. Products must arrive here in the same condition as when you received them. You are responsible for return shipping and insurance.Please make sure your RMA number is on the shipping label and on any documents you include with the product. After we receive the product, we inspect it to determine the cause of any defect, then update by email with our findings. This process usually takes five business days.

sainsmart 3.2 tft lcd display library for sale

If you are looking to get into Arduino development or are wanting to expand your existing collection, this is the perfect item for you. You get a great value for your money:SainSmart Mega 2560 board (Arduino clone) ($33)SainSmart TFTP display with touch screen and full sized SD card slot ($25)SainSmart TFTP Display adaptor ($15)Short USB cableI spent $46 for this setup, so the value is obvious.The Mega 2560 clone worked perfectly, the display worked perfectly and the adapter board mated them properly. I had purchased a Seeed 3.2" display at Radio Shack for $49. It had many issues and I returned it and used the money to buy this setup. This display is much faster than the Seeed display and the drivers were very easy to locate and install. Just google "UTFT drivers henningkarlsen" and get all of the UTFT drivers. Henning has several more drivers on his site, go ahead and get them all. They are very easy to use and configure. To use the drivers with this particular board (they are "universal drivers") use this setting for the board type:UTFT myGLCD(ITDB32S,38,39,40,41); // the ITB32s and correct pins for Mega shieldSo in summary:Pros:1. Great value for the money2. Everything worked greatCons:1. Not a "real" Arduino. You"ll have to decide for yourself how important this is to you.The nice thing about SainSmart is that they admit that they are cloning the Arduino boards. Most of the boards available on Amazon are counterfeits and the sellers are not particularly upfront about this. These counterfeit boards exactly copy the Arduino boards, definitely graying the area between legitimacy and piracy. SainSmart clearly marks their boards as clones. I appreciate this honesty in a company, especially when there"s more money to be made by tricking buyers into purchasing counterfeit boards.I highly recommend this package for anyone wanting to get into Arduino development or wanting a touchscreen. The value is great. Now, I guess I need to hunt down a 7" TFTP display to continue this adventure.[9/19/13] Update:After digging into the touch screen, I found that the UTouch lib had some serious accuracy problems, even after trying to use the calibration utility provided with the library. I re-wrote the lib and now I find that the accuracy of the screen is very good. To re-write the lib, you need to take these factors into account:1. The reading of the x values for the screen at the extreme left and right edges.2. The reading of the y values for the screen at the extreme top and bottom edges.This is confused a bit by the fact that the screen is natively in portrait mode. Which is to say that the long side is the y-axis and the short-side is the x-axis. I wanted a landscape mode, so I swapped the coordinates in my driver.Once you know the x and y extremes for the touch screen, simply use the map function to map them to the actual screen coordinates. This gives you a pretty accurate x and y for the display.The other issue I had was with how the touch screen was sampled. The library code polls the touch screen several times per read and averages the results to get a more accurate reading. In the case of "EXTREME" accuracy, it polls 10 times. The problem with this is that if you lift your stylus during the polling, the last few reads are bogus and throw the entire read off. You can see this happening in the SainSmart demo video that they posted for this device. The symptoms are that pixels get set on the sample paint program way far away from where the stylus is. Not cool! The fix is to only sample the screen if the screen is detecting the stylus as being pressed. You can do this by checking the dataAvailable() before each read in the poll. If there is no data available, don"t do the read.I wish I had a more effective method of sharing this information with the Arduino community.

sainsmart 3.2 tft lcd display library for sale

If you are looking to get into Arduino development or are wanting to expand your existing collection, this is the perfect item for you. You get a great value for your money:SainSmart Mega 2560 board (Arduino clone) ($33)SainSmart TFTP display with touch screen and full sized SD card slot ($25)SainSmart TFTP Display adaptor ($15)Short USB cableI spent $46 for this setup, so the value is obvious.The Mega 2560 clone worked perfectly, the display worked perfectly and the adapter board mated them properly. I had purchased a Seeed 3.2" display at Radio Shack for $49. It had many issues and I returned it and used the money to buy this setup. This display is much faster than the Seeed display and the drivers were very easy to locate and install. Just google "UTFT drivers henningkarlsen" and get all of the UTFT drivers. Henning has several more drivers on his site, go ahead and get them all. They are very easy to use and configure. To use the drivers with this particular board (they are "universal drivers") use this setting for the board type:UTFT myGLCD(ITDB32S,38,39,40,41); // the ITB32s and correct pins for Mega shieldSo in summary:Pros:1. Great value for the money2. Everything worked greatCons:1. Not a "real" Arduino. You"ll have to decide for yourself how important this is to you.The nice thing about SainSmart is that they admit that they are cloning the Arduino boards. Most of the boards available on Amazon are counterfeits and the sellers are not particularly upfront about this. These counterfeit boards exactly copy the Arduino boards, definitely graying the area between legitimacy and piracy. SainSmart clearly marks their boards as clones. I appreciate this honesty in a company, especially when there"s more money to be made by tricking buyers into purchasing counterfeit boards.I highly recommend this package for anyone wanting to get into Arduino development or wanting a touchscreen. The value is great. Now, I guess I need to hunt down a 7" TFTP display to continue this adventure.[9/19/13] Update:After digging into the touch screen, I found that the UTouch lib had some serious accuracy problems, even after trying to use the calibration utility provided with the library. I re-wrote the lib and now I find that the accuracy of the screen is very good. To re-write the lib, you need to take these factors into account:1. The reading of the x values for the screen at the extreme left and right edges.2. The reading of the y values for the screen at the extreme top and bottom edges.This is confused a bit by the fact that the screen is natively in portrait mode. Which is to say that the long side is the y-axis and the short-side is the x-axis. I wanted a landscape mode, so I swapped the coordinates in my driver.Once you know the x and y extremes for the touch screen, simply use the map function to map them to the actual screen coordinates. This gives you a pretty accurate x and y for the display.The other issue I had was with how the touch screen was sampled. The library code polls the touch screen several times per read and averages the results to get a more accurate reading. In the case of "EXTREME" accuracy, it polls 10 times. The problem with this is that if you lift your stylus during the polling, the last few reads are bogus and throw the entire read off. You can see this happening in the SainSmart demo video that they posted for this device. The symptoms are that pixels get set on the sample paint program way far away from where the stylus is. Not cool! The fix is to only sample the screen if the screen is detecting the stylus as being pressed. You can do this by checking the dataAvailable() before each read in the poll. If there is no data available, don"t do the read.I wish I had a more effective method of sharing this information with the Arduino community.

sainsmart 3.2 tft lcd display library for sale

SainSmart 3.2" TFT LCD Display is a LCD touch screen module. It has 40pins interface and SD card and Flash reader design. It is a powerful and mutilfunctional module for your project.The Screen include a controller SSD1289, it"s a support 8/16bit data interface , easy to drive by many MCU like STM32 ,AVR and 8051. It is designed with a touch controller in it . The touch IC is ADS7843 , and touch interface is included in the 40 pins breakout. It is the version of product only with touch screen and touch controller.

3.2"" TFT LCD module with 40 IO, it is more than a LCD module and colleagues also includes an SD card slot, whether with touch function. (Here we are with touch screen function module)

sainsmart 3.2 tft lcd display library for sale

In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.

As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.

Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.

I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.

After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.

So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels  down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.

sainsmart 3.2 tft lcd display library for sale

The display is driven by a ST7735R controller ( ST7735R-specifications.pdf (2.1 MB) ), can be used in a “slow” and a “fast” write mode, and is 3.3V/5V compatible.

Adafruit_ST7735 is the library we need to pair with the graphics library for hardware specific functions of the ST7735 TFT Display/SD-Card controller.

In the file dialog select the downloaded ZIP file and your library will be installed automatically. This will automatically install the library for you (requires Arduino 1.0.5 or newer). Restarting your Arduino software is recommended as it will make the examples visible in the examples menu.

The easiest way to remedy this is by extracting the GitHub ZIP file. Place the files in a directory with the proper library name (Adafruit_GFX, Adafruit_ST7735 or SD) and zip the folder (Adafruit_GFX, Adafruit_ST7735.zip, SD.zip). Now the Arduino software can read and install the library automatically for you.

Basically, besides the obvious backlight, we tell the controller first what we are talking to with the CS pins. CS(TFT) selects data to be for the Display, and CS(SD) to set data for the SD-Card. Data is written to the selected device through SDA (display) or MOSI (SD-Card). Data is read from the SD-Card through MISO.

So when using both display and SD-Card, and utilizing the Adafruit libraries with a SainSmart display, you will need to connect SDA to MOSI, and SCL to SCLK.

As mentioned before, the display has a SLOW and a FAST mode, each serving it’s own purpose. Do some experiments with both speeds to determine which one works for your application. Of course, the need of particular Arduino pins plays a role in this decision as well …

Note: Adafruit displays can have different colored tabs on the transparent label on your display. You might need to adapt your code if your display shows a little odd shift. I noticed that my SainSmart display (gree tab) behaves best with the code for the black tab – try them out to see which one works best for yours.

Low Speed display is about 1/5 of the speed of High Speed display, which makes it only suitable for particular purposes, but at least the SPI pins of the Arduino are available.

After connecting the display in Low Speed configuration, you can load the first example from the Arduino Software (“File” “Example” “Adafruit_ST7735” –  recommend starting with the “graphictest“).

Below the code parts for a LOW SPEED display (pay attention to the highlighted lines) – keep in mind that the names of the pins in the code are based on the Adafruit display:

#define sclk 4 // SainSmart: SCL#define mosi 5 // SainSmart: SDA#define cs 6 // SainSmart: CS#define dc 7 // SainSmart: RS/DC#define rst 8 // SainSmart: RES

#define sclk 13 // SainSmart: SCL#define mosi 11 // SainSmart: SDA#define cs 10 // SainSmart: CS#define dc 9 // SainSmart: RS/DC#define rst 8 // SainSmart: RES

You can name your BMP file “parrot.bmp” or modify the Sketch to have the proper filename (in “spitftbitmap” line 70, and in “soft_spitftbitmap” line 74).

#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)

#define SD_CS 4 // Chip select line for SD card#define TFT_CS 10 // Chip select line for TFT display#define TFT_DC 9 // Data/command line for TFT#define TFT_RST 8 // Reset line for TFT (or connect to +5V)

As you have seen before the Adafruit_GFX library (supported by the Adafruit_ST7735 library) makes this easy for us – More information can be found at the GFX Reference page.

This function is used to indicate what corner of your display is considered (0,0), which in essence rotates the coordinate system 0, 90, 180 or 270 degrees.

However, if your application needs your screen sideways, then you’d want to rotate the screen 90 degrees, effectively changing the display from a 128×160 pixel (WxH) screen to a 160×128 pixel display. Valid values are: 0 (0 degrees), 1 (90 degrees), 2 (180 degrees) and 3 (270 degrees).

tft.print("Lorem ipsum dolor sit amet, consectetur adipiscing elit. Curabitur adipiscing ante sed nibh tincidunt feugiat. Maecenas enim massa, fringilla sed malesuada et, malesuada sit amet turpis. Sed porttitor neque ut ante pretium vitae malesuada nunc bibendum. Nullam aliquet ultrices massa eu hendrerit. Ut sed nisi lorem. In vestibulum purus a tortor imperdiet posuere. ");

sainsmart 3.2 tft lcd display library for sale

It all started when I saw a SainSmart 3.2” 320 x 240 TFT LCD display with built-in display controller, touch screen controller, and SD card interface for sale on Amazon for $16. I already had an Arduino Uno on hand, so connecting these two devices seemed like a natural thing to attempt. Having never connected an LCD display to a microcontroller before, I was anxious to do so. Finding a well written driver library (see Resources) for this display put the icing on the cake, so I got to work wiring things together. In an afternoon, I wired the LCD display to the Arduino, downloaded and installed the UTFT driver on my Mac, and compiled and ran the demos that came with the driver. I was amazed at how easy this came together, and I had the basis for my personal light show running in less than a day.

After seeing the demos, I started thinking about what else I could make this LCD display do. So, I started pulling out code I had written over the years and began porting it to the Arduino Uno. First off was the Mandelbrot set. While the code worked and the results were beautiful, it took a full five minutes to generate which was okay because I wasn"t in a hurry. The long generation time was not too surprising because the Mandelbrot set requires a lot of floating point calculations which are time-consuming on any eight-bit processor.

Equally as pretty and in general less processor-intensive are the calculations of Julia sets. So, this is what I tried next, and some of the images produced took my breath away. I was starting to think this hardware combination had some merit, so one thing lead to the next and pretty soon I had about 16 different display patterns running including: the Mandelbrot set, Julia sets, plasma patterns, numerous spirograph patterns, star burst patterns, concentric squares and circles, and much more.

Since having this device on my desk/bench, I have found it helps me think. When I get stuck on something I"m working on, I glance over at the display for a few minutes taking my mind off of things which sometimes helps in finding a solution. For this reason, I"ve decided to call this device a “Desktop Contemplator.”

Once you"ve gathered the required components, wiring the Uno to the LCD display is easy, though rather tedious due to the number of wires involved. A lot of wires are required because I used a 16-bit interface between the Uno and the LCD display. I chose this instead of an eight-bit or serial interface in the interest of performance.

A drawback to using the 16-bit interface with the Arduino is that it uses up every available I/O pin. This means neither the touch screen component nor the SD card interface available on the LCD display"s PCB (printed circuit board) can be used. Luckily, neither were necessary for this application.

All required connections between the Uno and the LCD display are shown in Table 1 and the LCD display connector pinout is shown in Figure 1. Take your time when doing this wiring and double-check your work when you"re finished before applying power.

As I was writing this article, I discovered SainSmart also sells an assembly consisting of an Arduino Mega2560, a shield for connecting the LCD display to the Arduino, and the same LCD display we are using here. They officially call it the SainSmart Mega2560 Board+3.2 TFT LCD Module Display+Shield Kit for Atmel Atmega AVR 16AU Atmega8U2 and it’s available from their website (see Resources). If you were to buy this assembly, you could use it without having to do any wiring at all. A minor software change (to be described shortly) is required, however, to run the Contemplator sketch on this hardware.

A major advantage to using this hardware is that there are many more I/O lines available which allow access to the touch screen controller and the SD card interface if these are important to your application. Additionally, the Mega2560 has four times the RAM (8K) and eight times the Flash (256K) which would allow many more display patterns to be developed.

The Contemplator requires two pieces of software for its operation. The first is the UTFT driver library for the LCD display and the second is the Arduino sketch I wrote called Contemplator.ino (see Resourcesand the downloads for this article).

Once you have the hardware wired up, the UTFT driver installed, and the Contemplator sketch available, you can download the sketch via the Arduino IDE and watch the magic happen. You don"t need to understand how the Contemplator sketch works in order to use and/or appreciate it.

If, however, you would like to know how the various graphic display patterns work or if you would like to change the sketch to add new display patterns or remove existing ones, more in-depth knowledge is required. The best way to gather this knowledge is by knowing how the Contemplator is supposed to work and by studying the Contemplator sketch.

As mentioned in the introduction, the Contemplator provides 16 display patterns for our viewing pleasure. Code in the sketch randomly selects which display pattern is shown and makes sure that all 16 patterns are displayed before any are allowed to repeat. The flags array in the code controls this.

A display pattern will be shown for either 30 seconds or the time it takes for the pattern to generate and display itself — whichever is shorter. If display pattern generation takes less than 30 seconds, some patterns will repeat so you will see them numerous times in succession.

The software was designed so that the individual display patterns do not need to concern themselves with display duration timing. All they need to do is to call the function checkForTimeout()periodically and if their display time period has expired, their execution will come to an end and the next display pattern will be invoked. The setjmp and longjmp mechanism built into the Arduino programming language allows this to work. Google these terms if you are interested in how.

Another interesting aspect of the code is the use of an array (called patternFunctionsin the code) of function pointers to the display pattern routines. A display pattern is selected and executed via an index into the array with this single line of code:

A typical display pattern routine is shown next. This code draws a series of connected line segments until its time is up. Any display pattern routines you write would resemble this code:

As mentioned, a software change is required to the Contemplator.ino sketch if a SainSmart Mega2560 is used instead of an Arduino Uno. The normal instantiation of the LCD driver for an Uno is as follows:

I also wanted to make it structurally sound so it would last a long time. To this end, I epoxied four 3/4” wooden dowels (1/8” in diameter) to the top corners (component side) of the Arduino PCB. I then inserted .1” male header pins into all of the Arduino"s female headers, to which I would solder wires from the LCD display"s connector.

I then epoxied the other end of the four dowels glued to the Arduino onto the back of the LCD display"s PCB, making sure to miss all of the components and to orient the Arduino so the USB connector was opposite to the connector on the LCD display. I made sure I left enough space so I could solder to the display"s connector pins.

I wrapped this assembly with a rubber band while the epoxy dried. Once the glue cured and the assembly was stable, I soldered short wires from the display connector to the appropriate header pins on the Arduino as specified in Table 1.

The cutout for the LCD display in the front panel was sized so that the actual display fit through the cutout but the display"s PCB did not. During final assembly, I put a small amount of silicon caulking onto each corner of the display"s PCB and pressed the display into the cutout. Once dried, the silicon holds the display/Arduino assembly in place, but it can easily be removed for servicing.

At this point, I downloaded code into the Arduino to make sure everything was still working. Once I was satisfied all was well, I placed some 3/8” foam on the back of the Arduino"s PCB, put the rear panel in place, and screwed it on. The foam provided just enough thickness to gently hold the display/Arduino assembly in place.

Finally — because the frame around the LCD is white — I cut pieces of black cardboard and glued them onto the white frame to cover it. With that, the Contemplator was complete and has been sitting on my workbench/desk ever since.

Flashing LCD displays and other blinky things are not for everyone. For me, having a personal light show on my desk is a treat. There is something neat about have a little device with its one purpose in life to continually generate images like these to calm and amaze me.