semiconductor materials needed to manufacture display screens supplier
Technology trends in backplane technology are driving higher gas demand in display manufacturing. Specific gas requirements of process blocks are discussed, and various supply modes are reviewed.
Since its initial communalization in the 1990s, active matrix thin-film-transistor (TFT) displays have become an essential and indispensable part of modern living. They are much more than just televisions and smartphones; they are the primary communication and information portals for our day-to- day life: watches (wearables), appliances, advertising, signage, automobiles and more.
There are many similarities in the display TFT manufacturing and semiconductor device manufacturing such as the process steps (deposition, etch, cleaning, and doping), the type of gases used in these steps, and the fact that both display and semiconductor manufacturing both heavily use gases.
However, there are technology drivers and manufacturing challenges that differentiate the two. For semiconductor device manufacturing, there are technology limitations in making the device increasingly smaller. For display manufacturing, the challenge is primarily maintaining the uniformity of glass as consumers drive the demand for larger and thinner displays.
While semiconductor wafer size has maxed because of the challenges of making smaller features uniformly across the surface of the wafer, the size of the display mother glass has grown from 0.1m x 0.1m with 1.1mm thickness to 3m x 3m with 0.5mm thickness over the past 20 years due to consumer demands for larger, lighter, and more cost-effective devices.
As the display mother glass area gets bigger and bigger,so does the equipment used in the display manufacturing process and the volume of gases required. In addition, the consumer’s desire for a better viewing experience such as more vivid color, higher resolution, and lower power consumption has also driven display manufacturers to develop and commercialize active matrix organic light emitting displays (AMOLED).
In general, there are two types of displays in the market today: active matrix liquid crystal display (AMLCD) and AMOLED. In its simplicity, the fundamental components required to make up the display are the same for AMLCD and AMOLED. There are four layers of a display device (FIGURE 1): a light source, switches that are the thin-film-transistor and where the gases are mainly used, a shutter to control the color selection, and the RGB (red, green, blue) color filter.
The thin-film-transistors used for display are 2D transitional transistors, which are similar to bulk CMOS before FinFET. For the active matrix display, there is one transistor for each pixel to drive the individual RGB within the pixel. As the resolution of the display grows, the transistor size also reduces, but not to the sub-micron scale of semiconductor devices. For the 325 PPI density, the transistor size is approximately 0.0001 mm2 and for the 4K TV with 80 PPI density, the transistor size is approximately 0.001 mm2.
Technology trends TFT-LCD (thin-film-transistor liquid-crystal display) is the baseline technology. MO / White OLED (organic light emitting diode) is used for larger screens. LTPS / AMOLED is used for small / medium screens. The challenges for OLED are the effect of < 1 micron particles on yield, much higher cost compared to a-Si due to increased mask steps, and moisture impact to yield for the OLED step.
Mobility limitation (FIGURE 2) is one of the key reasons for the shift to MO and LTPS to enable better viewing experience from higher resolution, etc.
The challenge to MO is the oxidation after IGZO metalization / moisture prevention after OLED step, which decreases yield. A large volume of N2O (nitrous oxide) is required for manufacturing, which means a shift in the traditional supply mode might need to be considered.
Although AMLCD displays are still dominant in the market today, AMOLED displays are growing quickly. Currently about 25% of smartphones are made with AMOLED displays and this is expected to grow to ~40% by 2021. OLED televisions are also growing rapidly, enjoying double digit growth rate year over year. Based on IHS data, the revenue for display panels with AMOLED technol- ogies is expected to have a CAGR of 18.9% in the next five years while the AMLCD display revenue will have a -2.8% CAGR for the same period with the total display panel revenue CAGR of 2.5%. With the rapid growth of AMOLED display panels, the panel makers have accel- erated their investment in the equipment to produce AMOLED panels.
There are three types of thin-film-transistor devices for display: amorphous silicon (a-Si), low temperature polysilicon (LTPS), and metal oxide (MO), also known as transparent amorphous oxide semiconductor (TAOS). AMLCD panels typically use a-Si for lower-resolution displays and TVs while high-resolution displays use LTPS transistors, but this use is mainly limited to small and medium displays due to its higher costs and scalability limitations. AMOLED panels use LTPS and MO transistors where MO devices are typically used for TV and large displays (FIGURE 3).
This shift in technology also requires a change in the gases used in production of AMOLED panels as compared with the AMLCD panels. As shown in FIGURE 4, display manufacturing today uses a wide variety of gases.
These gases can be categorized into two types: Electronic Specialty gases (ESGs) and Electronic Bulk gases (EBGs) (FIGURE 5). Electronic Specialty gases such as silane, nitrogen trifluoride, fluorine (on-site generation), sulfur hexafluoride, ammonia, and phosphine mixtures make up 52% of the gases used in the manufacture of the displays while the Electronic Bulk gases–nitrogen, hydrogen, helium, oxygen, carbon dioxide, and argon – make up the remaining 48% of the gases used in the display manufacturing.
The key ga susage driver in the manufacturing of displays is PECVD (plasma-enhanced chemical vapor deposition), which accounts for 75% of the ESG spending, while dry etch is driving helium usage. LTPS and MO transistor production is driving nitrous oxide usage. The ESG usage for MO transistor production differs from what is shown in FIGURE 4: nitrous oxide makes up 63% of gas spend, nitrogen trifluoride 26%, silane 7%, and sulfur hexafluoride and ammonia together around 4%. Laser gases are used not only for lithography, but also for excimer laser annealing application in LTPS.
Silane: SiH4 is one of the most critical molecules in display manufacturing. It is used in conjunction with ammonia (NH3) to create the silicon nitride layer for a-Si transistor, with nitrogen (N2) to form the pre excimer laser anneal a-Si for the LTPS transistor, or with nitrous oxide (N2O) to form the silicon oxide layer of MO transistor.
Nitrogen trifluoride: NF3 is the single largest electronic material from spend and volume standpoint for a-Si and LTPS display production while being surpassed by N2O for MO production. NF3 is used for cleaning the PECVD chambers. This gas requires scalability to get the cost advantage necessary for the highly competitive market.
Nitrous oxide: Used in both LTPS and MO display production, N2O has surpassed NF3 to become the largest electronic material from spend and volume standpoint for MO production. N2O is a regional and localized product due to its low cost, making long supply chains with high logistic costs unfeasible. Averaging approximately 2 kg per 5.5 m2 of mother glass area, it requires around 240 tons per month for a typical 120K per month capacity generation 8.5 MO display production. The largest N2O compressed gas trailer can only deliver six tons of N2O each time and thus it becomes both costly and risky
Nitrogen: For a typical large display fab, N2 demand can be as high as 50,000 Nm3/hour, so an on-site generator, such as the Linde SPECTRA-N® 50,000, is a cost-effective solution that has the added benefit of an 8% reduction in CO2 (carbon dioxide) footprint over conventional nitrogen plants.
Helium: H2 is used for cooling the glass during and after processing. Manufacturers are looking at ways to decrease the usage of helium because of cost and availability issues due it being a non-renewable gas.
N2 On-site generators: Nitrogen is the largest consumed gas at the fab, and is required to be available before the first tools are brought to the fab. Like major semiconductor fabs, large display fabs require very large amounts of nitrogen, which can only be economically supplied by on-site plants.
Individual packages: Specialty gases are supplied in individual packages. For higher volume materials like silane and nitrogen trifluoride, these can be supplied in large ISO packages holding up to 10 tons. Materials with smaller requirements are packaged in standard gas cylinders.
Blended gases: Laser gases and dopants are supplied as blends of several different gases. Both the accuracy and precision of the blended products are important to maintain the display device fabrication operating within acceptable parameters.
In-fab distribution: Gas supply does not end with the delivery or production of the material of the fab. Rather, the materials are further regulated with additional filtration, purification, and on-line analysis before delivery to individual production tools.
The consumer demand for displays that offer increas- ingly vivid color, higher resolution, and lower power consumption will challenge display makers to step up the technologies they employ and to develop newer displays such as flexible and transparent displays. The transistors to support these new displays will either be LTPS and / or MO, which means the gases currently being used in these processes will continue to grow. Considering the current a-Si display production, the gas consumption per area of the glass will increase by 25% for LTPS and ~ 50% for MO productions.
To facilitate these increasing demands, display manufacturers must partner with gas suppliers to identify which can meet their technology needs, globally source electronic materials to provide customers with stable and cost- effective gas solutions, develop local sources of electronic materials, improve productivity, reduce carbon footprint, and increase energy efficiency through on-site gas plants. This is particularly true for the burgeoning China display manufacturing market, which will benefit from investing in on-site bulk gas plants and collaboration with global materials suppliers with local production facilities for high-purity gas and chemical manufacturing.
We are actively applying our extensive experience and capabilities to advance development of new technologies and products for cleaning, resist coating, developing, annealing and other surface processing systems, as well as products for the new 200 mm-and-smaller market.
A semiconductor chip is an electric circuit with many components such as transistors and wiring formed on a semiconductor wafer. An electronic device comprising numerous these components is called “integrated circuit (IC)”. The layout of the components is patterned on a photomask (reticle) by computer and projected onto a semiconductor wafer in the manufacturing processes described below.
The thin film is coated with photoresist. The circuit pattern of the photomask (reticle) is then projected onto the photoresist using Photolithography technology.
With this, one layer of the circuit is formed. The transistors are formed on the lowest layer. Similar process is then repeated, and many layers of circuits are formed on top of one another.
In the process of the integrated circuit creation, there are inspection and measurement steps to check whether or not the patterns are fabricated as designed. If defects are found, the fabrication will be interrupted to remove the defects from the process and to make small changes in the fabrication conditions for correction purposes. More than one hundred semiconductor dies are fabricated on a single wafer. At present, the largest silicon wafer is 300mm in diameter. Semiconductor manufacturers are looking into 450mm diameter silicon wafers for use in the future.
Semiconductor devices are completed through the front-end process (wafer processing operation) and the back-end process (assembly process) described below.
The finished semiconductor devices have been used in a variety of products such as personal computers, smartphones and cars in everyday life (see also “Semiconductors in everyday life”).
The manufacturing of semiconductor wafers and flat panel glass substrates takes place in very tightly controlled environments. As such, the equipment used in the making of these products necessitates the highest quality materials.
Constellium’s extended experience in semiconductor and flat panel display equipment combined with world class manufacturing capabilities make it the ideal partner to manufacturers – both for functional parts (vacuum process and transfer chambers, vacuum valves and pumps, load locks, etc.) and consumable parts (showerheads, diffusers, etc.)
Exceptional dimensional capabilitiesin width and thickness – to meet increasing demand for larger machinery. Constellium operates some of the largest manufacturing assets worldwide for casting, rolling and stretching plates
Tightly controlled casting for optimum metal cleanliness and reduced porosity in thick plates, thus contributing to minimum outgassing issues and faster pump-down cycles
Enhanced rolling practices provide the ideal scenario to physically work the center of the plate and eliminate residual porosity from casting as much as possible
The technology that me and my colleagues have chosen to examine as a possible semiconductor recycling project is the LCD PC monitor. We have chosen Dell
The process of which the hydrogenated amorphous silicon is deposited onto a substrate is called plasma-enhanced chemical vapor deposition (PECVD). This process uses silane gas which enters the chemical vapor deposition chamber and dissociates into a cloud of plasma. This plasma is induced by a radio frequency power generator; the chamber that holds this process must be in a vacuum to eliminate any impurities in the process. Similiar to an electron beam deposition process,the silicon and hydrogen atoms condense on a substrate, in LCD monitors this would be the glass, and make the thin layer of hydrogenated amorphous silicon. The setup of this process is shown in Figure 2.
The production of PC LCD monitors on the worldwide market shows Dell, Samsung, and LGE at the top of the market selling most for the 12 Brands selling from as low as 10 million units in a month to nearly 15 million units a month for 2010. Dell was ranked number one in the production of LCD for 2010. We were capable of determining the amount of units sold by Dell, which is estimated at 22.5 million units in 2010.
The growth for the production of LCD screens is expected to slowdown in the next two years. The growth in production of LCD panels for LCD has decreased, by the slow economic recovery, which is causing consumers to buy less and is predicted to slow down further for the next few years.
Recycling LCD monitors is easy if you do not have to go through the process yourself. There are multiple companies that allow you to send in your monitors for free, for a price or you can even drop them off at specific locations and they will handle it all for you. Some of these companies include Apple, Staples and Dell. Michigan Technological University allows people to drop off their monitors and the Apple store will recycle it all. If you want to go straight through Apple, their recycling process is to purchase any Apple computer or monitor and receive free recycling of your old computer and monitor no matter what the brand is.
Computers consist of valuable resources, such as precious metals, copper, and engineered plastics. Recycling computers enables us to collect and reuse these valuable resources. For example, by recycling 100 million cell phones, about 7,500 pounds of gold could be recovered. Recovering this gold, instead of mining it, would prevent 12,000,000,000 pounds of loose soil, sand, and rock from having to be moved, mined, and processed.
Electronic waste isn"t just waste. It contains contaminants, such as mercury, lead, cadmium, arsenic, and beryllium. When these contaminants are burned at low temperatures they create more toxins and are released into the air. The toxic materials in electronics can cause cancer, reproductive disorders, endocrine failures and many other health problems if the waste is not properly disposed of. An estimated 70-80% of the electronic waste is exported to third-world countries. Once there the toxins are released into water sources and the land.
Scientists have found that by separating the panels in LCD screens, they can remove the polyvinyl-alcohol (PVA) and then produce a disinfectant. This substance is able to kill harmful bacteria including E-coli.
Andrew Hunt of the University of York says, "We can add significant value to this waste...that has great potential for use in biomedicine. Now we have gone a step further by enhancing its anti-microbial properties through the addition of silver nanoparticles, with the result being that it can destroy bacterial infections."
The amount of hydrogenated amorphous silicon is all dependable on the thickness of the thin film layer. These layers can range from nanometers to micrometers, and for the LCD monitors an average between the two will be used to determine the thickness.
1. Supercritical Carbon Dioxide Fluid Technology extracts the liquid crystals from the glass. This method uses iso-thermal and a depressurization method to remove the liquid crystal from the glass panel, by converting carbon dioxide gas to its supercritical fluid state, thus dissolving the liquid crystal. Then the temperature is dropped, the carbon dioxide reverts back to gas, leaving the liquid crystal
This process involves the use of a base, usually quaternary ammonium hydroxide, a surfactant and a high boiling solvent (di- or tri- propylene glycol alkyl ether.) to strip the silicon.
The cured silicon can be exposed to tetrabutyammonium fluoride reagent (TBAF) in non-hydroxylic aprotic solvent. This causes a disintegration of the polymer matrix, thus removing the silicon into the solvent.
Some computer monitors that use liquid crystal display (LCD) technology contaisn mercury, a highly toxic metal that can cause serious damage if ingested. The mercury in monitors is there to produce light when it is electrically energized. When the laptop monitors are tilted, mercury flows to one end cutting off the circuit and opening it on the opposite end. This is often function of an on and off switch.
At Stena Innovative Recycling, they clean units by separating it into iron, metals, plastics, circuit boards and glass with liquid crystals. The whole process works in a closed and controlled environment and during the process the levels of mercury are controlled, so Stena can be sure that all the mercury is removed from the material that will be recycled. The units that are contaminated with mercury are then sent to a hazardous waste treatment center.
The most efficient waste treatment process is to separate the backlight lamps from the panel. If the lamp is not taken out before, the whole display is deemed hazardous waste. Many treatment processes were explored, such as water-jet cutting, laser cutting and circular sawing, but the most efficient way is by manual dismantling. Costs per unit and the assessment quality were variables in the processes explored.
The purity of silane is 99.9999 percent. Electronically active impurities, such as boron, phosphorus, and arsenic are controlled to less than 10 parts per trillion. Silane is one of the purest materials on Earth.
The manufacturing process of silane that is used by REC produces consistent, pure silane by converting metallurgical grade silicon into trichlorosilane and redistributiing and distilling to silane. The constant flow process, recycles all hydrogen and chloride to initial reactors, while constant distillation steps purify the gas. This process is environmentally friendly.
In the most simple way to describe the production of silane, silicon is turned into a gas by grinding it down to a fine, sand-like consistency and heating it with hydrogen and silicon tetrachloride. After this is done it is then put through a series of reactions, as seen below, and silane and pure polysilicon are made.
Industrially, silane is produced from silicon in a two-step process. In the first step, powdered silicon reacts with hydrogen chloride at 300 °C to produce trichlorosilane, HSiCl3, along with hydrogen gas.
Another way to process silane is to start with metallurgical grade silicon, hydrogen, and silicon tetrachloride and let them go through a series of redistribution reactions and distillations as seen below:
In comparison to our characterization methods to purify our material, the in-situ analysis can be adapted by looking at the comparison of what our purity level is compared to the purity level found in nature.
As this figure is unknown, we can still determine what the cost per kg of recycling of the monitor must be less than in order to be a practical recycling process.
Alternatively instead of straight recycling only the silane recovered from the LCD PC monitors back into new monitors, we can also collect and extract the silane from other electronic devices that contain silane. The silane can also be put in other electronics devices with LCD screens. The silane can be used in the production solar panels, LCD TVs, smartphones, and other electronic devices which either have a LCD screen or need the silane to connect the glass to the polymer matrix in these devices.
One of the alternatives to straight cycling of the Silane is down-cycling it into titanium implants, so the biologically inert material in the implant can attach to the titanium implant. The recovered Silane can also be used as water repellent and masonry protection. The Silane can also be used for initiating the combustion for ramjets, reaction engines and liquid fuel rockets that have carbon dioxide in it.
As with any form of alternative recycling such as downcycling there are goods things and there are bad things. The good thing about downcycling is the silane is reused instead of extracting the silane from the Earth and having to go through the process of purification, which all require labor, energy, and other expenses. The bad thing about downcycling the silane is the loss in value of the silane. When the high quality silane extracted from the LCD PC monitor is downcycled into water repellent, then there is a tremendous loss in value of the silane.
-Amerimade designs a quartz bath specifically for use with semiconductor materials. It can also be heated to desirable tempertures. It is a great machine for the first step.
-This bath is made from quartz and can be heated to desirable tempertures. This particular bath was designed specifically for use with semiconductor materials. It is the same piece of equipment as step one, however it is a great fit for step two as well.
-Jinan Bakr Ultrasonic Technology Co., Ltd. makes an industrial cleaner that runs on electric power and can be heated, although it is not necessary for this particular step. It is a great machine to use for the isopropyl alcohol rinse because it"s also an ultrasonic cleaner.
-This industrial cleaner runs on electric power and can be heated, although it is not necessary for this particular step. It is a great machine to use for the deionized water rinse because it"s also an ultrasonic cleaner.
-This industrial cleaner runs on electric power and can be heated, although it is not necessary for this particular step. It is a great machine to use for the anhydrous IPA rinse because it"s also an ultrasonic cleaner.
-Gulf Coast Environmental makes industrial ovens engineered to your specific needs. These ovens will dry the substrate of any unwanted remaining chemicals so it will be able to be used in other applications.
Eye protection must be worn at all times throughout the plant, ear protection is encourage, closed toe boots are recommended, and proper clothing made of non-synthetic material should always be worn. Over-head showers and eye washing stations will be found near the exits as well as the middle of most work stations. Fire extinguishers will be within 20 feet of every machine. Emergency exits will be thoroughly outlined on the maps as you enter each room. Although the facility is ventilated, there will be fume heads located toward the more hazardous chemicals will be dealt with as well as emergency fans nearest the windows. Hazardous waste disposal bins will be located near fume hoods. OSHA regulations will be strictly reinforced.
Silane is flammable and will ignite on contact with air. It is irritating to the eyes and skin. In case of emergency and silane comes into contact with the skin, wash the affected area with soap and water. In case of contact with eyes, flush with water for 15 minutes. In case of deep inhalation, seek medical attention immediately. When handling, avoid air contact and make sure that there is no source of ignition anywhere near. Electrical equipment needs to be explosion proof. Neoprene, butyl rubber or polyethylene gloves should be warn when handling. To store silane, keep away from bases such as halogens and other oxidizing agents. Disposal of silane must be done in a compressed gas distributor when no longer in use.
This is the optimal flow for the theoretical process of recycling the semiconductor and other materials in LCD PC Monitors. There are two ways of the recycling center receiving the monitors, either by customer drop off or shipment to the center. This process is optimal because it recycles all of the material in the monitors. Also, the process of removing the semiconductor from the substrate has been laboratory approved to efficiently and easily remove the material.
"LCD Monitor Production Will Continue to Soar." TechEye. N.p., 07 June 2010. Web. 29 Sept. 2012.
"LCD Monthly Desktop Monitor Production Rate Highest Since Mid-2008 - DisplaySearch." LCD Monthly Desktop Monitor Production Rate Highest Since Mid-2008 - DisplaySearch. N.p., 01 Feb. 2010. Web. 29 Sept. 2012.
"LCD Monitors recycling." B.W Recycling Inc.. B.W. Recycling, Inc, 1 Sept. 2012. Web. 20 Sept. 2012.
"Recovery of Valuable Material from Waste Liquid Display Panel" Sciencedirect.com N.p., 7 Jul. 2009. Web. 29 Sept. 2012.
"Recovery of Valuable Material from Waste Liquid Display Panel" Sciencedirect.com N.p., 7 Jul. 2009. Web. 29 Sept. 2012.
"Recycling Liquid Crystal Displays (LCD)" voices.yahoo.com N.p., 11 Sept. 2006. Web. 29 Sept. 2012.
Falkenberg, Hedvig. "LCD RECYCLING." Stena Innovative Recycling. Stena, n.d. Web. 5 Oct. 2012.
Impact Number of views to this page and its redirects. Updated once a month. Views by admins and bots are not counted. Multiple views during the same session are counted as one.
Advantest (TSE: 6857) is the leading manufacturer of automatic test and measurement equipment used in the design and production of semiconductors for applications including 5G communications, the Internet of Things (IoT), autonomous vehicles, high performance computing (HPC) including artificial intelligence (AI) and machine learning, and more. Its leading-edge systems and products are integrated into the most advanced semiconductor production lines in the world. The company also conducts R&D to address emerging testing challenges and applications; develops advanced test-interface solutions for wafer sort and final test; produces scanning electron microscopes essential to photomask manufacturing; and offers system-level test solutions and other test-related accessories. Founded in Tokyo in 1954, Advantest is a global company with facilities around the world and an international commitment to sustainable practices and social responsibility.
Applied Materials, Inc. (Nasdaq: AMAT) is the leader in materials engineering solutions used to produce virtually every new chip and advanced display in the world. Our expertise in modifying materials at atomic levels and on an industrial scale enables customers to transform possibilities into reality. At Applied Materials, our innovations make possible a better future.
ASML is a leading supplier to the semiconductor industry. The company provides chipmakers with hardware, software and services to mass produce the patterns of integrated circuits (microchips). Together with its partners, ASML drives the advancement of more affordable, more powerful, more energy-efficient microchips. ASML enables groundbreaking technology to solve some of humanity"s toughest challenges, such as in healthcare, energy use and conservation, mobility and agriculture. ASML is a multinational company headquartered in Veldhoven, the Netherlands, with offices across Europe, the US and Asia. Every day, ASML’s more than 33,100 employees (FTE) challenge the status quo and push technology to new limits. ASML is traded on Euronext Amsterdam and NASDAQ under the symbol ASML.
ASMPT (HKEX stock code: 0522) is a leading global supplier of hardware and software solutions for the manufacture of semiconductors and electronics. Headquartered in Singapore, ASMPT’s offerings encompass the semiconductor assembly & packaging, and SMT (surface mount technology) industries, ranging from wafer deposition, to the various solutions that organise, assemble and package delicate electronic components into a vast range of end-user devices, which include electronics, mobile communications, computing, automotive, industrial and LED (displays). ASMPT partners with customers very closely, with continuous investment in R&D helping to provide cost-effective, industry-shaping solutions that achieve higher productivity, greater reliability and enhanced quality.
Edwards is the leading developer and manufacturer of sophisticated vacuum products, exhaust management systems and related value-added services. These are integral to manufacturing processes for semiconductors, flat panel displays, LEDs and solar cells; are used within an increasingly diverse range of industrial processes including power, glass and other coating applications, steel and other metallurgy, pharmaceutical and chemical; and for both scientific instruments and a wide range of R&D applications. Edwards has around 7,000 employees worldwide engaged in the design, manufacture and support of high technology vacuum and exhaust management equipment and has state-of-the-art manufacturing facilities in Europe, Asia and North America. Edwards is part of the Atlas Copco Group (NASDAQ OMX Stockholm: ATCO A, ATCO B), a Sweden-based provider of industrial productivity solutions.
EV Group (EVG) is a leading supplier of equipment and process solutions for the manufacture of semiconductors, microelectromechanical systems (MEMS), compound semiconductors, power devices and nanotechnology devices. Key products include wafer bonding, thin-wafer processing, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coaters, cleaners and inspection systems. Founded in 1980, EV Group services and supports an elaborate network of global customers and partners all over the world.
FormFactor, Inc. (NASDAQ: FORM), is a leading provider of essential test and measurement technologies along the full IC life cycle - from metrology and inspection, characterization, modeling, reliability, and design de-bug, to qualification and production test. Semiconductor companies rely upon FormFactor"s products and services to accelerate profitability by optimizing device performance and advancing yield knowledge. The Company serves customers through its network of facilities in Asia, Europe, and North America.
Founded in 1980 for the development of Korea semiconductor-based industry, Hanmi Semiconductor has grown steadily into a world-class semiconductor manufacturer and now we are the leading designer, developer & manufacturer of semiconductor equipment industry. Our success has been based on a number of factors such as the best assembly systems, efficiency of production, ongoing R&D investment & high-tech modules through 25 years quality improvement.
Hitachi High-Tech, headquartered in Tokyo, Japan, is engaged in activities in a broad range of fields, including Analytical & Medical Solutions (manufacture and sales of clinical analyzers, biotechnology products, and analytical instruments), Nano-Technology Solutions (manufacture and sales of semiconductor manufacturing equipment and analysis equipment), and Industrial Solutions (providing high value-added solutions in fields of social & industrial infrastructures and mobility, etc.).
HORIBA, Ltd. manufactures and sells instruments and systems for various applications. It operates in five segments: Automotive, Process & Environmental, Medical-Diagnostic, Semiconductor, and Scientific. The Automotive segment offers automotive emission analyzers, emission measurement systems, drive line test systems, engine test and fuel cell test systems, and battery test systems; test systems for engines, chassis, powertrains, brakes, and catalysts; and vehicle development engineering and testing engineering services, as well as leases and manages R&D facilities.
Jiangsu ASIA Electronics is a wet process equipment manufacturer in the semiconductor wafer manufacturing industry. It focuses on the wet etching and cleaning technology of the wafer front-end. It is one of the first domestic enterprises to promote the localization of high-end semiconductor equipment. Based on independent innovation, the company has formed a business model integrating R&D, design, production and sales, providing efficient wet process solutions for domestic and foreign wafer manufacturers.
KOKUSAI ELECTRIC designs, manufactures, and services thermal thin film processing solution systems. Our diffusion and deposition systems can be found in the majority of semiconductor fabrication plants worldwide.
Lam Research Corporation is a global supplier of innovative wafer fabrication equipment and services to the semiconductor industry. Lam’s equipment and services allow customers to build smaller and better performing devices. In fact, today, nearly every advanced chip is built with Lam technology. We combine superior systems engineering, technology leadership, and a strong values-based culture, with an unwavering commitment to our customers. Lam Research (Nasdaq: LRCX) is a FORTUNE 500® company headquartered in Fremont, Calif., with operations around the globe.
Established in 1974, Plasma-Therm is a global manufacturer of advanced plasma processing equipment, providing etch, deposition, surface modification, and plasma dicing technologies to the specialty semiconductor markets, including wireless communication, power devices, MEMS, photonics, advanced packaging, memory and storage, and R&D. Plasma-Therm"s products have been adopted globally and have earned their reputation for value, reliability, and world-class support. Sales and service locations throughout North America, Europe and Asia-Pacific meet the diverse needs of Plasma-Therm’s global customer base.
Teradyne (NASDAQ:TER) brings high-quality innovations such as smart devices, life-saving medical equipment and data storage systems to market, faster. Its advanced test solutions for semiconductors, electronic systems, wireless devices and more ensure that products perform as they were designed. Its Industrial Automation offerings include collaborative and mobile robots that help manufacturers of all sizes improve productivity and lower costs. In 2021, Teradyne had revenue of $3.7 billion and today employs over 6,000 people worldwide.
Tokyo Electron Limited (TEL) is a leading global company of semiconductor and flat panel display (FPD) production equipment, TEL engages in development, manufacturing, and sales in a wide range of product fields. All of TEL"s semiconductor and FPD production equipment product lines provide the foundation for the information industry, and also serves as core technologies that support innovations and enable the evolution of wide-ranging electronic devices. TEL provides outstanding products and services to customers through a global network in the U.S., Europe, and Asia.
VAT is the leading global developer, manufacturer and supplier of high-end vacuum valves. VAT vacuum valves are mission-critical components for advanced manufacturing processes of innovative products used in daily life such as portable devices, flat screen monitors or solar panels. VAT is organized into two different reporting segments: Valves and Global Service offering high-end vacuum valves, multi-valve modules, edge-welded bellows and related value-added services for an array of vacuum applications. VAT Group is a global player with over 2’500 employees and main manufacturing sites in Haag (Switzerland), Penang (Malaysia) and Arad (Romania).
DuPont’s rich history of experience and innovation has deep roots in the semiconductor fabrication industry. Our broad portfolio and expertise support many segments, from advanced chip manufacturing processes, to advanced packaging and assembly, to compound semiconductor device fabrication.
We offer complementary, reliable, high-quality materials sets to support both today’s high-volume manufacturing processes and advanced technology for the future. Through close collaboration with our customers, we develop solutions to address leading-edge technology challenges that are critical to advancing diverse market drivers. We work with our customers to develop or place materials that meet their specific needs, including technical performance and cost-of-ownership improvements.
Our materials are valuable building blocks for today’s advanced microelectronics found in everything from consumer electronics to high-end data centers, automotive applications, medical devices, the Internet of Things, artificial intelligence, power electronics and more.
Vacuum processing is employed in the manufacture of all flat panel displays ranging from Liquid Crystal Displays and Plasma Display Panels to Organic Light Emitting Diode displays. The most common flat panel technology used today employs processes similar to those used to fabricate microchip semiconductors. Flat Panel Displays can be found in computer monitors, TV’s, cell phones, PDA’s, digital cameras and other electronic devices. Vacuum processing is used to manufacture all flat panel displays just like it was for CRT TV’s. This includes Plasma Display Panels (PDP) used for large screen TV’s, Liquid Crystal Displays (LCD) which have replaced CRT displays in most applications and Organic Light Emitting Diode displays (OLED) which are used in a variety of applications such as cell phone displays and digital cameras.
Active Matrix Thin Film Transistor LCD (AM-TFT-LCD) – similar to manufacturing transistor switches and capacitors except it uses a glass substrate instead of silicon wafers.
Physical Vapor Deposition (PVD) – high temperature vacuum evaporation/condensation to put a vaporized form of the desired sputtering material onto the surface.
InstruTechvacuum gauges, controllers and modules provide highly reliable vacuum pressure measurement and control solutions throughout the spectrum of vacuum processes used today. Vacuum measurement technologies available from InstruTech are convection enhanced Pirani, hot cathode Bayard-Alpert and cold cathode double inverted magnetron ionization gauges. Products using these technologies have been developed at InstruTech by a team of vacuum technology professionals who have been designing and manufacturing vacuum measurement and control instrumentation for more than thirty years. Our experience and expertise will provide you with the most advanced, yet affordable vacuum measurement instrumentation available today.
The Flat Panel Displays are thin and lightweight display screens that are used in laptops, monitors, televisions, smartphones, digital cameras, and other portable devices. Flat-panel size requirement varies as per the end device on which it is mounted. With the introduction of more innovative technology-based solutions, flat panel displays can be found in the majority of consumer and industrial display systems.
Today flat panel displays mostly use LCD (liquid crystal display) technology but in recent years there is a shift toward the use of the organic light-emitting diode display (OLED) technology which is gaining large momentum. OLED displays are not just thinner and more efficient than LCD displays - they provide superior image quality and they can also be made transparent, flexible, foldable, rollable, and stretchable.
Driven by end-user demands for increased product quality and lower costs, FPD manufacturers are constantly searching for improved processes and fab automation equipment. In addition, larger (G8 to G11) and thinner glass (<0.4mm) substrates are more complex to process and present ongoing precision and handling challenges for equipment manufacturers.
Right after the pandemic hit, I bought a new vacuum cleaner. I wanted to step up my housecleaning skills since I knew I’d be home a lot more. I was able to buy mine right away, but friends who wanted new appliances weren’t so lucky. My relatives had to wait months for their new refrigerator to arrive. And it wasn’t just appliances. New cars were absent from dealership lots, while used cars commanded a premium. What do all these things have in common? Semiconductor chips.
The pandemic disrupted the global supply chain, and semiconductor chips were particularly vulnerable. The chip shortage delivered a wakeup call for our country to make our supply chain more resilient and increase domestic manufacturing of chips, which are omnipresent in modern life.
“To an astonishing degree, the products and services we encounter every day are powered by semiconductor chips,” says Mike Molnar, director of NIST’s Office of Advanced Manufacturing.
Think about your kitchen. Dishwashers have chips that sense how dirty your loads are and precisely time their cleaning cycles to reduce your energy and water bills. Some rice cookers use chips with “fuzzy logic” to judge how long to cook rice. Many toasters now have chips that make sure your bread is perfectly browned.
We commonly think of chips as the “brains” that crunch numbers, and that is certainly true for the CPUs in computers, but chips do all sorts of useful things. Memory chips store data. Digital cameras contain chips that detect light and turn it into an image. Modern TVs produce their colorful displays with arrays of light emitting diodes (LEDs) on chips. Phones send and receive Wi-Fi and cellular signals thanks to semiconductor chips inside them. Chips also abound on the exteriors of homes, inside everything from security cameras to solar panels.
The average car can have upward of 1,200 chips in it, and you can’t make a new car unless you have all of them. “Today’s cars are computers on wheels,” an auto mechanic said to me a few years ago, and his words were never more on point than during the height of the pandemic. In 2021, the chip shortage was estimated to have caused a loss of $110 billion in new vehicle sales worldwide.
The chips in today’s cars are a combination of low-tech, mature chips and high-tech, state-of-the-art processors (which you’ll especially find in electric vehicles and those that have autonomous driving capabilities).
Whether mature or cutting-edge, chips typically need to go through a dizzying series of steps — and different suppliers — before they become finished products. And most of this work is currently done outside this country. The U.S., once a leader in chip manufacturing, currently only has about a 12% share in the market.
To reestablish our nation’s leadership in chip manufacturing, Congress recently passed, and President Joe Biden recently signed into law, the CHIPS Act. The CHIPS Act aims to help U.S. manufacturers grow an ecosystem in which they produce both mature and state-of-the-art chips at all stages of the manufacturing process and supply chain, and NIST is going to play a big role in this effort.
Silicon is the most frequently used raw material for chips, and one of the most abundant atomic elements on Earth. To give you a sense of its abundance, silicon and oxygen are the main ingredients of most beach sand, and a major component of glass, rocks and soil (which means that you can also find it in actual, not just metaphorical, dirt).
Silicon is a type of material known as a semiconductor. Electricity flows through semiconductors better than it does through insulators (such as rubber and cotton), but not quite as well as it does through conductors (such as metals and water).
But that’s a good thing. In semiconductors, you can control electric current precisely — and without any moving parts. By applying a small voltage to them, you can either cause current to flow or to stop — making the semiconductor (or a small region within it) act like a conductor or insulator depending on what you want to do.
The first step for making a chip is to start with a thin slice of a semiconductor material, known as a “wafer,” often round in shape. On top of the wafer, manufacturers then create complex miniature electric circuits, commonly called “integrated circuits” (ICs) because they are embedded as one piece on the wafer. A typical IC today contains billions of tiny on-off switches known as transistors that enable a chip to perform a wide range of complex tasks from sending signals to processing information. Increasingly, these circuits also have “photonic” components in which light travels alongside electricity.
Manufacturers typically mass-produce dozens of ICs on a single semiconductor wafer and then dice the wafer to separate the individual pieces. When each of them is packaged as a self-contained device, you have a “chip,” which can then be placed in smartphones, computers and so many other products.
Though silicon is the most commonly used raw material for chips, other semiconductors are used depending on the application. For example, gallium nitride is resistant to damage from cosmic rays and other radiation in space, so it’s commonly the material of choice for electronic devices in satellites. Gallium arsenide is frequently employed to make LEDs, because silicon typically produces heat instead of light if you try to make an LED with it.
Non-silicon semiconductors are used in the growing field of “power electronics” in vehicles and energy systems such as wind and solar. Silicon carbide can handle larger amounts of electricity and voltage than other materials, so it has been used in chips for electric vehicles to perform functions such as converting DC battery power into the AC power delivered to the motors.
Diamonds are semiconductors too — and they have the greatest ability to conduct heat of any known material. Artificial diamonds are currently used as the semiconductors in chips for aerospace applications, as they can draw heat away from the power loads generated in those chips.
Measurement science plays a key role in up to 50% of semiconductor manufacturing steps, according to a recent NIST report. Good measurements enable manufacturers to mass-produce high-quality, high-performance chips.
NIST has the measurement science and technical standards expertise that is needed by the U.S. chip industry, and our programs to advance manufacturing and support manufacturing networks across the U.S. mean we can partner with industry to find out what they need and deliver on it.
NIST researchers already work on semiconductor materials for many reasons. For example, researchers have developed new ways to measure semiconductor materials in order to detect defects (such as a stray aluminum atom in silicon) that could cause chips to malfunction. As electronic components get smaller, chips need to be increasingly free of such defects.
“Modern chips may contain over 100 billion complex nanodevices that are less than 50 atoms across — all must work nearly identically for the chip to function,” the NIST report points out.
NIST researchers also measure the properties of new materials that could be useful for future inventions. All of the semiconductor materials I mentioned above are brittle and can’t be bent. But devices with chips — from pacemakers to blood pressure monitors to defibrillators — are increasingly being made with flexible materials so they can be “wearable” and you can attach them comfortably to the contours of your body. NIST researchers have been at the forefront of the work to develop these “flexible” chips.
Researchers are also studying materials that could serve as “printable” chips that would be cheaper and more environmentally friendly. Instead of going through the complicated multistep process of making chips in a factory, we are developing ways to print circuits directly onto materials such as paper using technology that’s similar to ink-jet printers.
And while we’ve lost a lot of overall chip manufacturing share, U.S. companies still make many of the machines that carry out the individual steps for fabricating chips, such as those that deposit ultrathin layers of material on top of semiconductors. But what if, instead of these machines being shipped abroad, more domestic manufacturers developed expertise in using them?
To support this effort, NIST researchers are planning to perform measurements with these very machines in their labs. They will study materials that these machines use and the manufacturing processes associated with them. The information from the NIST work could help more domestic manufacturers develop the know-how for making chips. This work can help create an ecosystem with many domestic chip manufacturers, not just a few, leading to a more resilient supply chain.
“Reliance on only one supplier is problematic, as we saw with the recent shortage in baby formula,” NIST"s Jyoti Malhotra pointed out to me. Malhotra serves on the senior leadership team of the NIST Manufacturing Extension Partnership (MEP). MEP has been connecting NIST labs to the U.S. suppliers and manufacturers who produce materials, components, devices and equipment enabling U.S. chip manufacturing.
Last but not least, an area of major excitement at NIST is “advanced packaging.” No, we don’t mean the work of those expert gift-wrappers you may find at stores during the holiday season. When we talk about chip packaging, we’re referring to everything that goes around a chip to protect it from damage and connect it to the rest of the device. Advanced packaging takes things to the next level: It uses ingenious techniques during the chipmaking process to connect multiple chips to each other and the rest of the device in as tiny a space as possible.
But it’s more about just making a smartphone that fits in your pocket. Advanced packaging enables our devices to be faster and more energy-efficient because information can be exchanged between chips over shorter distances and this in turn reduces energy consumption.
One great byproduct of advanced packaging’s innovations can be found on my wrist — namely, the smartwatch I wear for my long-distance runs. My watch uses GPS to measure how far I ran. It also measures my heart rate, and after my workouts, it uploads my running data wirelessly to my phone. Its battery lasts for days; it had plenty of juice left even after I ran a full marathon last month.
Twenty years ago, running watches were big and clunky, with much less functionality. My friends and I had a particular model with a huge face and a bulky slab that fit over the insides of our wrists. When a friend and I opened up his watch to replace his battery, we saw that the GPS receiver was on a completely separate circuit board from the rest of the watch electronics.
Under the small and thin face of my current watch you will find all its electronics, including a GPS sensor, battery, heart-rate monitor, wireless communications device and so many other things.
Further development of advanced packaging could produce even more powerful devices for monitoring a patient’s vitals, measuring pollutants in the environment, and increasing situational awareness for soldiers in the field.
Advanced packaging is also a potential niche for domestic manufacturers to grow global market share (currently at 3% for this part of the chipmaking process). Chips are becoming so complex that design and manufacturing processes, once separate steps, are now increasingly intertwined — and the U.S. remains a world leader in chip design. NIST’s measurements to support advanced packaging in chips and standards for the packaging process could give domestic manufacturers a decisive edge in this area.
All the NIST experts I’ve spoken to talk about a future in which chip manufacturers work increasingly closely with their customers, such as automakers. The benefit of closer relationships would mean that customers could collaborate with manufacturers to create more customized chips that bring about completely new products.
And as we’ve seen, incorporating chips into existing products tends to make them “smart,” whether it’s an appliance figuring out how long to bake the bread, or solar panels that maximize electricity production by coordinating the power output from individual panels. With more domestic manufacturers on the scene, there are more opportunities to incorporate chips into products — that could also be manufactured in the U.S.A.
I first encountered semiconductor chips in the 1970s, when the U.S. was a dominant force in chip manufacturing. Inside a department store with my mom, I saw pocket calculators on display, and they fascinated me. You could punch their number keys and they would instantly solve any addition or multiplication problem. As a 6-year-old, I thought that they had little brains in them!
Since then, semiconductor chips have been a big part of my life. And after the pandemic, I realize I can’t take them for granted. I’m glad to be part of an agency that is working to create a more resilient supply chain — and bring back chip manufacturing in this country.
Transistor: Simple switch, made with a semiconductor material, that turns on or off depending on changes in voltage and can combine with other transistors to create complex devices
Chip: Self-contained piece including the semiconductor surface and integrated circuit, independently packaged for use in electronics such as cellphones or computers
It’s an obvious thing to say, but the semiconductor industry is all about semiconductor materials. However, due to its excellent chemical, mechanical, electrical, and optical properties, glass applications are constantly evolving. Glass is therefore playing an increasingly important role in the semiconductor market, adopting various functions in integrated circuit (IC) semiconductor devices.
Consequently, we at Yole Développement expect the glass wafer market to have a 23% compound annual growth rate (CAGR) through to 2022. By that time it will be shipping the equivalent of around 14 million 8-inch glass wafers, and revenues will exceed $594 million. This growth rate is much higher than the semiconductor market as a whole. The new Yole report “Glass Substrate Manufacturing in the Semiconductor Field” provides more details about the evolution of glass materials in the semiconductor industry.
Some IC device applications using glass are already mature, such as infra-red cut filters in CMOS image sensors (CIS), microfluidics, and actuators and sensors. In those cases, the glass material growth rate is linked to the growth of these markets, languishing at 5-8% per year. The glass material market’s ascent will be more due to the fast growth of glass carriers for FOWLP, actuators and sensors. Other applications, like through glass via (TGV) interposers, are still in the development phase. However, Yole expects adoption for production by 2019-2020.
FOWLP is very interesting as glass substrates are used as temporary materials for manufacturing. Investment from TSMC and of the major outsourced semiconductor assembly and test (OSAT) companies supports this growth, which remains the driver for the whole industry.
Glass material used in semiconductors typically comes in two formats: wafer and panel. Panels are increasingly important. IR cut filters, implemented in the CIS camera modules, as well as CIS proximity sensors using glass are already manufactured on panels. IR cut filters are already well- established and represent a huge business in the glass substrate market. Yole now expects other devices, like FOWLP and radio-frequency (RF) devices, to use glass panel substrates. This is partly because glass is already available in panel sizes and has been adopted for large-volume manufacturing in the display and touch-panel areas. That makes transitioning from glass wafers to panels easier, since it’s possible to use existing glass manufacturing processes and tools. Going from wafer to large-panel format will offer a path to scalability, delivering a lower-cost process compared to glass wafers.
Yole estimates that panel demand will reach 28 million mm² in 2017, 100% of which is for existing CIS applications. Demand is expected to exceed 46 million mm² by 2022, driven by FOWLP applications. Although it is difficult to predict the success of glass panel-based advanced packaging, we expect the first glass panel activities by 2019, mainly driven by FOWLP and RF device applications. These semiconductor devices will be respectively fueled by glass carrier and TGV interposer functionalities.
Additionally, some firms have already invested in a panel line for FOWLP, integrating the glass-carrier panel format into their process flows due to its desirable mechanical properties and ease of thickness control. FOWLP is becoming the main platform for many devices, as Yole has described in its reports “Equipment and Materials for Fan-Out Packaging 2017” and “Status of the Advanced Packaging Industry 2017”.
The semiconductor glass material market is shared amongst suppliers from different categories. Manufacturers like Schott, Corning, and AGC provide glass raw materials and blank wafers or sheets. These companies have limited wafer-processing capabilities.
In the next link of the supply chain, glass processors and structured substrate manufacturers like PlanOptik and Tecnisco can pattern and structure glass wafers from these raw materials. These companies typically purchase wafers from raw-glass material suppliers and then design and create products from the raw material.
Then, structured and patterned glass wafer manufacturers operate mainly in the MEMS and microfluidics areas. This category mostly includes foundries that start from blank or pre-patterned wafers. However, unlike typical foundries such as Silex Microsystems, these companies also create their own products.
As this market is highly segmented, different companies have advantages for specific applications. Established glass applications such as CIS and microfluidics have led Schott to dominate the glass material market in the semiconductor field. However, emerging applications including RF devices, FOWLP technology could require the use of different glass materials. These emerging fields represent real business opportunities for the major glass companies, both for raw materials and also for structured wafer and panels.
Yole also sees increased competition, even in mature markets like actuators and sensors and power devices. In these industries Chinese glass processor companies are likely to challenge established players like PlanOptik and Tecnisco. In order to capture market share, aggressive players like NEG have penetrated the FOWLP market deeply. But competing in a market growing at 23% per year is normal, and there are lots of opportunities for companies to differentiate themselves.
Status of the Advanced Packaging Industry 2017How can advanced packaging decrease semiconductor market uncertainty and enable future semiconductor products? –More
This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.
An IC equipment supplier"s revenue is classified as sales of systems used to manufacture semiconductors, thin-film heads, MEMs, and integrated circuits, as well as service, support, and retrofitted syste