lcd panel ips vs tn factory

In conclusion, the type of panel to be used is determined by the purpose of the monitor. In photography, graphics design, video and picture edits, where the displayed colors, as well as the viewing angle and contrast, are of great importance, the IPS should be considered. If the refresh rate, price and the reaction time is needed more than the other characteristics, the TN panel should be considered.

However, an IPS panel can have a higher reaction and refresh rate, but this will lead to an increase in the cost of production as well as the cost of acquiring it. It might also lead to a great increase in power consumption.

For our PresentationPoint users and digital signage in general, we can transform this recommendation as follows. For advertising and public information screens e.g. in hotels: use an IPS panel. In areas where the graphics qualities are not that important, use a TN panel. Think here about information screens in factories.

lcd panel ips vs tn factory

So, why would anyone ever buy a TN panel? For starters, they’re cheap. They don’t cost a lot to produce, so they’re often used in the most budget-friendly options. If you don’t value color reproduction or need excellent viewing angles, a TN panel might be fine for your office or study.

TN panels also have the lowest input lag—typically around one millisecond. They can also handle high refresh rates of up to 240 Hz. This makes them an attractive option for competitive multiplayer games—especially eSports, where every split-second counts.

IPS technology was developed to improve upon the limitations of TN panels—most notably, the poor color reproduction and limited viewing angles. As a result, IPS panels are much better than TNs in both of these areas.

In particular, IPS panels have vastly superior viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you’ll notice very little shift in color when you view one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you’ll find on VAs.

While high refresh rates were typically reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the 27-inch 1080p ASUS VG279QM uses an IPS panel and supports 280 Hz.

Previously, TNs exhibited less input lag than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Despite the gap being closed, you’ll still pay more for an IPS panel with such a low response time than you would for a TN with similar specs. If you’re on a budget, expect a response time of around four milliseconds for a good IPS monitor.

One last thing to be aware of with IPS panels is a phenomenon called “IPS glow.” It’s when you see the display’s backlight shining through it at more extreme viewing angles. It’s not a huge problem unless you view the panel from the side, but it’s something to keep in mind.

VA panels are something of a compromise between TN and IPS. They offer the best contrast ratios, which is why TV manufacturers use them extensively. While an IPS monitor typically has a contrast ratio of 1000:1, it’s not unusual to see 3000:1 or 6000:1 in a comparable VA panel.

In terms of viewing angles, VAs can’t quite match the performance of IPS panels. Screen brightness, in particular, can vary based on the angle from which you’re viewing, but you won’t get the “IPS glow.”

VAs have slower response times than TNs and the newer Nano IPS panels with their one-millisecond response rates. You can find VA monitors with high refresh rates (240 Hz), but the latency can result in more ghosting and motion blur. For this reason, competitive gamers should avoid VA.

Compared to TNs, VA panels do offer much better color reproduction and typically hit the full sRGB spectrum, even on lower-end models. If you’re willing to spend a bit more, Samsung’s Quantum Dot SVA panels can hit 125 percent sRGB coverage.

For these reasons, VA panels are seen as the jack of all trades. They’re ideal for general use, but they either match or fall short in most other areas except contrast ratio. VAs are good for gamers who enjoy single-player or casual experiences.

When compared to CRT monitors, all LCD panels suffer from some form of latency issue. This was a real problem when TN panels first appeared, and it’s plagued IPS and VA monitors for years. But technology has moved on, and while many of these issues have been improved, they haven’t been eliminated entirely.

Uneven backlighting is another issue you’ll find on all panel types. Often this comes down to overall build quality—cheaper models slack on quality control to save on production costs. So, if you’re looking for a cheap monitor, be prepared for some uneven backlighting. However, you’ll mostly only notice it on solid or very dark backgrounds.

LCD panels are also susceptible to dead or stuck pixels. Different manufacturers and jurisdictions have different policies and consumer laws covering dead pixels. If you’re a perfectionist, check the manufacturer’s dead-pixel policy before you buy. Some will replace a monitor with a single dead pixel for free, while others require a minimum number.

Office or study use: Your budget should be your primary concern here. VA is the do-it-all panel, with superior viewing angles to TN, but either would do the trick. You can save some money because you don’t need high refresh rates or ultra-low latency. They’re still nice, though. You’ll see a noticeable difference in smoothness just when moving the Windows cursor on a monitor with a 144 versus 60 Hz refresh rate.

Photo and video editors/Digital artists: IPS panels are still generally favored for their ability to display a wide gamut of colors. It’s not unusual to find VA panels that also cover a wide gamut (125 percent sRGB, and over 90 percent DCI-P3), but they tend to exhibit more motion blur during fast-paced action than IPS panels. If you’re serious about color accuracy, you’ll need to properly calibrate your monitor.

Programmers who mount monitors vertically: You might think TN panels are great for programmers, but that’s not necessarily the case. TN panels have particularly bad viewing angles on the vertical axis. If you mount your monitor in portrait mode (as many programmers and mobile developers do), you’ll get the worst possible viewing angles from a TN panel. For the best possible viewing angles in this scenario, invest in an IPS display.

Competitive online gamers: There’s no question TN panels are still favored in the eSports world. Even the cheapest models have fast response times and support for high refresh rates. For 1080p gaming, a 24-inch will do just fine, or you could opt for a 1440p, 27-inch model without breaking the bank. You might want to go for an IPS panel as more low-latency models hit the market, but expect to pay more.

Non-competitive, high-end PC gamers: For a rich, immersive image that pops, a VA panel will provide a higher contrast ratio than IPS or TN. For deep blacks and a sharp, contrasting image, VA is the winner. If you’re okay with sacrificing some contrast, you can go the IPS route. However, we’d recommend avoiding TN altogether unless you play competitively.

Best all-rounder: VA is the winner here, but IPS is better in all areas except contrast ratio. If you can sacrifice contrast, an IPS panel will provide fairly low latency, decent blacks, and satisfactory color coverage.

If you can, check out the monitor you’re interested in in-person before you buy it. You can perform some simple ghosting and motion blur tests by grabbing a window with the mouse and moving it rapidly around the screen. You can also test the brightness, watch some videos, and play with the onscreen display to get a feel for it.

lcd panel ips vs tn factory

Everyday, we look at LCD display, TV, cell phone, monitor. It becomes a necessity in modern society. LCD panel is the most important part of an LCD display. It determines LCD screen"s performance, e.g. brightness, contrast, color and viewing angle. Therefore, picking the right type of LCD panel is critical to your application.

These names reflect the alignment of crystal molecules inside the LCD, and how they change when they are charged electrically. All liquid crystal displays change the alignment of liquid crystal molecules to work, but the manner in which they do so can drastically affect the image quality and response time. Each panel type has its advantages and disadvantages. The easiest way to choose between them is to decide which attributes are most important to your project. It mainly depends on what you use your LCD display for, and your budget.

TN is the most mature technology in LCD panel manufacturing. When there is no voltage difference between the two transparent electrodes, liquid crystal molecules are twisted 90 degrees, in combination of upper and bottom polarizers, allows light to pass through LCD. As voltage applied, crystal molecules are untwisted and aligned to the same direction, blocking light.

In IPS panel, crystal molecules are parallel to the glass substrates at initial stage, LCD is off. When the in-plane electrodes is charged, crystal molecules are rotated, modifying light"s direction. Which lights up the LCD display.

As its name suggests, VA panel"s liquid crystals are aligned vertically without charged. When a voltage is applied, the molecules tilt and modifying light direction.

So in summary, TN panels twist, IPS panels use a parallel alignment and rotate, while VA panels use a perpendicular alignment and tilt. These difference create LCD display with distinctive performance.

IPS LCD is the clear winner in this aspect. It has 178/178 viewing angle ratings. Which means you can look at IPS LCD display from any angle without the image shifting in color and contrast. VA LCD has pretty wide viewing angle, too. But it has contrast shifts at off-center angles. As for TN LCD, viewing angle is its weakest point.

Most TN LCDs have 6-bits colors. Manufacturers use frame rate control (FRC) to enhance its color performance. For IPS and VA panels, you can still find 6-bits entry level LCD. But most of them are 8-bits. And IPS technology can provide natively 10-bits colors.

Color gamut is another part that VA and IPS panels shine at. The best TN LCD can reach sRGB gamut. VA panels typically start with full sRGB coverage, and get to around 90% DCI-P3 coverage. With IPS LCD panel, you could find the best ones full DCI-P3 and Adobe RGB coverage. That is why you see most professional grade LCD displays use IPS panel.

There is no inherent differences among the three panel technologies, because LCD backlight is the main factor here. However, there is a big gap in terms of contrast ratio. TN LCD panel tends to have the lowest value among the three. IPS LCD screen sits in the middle can reach 1500:1. For VA panel, the best one can exceed 4500:1 easily. VA LCD display provides far darker screen than TN & IPS. That is why they are used in vehicle dashboard.

TN panel does have an advantage when it comes to refresh rate. The panel offers the best refresh rate and response time. This is the reason why most gaming LCD monitors are made of TN panel.

TN LCD provides the best refresh rate and economic solution. If your application requires wide viewing angles and good color presentation, VA panel is probably the choice. While IPS has the best overall visual performance, in general it is more expensive than the other two.

lcd panel ips vs tn factory

These cookies are used to track your activity on the BenQ website and other websites across the Internet, help measure the effectiveness of our advertising campaign and deliver advertisements that are more relevant to you and your interests. We use various advertising partners, including Amazon, Facebook, and Google. These cookies and other technologies capture data like your IP address, when you viewed the page or email, what device you were using and where you were. You can find out how to avoid them below.

lcd panel ips vs tn factory

The number of LCD (Liquid Crystal Display) panels available is vast but they can be separated into several different categories, based either on technology, construction method, or even individual brand.

After determining the application for your display you can start to identify which features need to take priority over others. Then you will be able to narrow your search and select the panel best suited for your use.

You get the highest performance at the lost cost. TN displays have evolved to the point where they have an incredibly fast response time, meaning they are great for entertainment purposes.

Regarding viewing angle, the TN display suffers particularly in the vertical direction; when watching a movie you must be sitting directly in front of the display to get the best picture.

Most TN displays can represent only 70% of NTSC, Adobe RGB and sRGB color gamuts, in some cases as little as 10 to 30% with the poorest quality displays.

When it comes to choosing a display for a creative application it is important to consider only a high-quality TN display as the color gamut will be higher.

The viewing angle in specific IPS screens has improved to the point where crystal-clear viewing is possible at 178 of the 180 degrees available to a user.

Contrast and blacks have also considerably improved. IPS panels do not lighten or show tailing light when touched, which can happen on TN panels; this is important for touch-screen devices such as smartphones and tablets.

However, as with all new technology, it is not perfect. The response times of IPS panels still falls behind those of TN technology. The cost of an IPS panel is also higher than that of a TN panel.

lcd panel ips vs tn factory

Again, IPS is the clear winner here. The vertical viewing angles are very similar to the horizontal ones on both IPS and VA panels. Unfortunately, this is one area where TN panels are usually much, much worse. TN monitors degrade rapidly from below, and colors actually inverse - resulting in a negative image that can be distracting. For this reason, if you decide to buy a TN monitor, look for one with an excellent height adjustment, or consider buying a VESA mounting arm, as you should mount TN monitors at eye level. Even when mounted properly, larger TN displays can appear non-uniform at the edges.

There"s usually not much difference between VA and IPS panels in terms of gray uniformity. It"s rare for monitors to have uniformity issues, and even on monitors that perform worse than average, it"s usually not noticeable with regular content. TN monitors tend to perform a bit worse than usual, though, and the top half of the screen is almost always darker than the rest, but that"s an artifact of the bad vertical viewing angles.

Black uniformity tends to vary significantly, even between individual units of the same model, and there"s no single panel type that performs the best. It"s rare for monitors to have good black uniformity, and almost every monitor we"ve tested has some noticeable cloudiness or backlight bleed. IPS and TN panels can look slightly worse due to their low contrast ratios, as the screen can take on more of a bluish tint when displaying dark scenes. Like with contrast, black uniformity issues usually aren"t very noticeable unless you"re looking at dark content and you"re in a dark room. If you only use your monitor in a bright environment, generally speaking, you don"t need to worry about black uniformity.

Historically, TN panels used to have the worst colors, as many of them were cheaper models that only supported 6-bit colors or used techniques like dithering (FRC) to approximate 8-bit colors. Most displays today, including TN models, are at least 8 bit, and many of them are even able to approximate 10-bit colors through dithering. New technologies, like LG"s Nano IPS and Samsung"s Quantum Dot, add an extra layer to the LCD stack and have significantly improved the color gamut of modern IPS and VA displays, leaving TN a bit behind. Between them, NANO IPS is slightly better, as it tends to offer better coverage of the Adobe RGB color space. Although the difference is minor, IPS panels still have a slight edge over VA and TN displays.

Although TN panels have caught up a bit in the SDR color space, they"re far behind when it comes to HDR, so if you"re looking for a good HDR color gamut, avoid TN panels. Between VA and IPS panels, the difference isn"t as significant; however, IPS panels still have a slight edge. The best VA panels top out at around 90% coverage of the DCI P3 color space used by most current HDR content. IPS panels go as high as 98% coverage of DCI P3, rivaling even some of the best TVs on the market. Due to the very high coverage of DCI P3 on both VA and IPS, the difference isn"t that noticeable, though, as most content won"t use the entire color space anyway.

Although not necessarily as noticeable to everyone as the differences in picture quality, there can also be a difference in motion handling between IPS, VA, and TN displays. TN panels historically offered the best gaming performance, as they had the highest refresh rates and extremely fast response times. Manufacturers have found ways to drastically improve the motion handling of VA and IPS panels, though, and the difference isn"t as pronounced.

LCD panel technology has changed drastically over the last few years, and the historical expectations for response time performance don"t necessarily hold anymore. For years, TN monitors had the fastest response times by far, but that"s started to change. New high refresh-rate IPS monitors can be just as fast.

VA panels are a bit of a strange situation. They typically have slightly slower response times overall compared to similar TN or IPS models. It"s especially noticeable in near-black scenes, where they tend to be significantly slower, resulting in dark trails behind fast-moving objects in dark scenes, commonly known as black smear. Some recent VA panels, such as the Samsung Odyssey G7 LC32G75T, get around it by overdriving the pixels. It results in much better dark scene performance but a more noticeable overshoot in brighter areas.

Within each of the three types of LCD we mentioned, other related panel types use the same basic idea but with slight differences. For example, two popular variants of IPS panels include ADS (technically known as ADSDS, or Advanced Super Dimension Switch) and PLS (Plane to Line Switching). It can be hard to tell these panels apart simply based on the subpixel structure, so we"ll usually group them all as IPS, and in the text, we"ll usually refer to them as IPS-like or IPS family. There are slight differences in colors, viewing angles, and contrast, but generally speaking, they"re all very similar.

There"s another display technology that"s growing in popularity: OLED. OLED, or organic light-emitting diode, is very different from the conventional LCD technology we"ve explored above. OLED panels are electro-emissive, which means each pixel emits its own light when it receives an electric signal, eliminating the need for a backlight. Since OLED panels can turn off individual pixels, they have deep, inky blacks with no blooming around bright objects. They also have excellent wide viewing angles, a near-instantaneous response time, and excellent gray uniformity.

OLED panels aren"t perfect, though. There"s a risk of permanent burn-in, especially when there are lots of static elements on screen, like the UI elements of a PC. There aren"t many OLED monitors available, either, but they"ve started to gain popularity as laptop screens and for high-end monitors, but they"re very expensive and hard to find. They"re also not very bright in some cases, especially when large bright areas are visible on screen. The technology is still maturing, and advances in OLED technology, like Samsung"s highly-anticipated QD-OLED technology, are promising.

As you can probably tell by now, no one panel type works best for everyone; it all depends on your exact usage. Although there used to be some significant differences between panel types, as technology has improved, these differences aren"t as noticeable. The two exceptions to this are viewing angles and contrast. If you"re in a dark room, a VA panel that can display deep blacks is probably the best choice. If you"re not in a dark room, you should focus on the other features of the monitor and choose based on the features that appeal to your exact usage. IPS panels are generally preferred for office use, and TN typically offers the best gaming experience, but recent advancements in VA and IPS technology are starting to change those generalizations. For the most part, the differences between each panel type are so minor now that it doesn"t need to be directly factored into your buying decision.

lcd panel ips vs tn factory

If you’ve ever begun searching for a new computer screen, chances are you’ve probably come across the term IPS. It’s at this point that you may be asking yourself, what is an IPS monitor? And how do I know if an IPS monitor is right for me?

So, why is this important? A monitor’s panel technology is important because it affects what the monitor can do and for which uses it is best suited. Each of the monitor panel types listed above offer their own distinctive benefits and drawbacks.

Choosing which type of monitor panel type to buy will depend largely on your intended usage and personal preference. After all, gamers, graphic designers, and office workers all have different requirements. Specific types of displays are best suited for different usage scenarios.

The reason for this is because none of the different monitor panel types as they are today can be classified as “outstanding” for all of the attributes mentioned above.

Below we’ll take a look at how IPS, TN, and VA monitors affect screen performance and do some handy summaries of strengths, weaknesses, and best-case uses for each type of panel technology.

IPS monitors or “In-Plane Switching” monitors, leverage liquid crystals aligned in parallel to produce rich colors. IPS panels are defined by the shifting patterns of their liquid crystals. These monitors were designed to overcome the limitations of TN panels. The liquid crystal’s ability to shift horizontally creates better viewing angles.

IPS monitors continue to be the display technology of choice for users that want color accuracy and consistency. IPS monitors are really great when it comes to color performance and super-wide viewing angles. The expansive viewing angles provided by IPS monitors help to deliver outstanding color when being viewed from different angles. One major differentiator between IPS monitors and TN monitors is that colors on an IPS monitor won’t shift when being viewed at an angle as drastically as they do on a TN monitor.

IPS monitor variations include S-IPS, H-IPS, e-IPS and P-IPS, and PLS (Plane-to-Line Switching), the latter being the latest iteration. Since these variations are all quite similar, they are all collectively referred to as “IPS-type” panels. They all claim to deliver the major benefits associated with IPS monitors – great color and ultra-wide viewing angles.

When it comes to color accuracy, IPS monitors surpass the performance of TN and VA monitors with ease. While latest-gen VA technologies offer comparative performance specs, pro users still claim that IPS monitors reign supreme in this regard.

Another important characteristic of IPS monitors is that they are able to support professional color space technologies, such as Adobe RGB. This is due to the fact that IPS monitors are able to offer more displayable colors, which help improve color accuracy.

In the past, response time and contrast were the initial weakness of IPS technology. Nowadays, however, IPS monitor response times have advanced to the point where they are even capable of satisfying gamers, thus resulting in a rising popularity in IPS monitors for gaming.

With regard to gaming, some criticisms IPS monitors include more visible motion blur coming as a result of slower response times, however the impact of motion blur will vary from user to user. In fact, mixed opinions about the “drawbacks” of IPS monitor for gaming can be found all across the web. Take this excerpt from one gaming technology writer for example: “As for pixel response, opinions vary. I personally think IPS panels are quick enough for almost all gaming. If your gaming life is absolutely and exclusively about hair-trigger shooters, OK, you’ll want the fastest response, lowest latency LCD monitor. And that means TN. For the rest of us, and certainly for those who place even a modicum of importance on the visual spectacle of games, I reckon IPS is clearly the best panel technology.” Read the full article here.

IPS monitors deliver ultra-wide 178-degree vertical and horizontal viewing angles. Graphic designers, CAD engineers, pro photographers, and video editors will benefit from using an IPS monitor. Many value the color benefits of IPS monitors and tech advances have improved IPS panel speed, contrast, and resolution. IPS monitors are more attractive than ever for general desktop work as well as many types of gaming. They’re even versatile enough to be used in different monitor styles, so if you’ve ever compared an ultrawide vs. dual monitor setup or considered the benefits of curved vs. flat monitors, chances are you’ve already come into contact with an IPS panel.

TN monitors, or “Twisted Nematic” monitors, are the oldest LCD panel types around. TN panels cost less than their IPS and VA counterparts and are a popular mainstream display technology for desktop and laptop displays.

Despite their lower perceived value, TN-based displays are the panel type preferred by competitive gamers. The reason for this is because TN panels can achieve a rapid response time and the fastest refresh rates on the market (like this 240Hz eSports monitor). To this effect, TN monitors are able to reduce blurring and screen tearing in fast-paced games when compared to an IPS or VA panel.

On the flip side, however, TN panel technology tends to be ill-suited for applications that benefit from wider viewing angles, higher contrast ratios, and better color accuracy. That being said, LED technology has helped shift the perspective and today’s LED-backlit TN models offer higher brightness along with better blacks and higher contrast ratios.

The greatest constraint of TN panel technology, however, is a narrower viewing angle as TN monitors experience more color shifting than other types of panels when being viewed at an angle.

Today’s maximum possible viewing angles are 178 degrees both horizontally and vertically (178º/178º), yet TN panels are limited to viewing angles of approximately 170 degrees horizontal and 160 degrees vertical (170º /160º).

In fact, TN monitor can sometimes be easily identified by the color distortion and contrast shifting that’s visible at the edges of the screen. As screen sizes increase, this issue becomes even more apparent as reduced color performance can even begin to be seen when viewing the screen from a dead-center position.

For general-purpose use, these shifts in color and contrast are often irrelevant and fade from conscious perception. However, this color variability makes TN monitors a poor choice for color-critical work like graphic design and photo editing. Graphic designers and other color-conscious users should also avoid TN displays due to their more limited range of color display compared to the other technologies.

TN monitors are the least expensive panel technology, making them ideal for cost-conscious businesses and consumers. In addition, TN monitors enjoy unmatched popularity with competitive gamers and other users who seek rapid graphics display.

Vertical alignment (VA) panel technology was developed to improve upon the drawbacks of TN. Current VA-based monitors offer muchhigher contrast, better color reproduction, and wider viewing angles than TN panels. Variations you may see include P-MVA, S-MVA, and AMVA (Advanced MVA).

These high-end VA-type monitors rival IPS monitors as the best panel technology for professional-level color-critical applications. One of the standout features of VA technology is that it is particularly good at blocking light from the backlight when it’s not needed. This enables VA panels to display deeper blacks and static contrast ratios of up to several times higher than the other LCD technologies. The benefit of this is that VA monitors with high contrast ratios can deliver intense blacks and richer colors.

MVA and other recent VA technologies offer the highest static contrast ratios of any panel technology. This allows for an outstanding visual experience for movie enthusiasts and other users seeking depth of detail. Higher-end, feature-rich MVA displays offer the consistent, authentic color representation needed by graphic designers and other pro users.

There is another type of panel technology that differs from the monitor types discussed above and that is OLED or “Organic Light Emitting Diode” technology. OLEDs differ from LCDs because they use positively/negatively charged ions to light up every pixel individually, while LCDs use a backlight, which can create an unwanted glow. OLEDs avoid screen glow (and create darker blacks) by not using a backlight. One of the drawbacks of OLED technology is that it is usually pricier than any of the other types of technology explained.

When it comes to choosing the right LCD panel technology, there is no single right answer. Each of the three primary technologies offers distinct strengths and weaknesses. Looking at different features and specs helps you identify which monitor best fits your needs.

With the lowest cost and fastest response times, TN monitors are great for general use and gaming. VA monitor offers a step up for general use. Maxed-out viewing angles and high contrast ratios make VA monitors great for watching movies and image-intensive gaming.

IPS monitors offer the greatest range of color-related features and remain the gold standard for photo editing and color-critical pro uses. Greater availability and lower prices make IPS monitors a great fit for anyone who values outstanding image quality.

LCD or “Liquid Crystal Display” is a type of monitor panel that embraces thin layers of liquid crystals sandwiched between two layers of filters and electrodes.

While CRT monitors used to fire electrons against glass surfaces, LCD monitors operate using backlights and liquid crystals. The LCD panel is a flat sheet of material that contains layers of filters, glass, electrodes, liquid crystals, and a backlight. Polarized light (meaning only half of it shines through) is directed towards a rectangular grid of liquid crystals and beamed through.

Note: When searching for monitors you can be sure to come across the term “LED Panel” at some point or another. An LED panel is an LCD screen with an LED – (Light Emitting Diode) – backlight. LEDs provide a brighter light source while using much less energy. They also have the ability to produce white color, in addition to traditional RGB color, and are the panel type used in HDR monitors.

Early LCD panels used passive-matrix technology and were criticized for blurry imagery. The reason for this is because quick image changes require liquid crystals to change phase quickly and passive matrix technology was limited in terms of how quickly liquid crystals could change phase.

Thanks to active-matrix technology, LCD monitor panels were able to change images very quickly and the technology began being used by newer LCD panels.

Ultimately, budget and feature preferences will determine the best fit for each user. Among the available monitors of each panel type there will also be a range of price points and feature sets. Additionally, overall quality may vary among manufacturers due to factors related to a display’s components, manufacturing, and design.

If you’re interested in learning more about IPS monitors, you can take a look at some of these professional monitors to see if they would be the right fit for you.

Alternatively, if you’re into gaming and are in the market for TN panel these gaming monitor options may be along the lines of what you’re looking for.

lcd panel ips vs tn factory

In this guide, we’ll go over the differences between the most common monitor panels. We’ve compared IPS panels, TN panels, and VA panels to help give you more insight on your upcoming purchase.

However, the average consumer is clueless on the LCD panel technology used in their LCD monitor. A monitor’s panel type is a crucial feature that dictates how it performs as well as the kind of tasks it is best suited to accomplish. Therefore, it is important to understand panel technology so that you can be sure to choose the appropriate monitor for your gaming needs.

And, it is important for gamers to become familiar with these various panel technologies so that they can understand the variety of marketing buzzwords that companies use to describe the different LCD panel monitors on the market.

For instance, if you have $150 or less to spend, you’ll likely be forced to choose a TN panel. However, if you have more to spend, that doesn’t necessarily mean you will want to avoid a TN panel monitor, it just means that you will have more options.

This is an important question because the type of usage your monitor will see will be a big determining factor in which type of panel you can get. If you are going to use your monitor solely for competitive gaming—I’m talking CS:GO, LoL, COD, Dota 2, etc.—then a TN panel with a high refresh rate and low response time will be your best bet.

On the other hand, if you are more of a casual gamer, or you are planning on doing a lot of graphic design work on your monitor, you might want to look into a VA panel or an IPS panel. These panels don’t quite perform on the same level as a TN panel (in terms of response rate) and they cost a lot more for the same refresh rate. However, their picture quality is much better than TN panels and therefore, they are better-suited for graphics design work.

And, for that, a TN panel is your best bet as they offer lower response rates and higher refresh rates (at least, for the price you pay) than IPS or VA panels.

On the other hand, if you’re not playing super competitive games and you really enjoy the visual aspect of gaming, you’d be better off going with a VA or IPS panel as they offer better technology for displaying richer and more detailed visuals.

Some display types are appropriate for gaming, while others are best suited for graphics design. Other monitors are good for gamers who want the best visuals, while a different set of monitor panels work better for competitive gamers who need the most performance possible.

In this guide, we have broken down the different panel types and have explained their key features, as well as have compared them to their counterparts to help you better understand which type of panel would best meet your needs.

If you are looking at a monitor and it doesn’t clearly state what kind of panel it is, it’s probably safe to assume it’s a TN panel. What I mean by this is that, in most cases, for IPS panels and VA panels, the monitor manufacturer will include the panel type in the name of the monitor in an effort to make them stand out.

As I mentioned above, TN Panels owe their popularity to low manufacturing costs.However, they are also known for being able to deliver much higher response rates than IPS or VA panels. However, they are also known for being able to deliver much higher response rates than IPS or VA panels.

Because of their affordability, Twisted Nematic Displays with higher refresh rates (a feature you will pay more for) are more readily available than competing panels with high refresh rates.

The viewing angles on a TN panel are touted to be 160 degrees vertical and 170 degrees horizontal: these angles are considerably lower than the viewing angles presented by other panel technologies

Because of these problems, the consistency and color accuracy on a TN panel will suffer in comparison to IPS and VA panels, which, ultimately, makes this panel type less ideal for color-critical work such as photography and design, or even for gamers who want the best visuals possible.

The most notable selling point of In-Plane Switching panels is their consistency, improved viewing angles, and superior color accuracy when compared to other LCD technologies. Every color shade retains its unique identity and distinctiveness regardless of its position on the monitor.

These factors make IPS panels suitable monitors for graphic design work, as well as for gamers looking for the best visuals possible (but who don’t mind a drop in response rate.)

One significant glitch of IPS displays is a glow or sheen on the monitor when viewing dark content. This glitch becomes more noticeable when you are viewing the monitor from wider angles.

Perhaps the greatest strength of a VA panel is its ability to block light from the backlight when it isn’t wanted. This ability results in higher contrast ratios and deeper blacks which are several times better than that of the other LCD technologies discussed in this guide.

As power users already understand, one problem with LCD monitors is light from the backlight. When an LCD monitor wants to display black, the color filter will be positioned in such a manner that very little light from the backlight will seep through. While they try to do a reasonable job, their filters aren’t always perfect, thus, incapable of rendering the blacks deep as they should be.

Thankfully, VA panels are magnificent at that task. And thanks to the fact that they are susceptible to clouding or bleeding towards the edges of the screen, the screens are often considered as ideal candidates for movie enthusiasts and suitable for general purpose work.

The VA panels also feature improved viewing angles and good color reproduction. Their excellent color reproduction abilities make the monitors ideal devices for color-critical work, or for gamers who want to play their games with the best picture quality possible.

A considerable drawback of the VA panel is its low level of responsiveness with its pixels transitioning from one state to the next. This can cause more noticeable blurring when gaming.

Thankfully, the more modern versions of VA panels use a superior pixel overdrive feature that is not susceptible to the problems of the earlier versions.

It is quite difficult to state definitively what LCD monitor is better in the battle of TN vs IPS. This is because both TN LCD displays and IPS LCD displays have a share of advantages and disadvantages.

The quick responsiveness of TN panels makes them suitable for competitive gamers who rely on every split-second to achieve victory. (Though there is a lot of debate surrounding this considering that some believe that the average human brain can just compute about 25 frames per second.) The response time of most TN Panels, save for the high-end and very exceptional ones, is between 2ms and 5ms. This quick response rate is why gamers love TN Panels, as they are perfect for fast-paced games.

IPS Panels, on the other hand, feature a rather sluggish response time compared with TN panels. But the good news is that IPS technology is improving with each new generation of monitors.

IPS Panels owe their popularity to superior viewing angles. They are also not susceptible to color washout when viewing at an angle, which is a problem that is very common with traditional TN panels.

TN panels suffer from limited viewing angles, especially when looking from a vertical position. Colors tend to shift if viewed from an off-perpendicular position. When viewing TN panels from vertical positions, colors will change so much that they’ll invert past a certain angle.

The reason is that higher resolution monitors typically cost more and, so, if you’re going to pay all of that money for an ultra high definition monitor, you might as well get the panel that is best suited for displaying high-end visuals.

Of course, if you want a balance between higher resolutions and lower response rates, you might be better off sacrificing some in the visual department and going with a TN panel to get a monitor with a better response rate.

Both VA and IPS panels are commonly used in LED-backlit TVs today. Though they are both Liquid Crystal Display types, there are vast differences between their performances. The differences touch on contrast, viewing angle, response time, and black uniformity.

IPS Panels are a clear winner when it comes to viewing angle. IPS Panels, as already explained, have a wide viewing angle without any noticeable drop in image quality on the monitor.

VA panels recoup their losses when it comes to contrast. Contrast, as you might be aware, is one of the most important factors when it comes to picture quality. VA surpasses IPS panels when it comes to contrast.

When in a dark environment, black images or shades will appear gray on an IPS panel, considerably undermining the experience. VA contrast ratios are usually in the range of 3000:1 to 6000:1 while IPS contrast ratios are around 1000:1.

Neither VA panels or IPS panels are ideal if one of the main features you are looking for in a monitor is response rate. However, of the two, VA panels offer a slightly faster response time than IPS panels.

VA panels, on the other hand, were built specifically to address the deficiencies in both TN Panels and IPS panels. Their response time is slightly faster than the response time of IPS panels yet considerably lower than the response time of TN panels.

There have been improvements on TN panels to make them more suitable for color-critical work such as photo editing, but even with the said improvements, TN panels are still far from ideal when it comes to these types of tasks.

From a visual standpoint, VA panels are better than TN panels as they are capable of 8-bit color depth as well as wider viewing angles. They also feature better black uniformity and high contrast ratios as compared to TN panels.

In my opinion, though, the choice between a TN panel and VA panel is somewhat similar to the choice between a TN panel and an IPS panel: choose an IPS panel if you are mostly into competitive gaming and pick a VA panel if you want better visuals.

If you are a competitive gamer, nothing will serve you better than a TN panel. TN panels might have weaker images, low contrast, and limited viewing angles, but they offer very fast response times.

However, if you are into the best visuals possible and you want images that are more crisp and detailed while you game, then the ideal panel for you is an IPS panel. IPS panels are excellent in reproducing color. They also come with a wide viewing angle, which is a feature well-suited for graphic design artists.

VA panels are the compromise panel. They offer accurate colors and wide viewing angles, almost comparable to IPS panels. Their response time is a little slower than that of TN panels, but also a little faster than IPS panels. So, if you want to get a monitor that brings balance to what a TN panel and IPS panel bring, VA panels are the way to go.

At the end of the day, TN panels are probably the most popular option for serious gamers. They are more affordable and perform better in competitive scenarios.

lcd panel ips vs tn factory

In general, IPS, PLS, and VA panels will maintain outstanding image quality and low color degradation no matter where in the room you’re viewing from. A huge boon.

Remember the hype surrounding the final season of Game of Thrones? Now, do you remember the battle with the White Walkers? More specifically, howdark the episode was? If you couldn’t see very well, chances are you weren’t using a VA panel.

VA panels are known to deliver the deepest blacks and richest all-around tones, thanks to their high contrast ratios. This is also why they’re commonly found in television sets. That said, IPS panels come in close behind with contrast ratios of roughly 1000:1.

Due to the comparatively simple nature of TN liquid crystal technology, most TN displays boast low response times between 5ms and 1ms. This allows games to transition from scene-to-scene with very little lag and virtually zero ghosting.

TN panels also feature the highest refresh rates, which is how many times per second a display can re-render a scene (critical for reaching maximum FPS).

High response times and refresh rates are a huge boon for gaming, where split second decisions can make or break a game. As such, TN panels are the optimal choice for PC gamers looking to maximize their competitive advantage.

Given their inexpensive manufacturing costs, TN panels are the most affordable type on our list. In price-ascending order, they’re followed by VA panels, PLS panels, and IPS panels.

Do note, however, that different display models offer different features. High-end TN panels can easily cost more than an entry-level IPS. It depends on the specifications, manufacturer, and various other factors.

Choosing the best panel type ultimately comes down to personal needs and preference. That said, we hope these guidelines help. Your perfect display is out there.

Whether you’re seeking a VA vs IPS vs TN monitor, we’ve assembled this list of the web’s most frequently asked questions to offer an easy solution to all your display inquiries.

lcd panel ips vs tn factory

IPS (in-plane switching) is a screen technology for liquid-crystal displays (LCDs). In IPS, a layer of liquid crystals is sandwiched between two glass surfaces. The liquid crystal molecules are aligned parallel to those surfaces in predetermined directions (in-plane). The molecules are reoriented by an applied electric field, whilst remaining essentially parallel to the surfaces to produce an image. It was designed to solve the strong viewing angle dependence and low-quality color reproduction of the twisted nematic field effect (TN) matrix LCDs prevalent in the late 1980s.

The TN method was the only viable technology for active matrix TFT LCDs in the late 1980s and early 1990s. Early panels showed grayscale inversion from up to down,Vertical Alignment (VA)—that could resolve these weaknesses and were applied to large computer monitor panels.

Shortly thereafter, Hitachi of Japan filed patents to improve this technology. A leader in this field was Katsumi Kondo, who worked at the Hitachi Research Center.thin-film transistor array as a matrix and to avoid undesirable stray fields in between pixels.Super IPS). NEC and Hitachi became early manufacturers of active-matrix addressed LCDs based on the IPS technology. This is a milestone for implementing large-screen LCDs having acceptable visual performance for flat-panel computer monitors and television screens. In 1996, Samsung developed the optical patterning technique that enables multi-domain LCD. Multi-domain and in-plane switching subsequently remain the dominant LCD designs through 2006.

IPS technology is widely used in panels for TVs, tablet computers, and smartphones. In particular, most IBM products was marketed as CCFL backlighting, and all Apple Inc. products marketed with the label backlighting since 2010.

Most panels also support true 8-bit-per-channel colour. These improvements came at the cost of a lower response time, initially about 50 ms. IPS panels were also extremely expensive.

IPS has since been superseded by S-IPS (Super-IPS, Hitachi Ltd. in 1998), which has all the benefits of IPS technology with the addition of improved pixel refresh timing.

In this case, both linear polarizing filters P and A have their axes of transmission in the same direction. To obtain the 90 degree twisted nematic structure of the LC layer between the two glass plates without an applied electric field (OFF state), the inner surfaces of the glass plates are treated to align the bordering LC molecules at a right angle. This molecular structure is practically the same as in TN LCDs. However, the arrangement of the electrodes e1 and e2 is different. Because they are in the same plane and on a single glass plate, they generate an electric field essentially parallel to this plate. The diagram is not to scale: the LC layer is only a few micrometers thick and so is very small compared with the distance between the electrodes.

In practice, other schemes of implementation exist with a different structure of the LC molecules – for example without any twist in the OFF state. As both electrodes are on the same substrate, they take more space than TN matrix electrodes. This also reduces contrast and brightness.

Unlike TN LCDs, IPS panels do not lighten or show tailing when touched. This is important for touch-screen devices, such as smartphones and tablet computers.

Toward the end of 2010 Samsung Electronics introduced Super PLS (Plane-to-Line Switching) with the intent of providing an alternative to the popular IPS technology which is primarily manufactured by LG Display. It is an "IPS-type" panel technology, and is very similar in performance features, specs and characteristics to LG Display"s offering. Samsung adopted PLS panels instead of AMOLED panels, because in the past AMOLED panels had difficulties in realizing full HD resolution on mobile devices. PLS technology was Samsung"s wide-viewing angle LCD technology, similar to LG Display"s IPS technology.

In 2012 AU Optronics began investment in their own IPS-type technology, dubbed AHVA. This should not be confused with their long standing AMVA technology (which is a VA-type technology). Performance and specs remained very similar to LG Display"s IPS and Samsung"s PLS offerings. The first 144 Hz compatible IPS-type panels were produced in late 2014 (used first in early 2015) by AUO, beating Samsung and LG Display to providing high refresh rate IPS-type panels.

tech2 News Staff (19 May 2011). "LG Announces Super High Resolution AH-IPS Displays". Firstpost.com. Archived from the original on 11 December 2015. Retrieved 10 December 2015.

Baker, Simon (30 April 2011). "Panel Technologies: TN Film, MVA, PVA and IPS Explained". Tftcentral.co.uk. Archived from the original on 29 June 2017. Retrieved 13 January 2012.

Ivankov, Alex (1 September 2016). "Advantages and disadvantages of IPS screen technology". Version Daily. Archived from the original on 26 September 2017. Retrieved 25 September 2017.

"Samsung PLS improves on IPS displays like iPad"s, costs less". electronista.com. Archived from the original on 27 October 2012. Retrieved 30 October 2012.

lcd panel ips vs tn factory

IPS technology was developed to improve the limitations of TN panels – most notably, poor color reproduction and limited viewing angles and it is the most advanced technology among the three. As a result, IPS panels are much better than TNs in both areas.

In particular, IPS panels have much higher viewing angles than TNs. This means you can view IPS panels from extreme angles and still get accurate color reproduction. Unlike TNs, you will notice very little change in color when viewing one from a less-than-ideal perspective.

IPS panels are also known for their relatively good black reproduction, which helps eliminate the “washed-out” look you get with TN panels. However, IPS panels fall short of the excellent contrast ratios you will find in VAs.

While high refresh rates were normally reserved for TNs, more manufacturers are producing IPS panels with refresh rates of 240 Hz. For example, the excellent monitor ACER The 270 inch XZ1080 X 27p uses an IPS panel and supports 240Hz. However, there are many 144Hz options on the market and the AOC 24 HERO 24G2 is one of the most interesting models in terms of 144hz gamer monitor with a “friendly” price. There are still the 75Hz IPS monitors. They are, of course, cheaper and the Philips Series V8 242V8A is the most suitable in this regard.

Previously, TNs exhibited less input delay than any other panel, but IPS technology has finally caught up. In June 2019, LG announced its new Nano IPS UltraGear monitors with a response time of one millisecond.

Even though the gap has been closed, you will still pay more for an IPS panel with such a low response time than you would pay for a TN with similar specifications. If you"re on a budget, expect a response time of about four milliseconds for a good IPS monitor.

One last thing to be aware of about IPS panels is a phenomenon called “IPS glare”. That"s when you see the screen"s backlight shining through it at the most extreme viewing angles. It"s not a big issue unless you look at the panel from the side, but it"s something to keep in mind when thinking about TN vs IPS vs VA.

Backlight is a category of lighting used in monitors that use liquid crystal display (LCD) technology. Liquid crystal displays cannot produce light by themselves and must rely on light sources to provide visible images. In addition to being used on computer screens, LCD televisions and smartphones, p backlight is also used on small screens such as wristwatches and pocket calculators to improve readability in low light conditions.

Unlike front lights that illuminate from the front, backlights generally produce lighting from the sides or back of the screen. Most liquid crystal displays consist of several layers, with the backlight being the backmost layer. There are five main categories of light sources used for backlight panels:

Among these, only electroluminescent panels are able to provide uniform light across the entire surface. For other light sources, a diffuser needs to be used to provide uniform light. White backlighting is much more prevalent than colored backlighting.

Backlights help you achieve thinner, lighter and more efficient displays. LCD screens that use backlight have a longer lifespan compared to existing display technologies, including OLED. However, compared to devices such as those based on OLED technology, screens that use backlight consume more energy.

Next, we will explain a little about the most common backlight types on the market today, such as LCD, AMOLED, OLED, LED and QLED: which is better and what are the main differences between these screens? This will be up to you to decide when you buy and choose your screen. Your budget will also influence the decision, so take a look at each type of panel.

LCD screen technology is quite simple: LCD monitors are made of a substance that is permanently in a liquid state, but has some properties inherent in crystal bodies. A liquid crystal display is a passive device, which means it does not produce any light to display characters, images, videos and animations. But it simply alters the light that travels through it. The LCD"s internal construction describes how light changes as it passes through it to produce any characters, images, etc.

With no voltage applied between transparent electrodes, the liquid crystal molecules are aligned parallel to the glass surface. When tension is applied, they change direction and are vertical to the glass surface. They vary in optical characteristics depending on their orientation. Therefore, the amount of light transmission can be controlled by combining the movement of the liquid crystal molecules and the polarization direction of two polarizing plates attached to both the outer sides of the glass sheets. LCDs use these characteristics to display images.

As the name implies, LED screens are composed of small LEDs that together are capable of forming images. As you can imagine, televisions or LED screens contain a large number of LEDs. They are characterized by offering an image of vibrant colors, generally more prominent than that of LCD televisions. They also generate problems like screen tearing.

Regarding its operation, LED technology panels have a large number of white LEDs, which are responsible for illuminating the pixels. This has one big downside, that blacks never get that deep, as white lighting is always present at the back to brighten and give the image shown on screen.

This technology, although cheaper, has some problems (in addition to the one mentioned above in relation to blacks). A detail to consider is that these panels have reduced viewing angles. In other words, you need to see them head-on to get a prominent image.

It is a substantially more expensive technology than LED. However, OLED offers in most cases a much more prominent image. This is largely due to the operation applied to this type of panel.

OLED panels do not have a system of white LEDs that illuminate a back panel like LED TV screens/monitors. In fact, they only have one row of LEDs, which is responsible for showing us the image. In other words, it is the LEDs themselves that show us the image. This clearly has some advantages.

The main and great advantage of OLED panels is that each LED can be turned on and off individually. This change, while looking subtle, helps a lot with image quality and mostly creates deep blacks as the pixel is completely off.

QLED technology is a variation of LED technology. Unlike the previous one, the handling of colors is different. In this case, we have the so-called quantum dots, which are the ones that control the colors of these panels. QLED is most often a concept from samsung which is basically the latest set of enhancements to the same quantum dot technology that the company has been working on for the past few years.

That light then travels through some other layers inside the TV, including a liquid crystal (LCD) layer, to create the image. Light from the LED source is transmitted through the layers to the surface of the display, which is why we say it is “transmissive”.

lcd panel ips vs tn factory

The two most common and widely used technologies used in the manufacturing of liquid crystal displays are twisted nematic (TN) and in-plane switching (IPS). These are the two most preferred technologies used in the displays of PC monitors, especially gaming monitors. Most of the liquid crystal displays use either twisted nematic (TN) or super twisted nematic (STN) electro-optical effects. The first TN displays were first appeared in the 1970s and quickly became a breakthrough in display technology that led to the commercialization of liquid crystal displays in electronic devices. The two best things about TN panels are super fast response times and less manufacturing cost. But the technology has its downsides too; for one, it has poor viewing angle and second, the color reproduction is very poor. As a result, IPS display technology was developed to overcome the limitations of TN display panels with better color reproduction and superb viewing angles.

Twisted nematic (TN) panels were the first widely produced liquid crystal display screen technology which went on to become the cheapest and the fastest among the other display technologies. TN panels were the first mass produced flat-screen monitors and were simple, directly addressed segment displays as still used. Soon after the production of TN displays in 1971, the commercialization of low information content LCDs for watches and calculators began. However, passive matrix addressing of TN cells failed to meet the requirements for viewing angle and contrast ratio in laptop displays. This led to the development of super twisted nematic (STN) displays which offered substantial improvements in contrast ratio and viewing angle over the passive matrix TN displays. But it did not lead to a general solution of the problem.

In-Plane Switching (IPS) is one of the widely used screen technology for liquid crystal displays that offer an improved, alternative solution to the earlier TN panel’s limited viewing angle, contrast ratio and color reproduction. The IPS display technology was first introduced by Hitachi in 1996 and demonstrated excellent viewing angle capabilities due to the horizontal movement of liquid crystal molecules with respect to the substrate plane. It soon became the leader in the field of LCD industry. IPS displays use liquid crystals aligned in parallel to produce rich colors and improve picture uniformity. In 1998, Fujitsu introduced the multi-domain vertical alignment (MVA) based on the VA technology, which improved the viewing angle performance substantially.

–Both IPS and TN are popular screen technologies for liquid crystal displays used in PC monitors, especially gaming monitors. TN is probably the most common type of display panel used for liquid crystal displays on PC monitors. TN panels work on the underlying principle of polarized light and use vertical alignment of the molecules, termed homeotropic. The liquid crystal director is perpendicular to the glass surface instead of parallel to it. IPS panels, on the other hand, are a different technology wherein LC molecules are aligned in one planar direction in the off state and are still parallel to the glass substrate.

– Due to the horizontal movement of liquid crystal molecules with respect to the substrate plane, IPS panels demonstrate excellent viewing angle capabilities. IPS displays have much wider viewing angles and the colors do not shift even if you’re not directly facing the screen. TN panels, on the other hand, offer very poor viewing angle and colors may look a little washed out if you are not directly sitting in front of the screen. The IPS displays definitely look better at varying angles and the poor viewing angles of TN displays is the only reason you would not want a TN panel on your monitor.

– IPS displays use liquid crystals aligned in parallel to produce rich colors and improve picture uniformity. IPS offers superior display quality with better color reproduction, especially the black color reproduction which eliminates the washed-out effect as you would normally experience in TN panels. When it comes to display quality, the TN panels definitely lack in contrast and viewing angle performance, but offer high brightness and fast response times while using