view angle lcd panel manufacturer
Viewing angle is a very important factor when evaluating LCD display"s performance. Understanding how to locate the optimum viewing angle and choose the right LCD display will make your product looks sharp without extra cost.
LCD viewing angle is the maximum angle from which customer can view the screen well. "Viewing well" is commonly recognized as having at least 10:1 contrast and without grayscale inversion.
At time of manufacturing, LCD manufacturer designs LCD panel in a way that it is best viewed from an angle (called Bias) offset from the perpendicular by certain degrees, to accommodate as many applications as possible. Viewing angle is the angle covers both side of Bias angle, where the LCD is still "viewing well".
When reading an LCD"s specification, you will see the term "viewing direction". Viewing direction is defined following the format of a clock. Like figure below, Z axis is Normal, X axis is Horizontal and Y axis is Vertical. An LCD"s viewing angle "above" Z axis is having 12 o"clock viewing direction. So 6 o"clock viewing direction LCD is best viewed from "below" Z axis.
Theoretically, LCD manufacturer can produce LCD with 3, 12, 9 and 6 o"clock viewing direction. But in practice, we usually look at LCD display from 12 or 6 o"clock angle.
Using a simple TN type TFT LCD as example, its viewing angle is typically 45~65 degrees. Adding extra wide polarizer film (EWP) to the TN type LCD, the viewing angle may be increased about 10 degrees. Similarly, an O-film enhancement polarizer will widen the viewing angle to 75 degree in each direction. However, these enhancements bring along contrast reduction. Adjusting LCD contrast is necessary.
Using a liquid crystal display with proper viewing angle is very important to your product"s success. And we should keep in mind that optimized contrast is crucial, too. Both parameters define the visual appearance of the LCD display and the appeal of your product. Choices are based on cost performance trade offs.
For example, if your project requires a wide viewing angle 2.4" TFT LCD. TN TFT panel with O-film solution might be better than using IPS LCD. Topway engineers are here to help you making those design decisions.
This monitor will display a 250:1 contrast ratio when viewed head on or at a 90° angle from the surface of the monitor. The contrast ratio will decline as you view the display from the side eventually going down to 10:1 or 5:1 contrast ratio at an angle of 70° from head on. As you move away from the maximum contrast at the straight on viewing position, the brightness of the white may increase or decrease and the black may increase or decrease. However, the contrast (ratio of the two) will decrease as you move away from normal viewing. Please note, this is just a general representation and not factual for every monitor with 140° viewing angle. All values are estimates.
Other factors such as the display"s brightness, ambient light and contrast conditions all play a part in the readability of the display. As mentioned above, viewing angle is defined using only the contrast ratio. However, even within this standard viewing angle, the colors or tones on the display panel may look different from the real color/tone, or they may become invisible, depending on the combination of displayed colors (background color, text color and switch color). For example, if the background color is bright and you look at the screen from below, the colors may appear inverted so that the text color and switch color darken to the point where they become invisible. Or, when the background color is dark and you look at the screen from above, the colors may again appear inverted, so that the text color and switch color brighten to the point that they become invisible. As a result, be sure to choose your screen colors carefully, so they produce an effective combination for the LCD panel"s operation environment.
A TN or Twisted Nematic TFT LCD is a cost-effective high performance LCD. It offers good brightness performance and fast response times. However, it suffers in one key area and that is its viewing cone. TN LCD’s typically have three good viewing angle directions. In these directions the image is typically clear and colors are consistent up to 80 degrees from the center of the LCD. The remaining viewing direction is usually good through 40-50 degrees from center. Afterwards, the image is likely to invert, almost appearing like an x-ray.
Updated: Oct 28, 2019:Despite all the advances in LCD display technology viewing angle is still an important topic, panel viewing angles are still poor, good, better and best, but none are 100% perfect.
The viewing angle of an LCD panel is typical given based on the normal aspect ratio which is generally landscape for the types of LCD panels we work with. It is quoted for both horizontal and vertical in degrees from perpendicular to the display or as a total of left & right and up & down. So for example the newer IPS panels now claim up to 89 degree viewing angle from perpendicular for both horizontal and vertical.
Specifications are no replacement for actually seeing and evaluating an LCD panel, the reason is that there can be characteristics that the specifications don’t mention. For example I have seen an LCD panel with excellent viewing angle specifications but when testing it I could see a color shift at around 45 degrees from perpendicular.
Further to the previous point, even though LCD panel specification may quote H (horizontal) & V (vertical) viewing angles the performance in portrait model may be quite different to landscape mode.
I realize not every application needs or even suits having a wide viewing angle. Digital signage displays clearly benefit from a wide viewing angle if used in a poster or menu board but some overhead information displays need a good 6 o’clock viewing angle, ie when viewed from below, but the 12 o’clock viewing angle may not be critical.
IPS panels have had quite a few years of being a leading technology for excellent viewing angle with not only impressive specifications but genuinely excellent results. More recently companies like AUO have been showing panels with a new technology that appears to provide not only equivalent viewing angles but also excellent color fidelity over the range of viewing angles.
At this time the viewing angle of a LCD panel is not a tunable setting, it is a fixed part of the LCD panel design. Filters can be added by reworking the panel or adding to the front but these will typically limit rather than extend the viewing angle.
In this episode of the Display 101 series, we explain the viewing angle of smart displays. How to choose the right viewing angle for your project? Read on to get the answers.
This concept is closely related to the grey scale inversion phenomenon. When the user exceeds a certain angle (monitor viewing angle), one can note a sudden change in displayed colors. It mainly emerges with the grey color’s domination in the displayed image.
The viewing angle monitor has is measured from the display’s normal axis to each of the four directions. Theoretically, the maximum LCD view angle is 90° and might vary for each measuring direction. The three-dimensional angular range is called a viewing cone.
TN type is the most cost-efficient technology. In TN type the angles are in most cases narrower, compared to other types. Low prices and short matrix reaction time compensate for the smaller viewing cone. To extend the monitor viewing angle, you can add theO-film to the display. When buying a TN-type display you should always pay attention to the viewing direction expressed in an hour angle. It describes the direction from which the user should look at the display.
IPS matrix technology has most of VA’s advantages. It also has incredibly good color reproduction and the highest viewing angles on both axes. The most common IPS disadvantage is the black color depth which is lower than in the VA type.
If the application requires a high viewing angle monitor, choose the display with full viewing angles (178.5°~180° on each axis). In this case, you should look for MVA and IPS type displays.
NOTE: Do not mistake the viewing direction with greyscale inversion. Greyscale inversion is always opposite to the viewing direction. For example, the 12 o’clock display will have a color inversion at 6 o’clock.
The in between solution is the TN type with viewing angles extended by adding O-film. We described the O-film solution in one of the earlier articles:
The view direction is the right direction marked with Φ which is with respect to the X-axis. The original location is the center point of the display panel surface, the Z axis is Normal, the X-axis is Horizontal and Y-axis is Vertical.
Normally it was defined 4 angles to correspond with 3, 12, 9, and 6 o’clock respectively. So, you can find the 6 o’clock or 12 o’clock parameter in the LCD datasheet.
Viewing Angle is the angle with respect to the Z-axis in a certain direction and marked by θ (θU means upper View Angle). LCD Viewing Angle describes the maximum watching angle, and it is one of the key indicators with the display module.
The LCD bias angle is the angle perpendicular from which the display is best viewed. (See Fig.2) This angle is determined when the display is designed and can be set at any angle or orientation. The orientation of the bias angle of LCD displays is often stated with reference to a clock face. If the offset is above the display, it is referred to as a 12:00 or Top view.
The LCD viewing angle is the angle formed on either side of the bias angle, where the contrast of the display is still considered acceptable. Generally, this contrast is specified as 2:1 for monochrome LCD and 10:1 for color LCD.
For example, assume the display is a 12:00 (topview) type. When the display is viewed from 25 degrees above the vertical, it will be at its maximum contrast and best look. If the viewer moves their eyes further above the display by an additional 30 degrees, they will see a contrast reduction, but the display will still be readable. Moving the view position any further above the display will reduce the contrast to an unacceptable degree.
Adjusting the contrast voltage, VL, effects the Bias Angle to some extent, but not the Viewing Angle. A top view 12:00 display can be optimized for a bottom view 6:00 viewing position by adjusting the contrast voltage. A 12:00 display set for a 6:00 viewing position will not have as great a contrast as a 6:00 display set for 6:00 viewing position and vice versa.
Generally, displays are optimized for straight-on viewing. Either a 6:00 or 12:00 module may be used, and the contrast voltage can be adjusted slightly to optimize the display for that viewing position. In the above example, the viewing angles of both 6:00 and 12:00 modules actually overlap the perpendicular (or straight on) viewing position.
The LCD is positioned at the nominal viewing position and the pot is adjusted to obtain the desired LCD appearance. The voltage on the VL pin is now measured and a pair of resistors are chosen to produce this voltage in the production units.
By adjusting driving voltage and contrast is the most cost-effective way to improve the viewing angle. Different viewing angles need different driving voltage. It is compromising. In discussing the best viewing angle, we have to fix the voltage angle first.
– Positive LCD to Negative LCD (When the LCD is used indoor or dark environment, the contrast will increase a lot, but it will not display well with ambient light only, it is also more expensive)
When a LCD is high density with the segments/icons or very crowded, some customers also complains the viewing angle or contrast are not good. The reason is for crowded display, the layout can be long and thin. The voltage drop along the layout can be big. The solutions are:
Want to find out more about LCD, OLED & TFT solutions? – Check out our knowledge base, where ypu can find tips on electronics operating temperature and differences between LCD and TFT!
Kingtech is one of the leading TFT LCD display OEM/ODM manufacturers in China since 2003. Customization is allowed for projects such as industrial devices, medical, POS, logistics devices, smart home applications and etc.
To provide a one-stop LCD display solution. During the last 17 years, based on LCD manufacturing as our center, we gradually expand to the TFT capacitive touchscreen, driving board, software hardware design, and complete industrial computer solution.
As a professional LCD screen supplier/ LCD display supplier/ LCD panel company/ LCD module manufacturer, Kingtech LCD aims to provide a one-stop service and solve your problems. With a strong LCD Display module R & D team and strict quality management of IS09001, IS01400ATF16949 certificates.
I was in a large computer store looking at computer LCD monitors and a lady was asking about which one was the better one to buy. A man (presumably her family) told her that the ones which indicated TFT (Thin Film Transistor) were the ones to buy. I then interjected that everything was TFT and it"s been that way since the extinction of those ugly STN passive matrix LCDs 8 years ago they use to sell with the cheaper laptops. Of course this invariably invited more questions as to which LCD was the better buy and better quality so I spent a few minutes showing them some of the shortcomings to many of these displays.
The first thing I noted was the poor viewing angle of every LCD on the display with the exception of a single model. To see this in effect, simply lower your head a few inches in front of the monitor and you will see the brightness of the entire display dim dramatically. Looking at the display from the bottom makes the image almost darken to the point of being black with some weird hues showing. Many of these displays don"t even look right when viewed at a slightly down angle since the color will change drastically. Case in point, look at the photos below of a typical LCD monitor which uses the most common TN (twisted nematic) technology.
What"s extremely frustrating is that the manufacturer claims that this display has a vertical viewing angle of 160 degrees. Yet the image above came from a photograph shot at 50 degrees above and below which indicates a 100 degrees spread. If we wanted to be extremely generous, we could say that the top-down view pictured bottom left is barely acceptable (it isn"t as far as I"m concerned), but the bottom-up view is flat out atrocious and there is no way in hell you can tell me that"s an acceptable image at this viewing angle.
In reality, the usable viewing angle of this display vertically is about positive 35 degrees to negative 10 degrees at best and that"s being generous. But looking at the vendor specifications, there is no way that you as the consumer would know this when you"re making the purchase. Now I don"t have a problem with the actual specs at the price they"re selling it at, but I do have a big problem with the deceptive advertising.
Only one of the LCD monitors out of about 30 models being shown on the show floor was viewable from all angles and it was most likely using PVA (Patterned Vertical Alignment) technology but it was about 30% more expensive than other displays of comparable size. It looked like something like the image below which is actually quite viewable at any angle. Furthermore, these displays typically offer true 8 bit per color or even 10 bits per color whereas the TN type displays are limited to 6 bits per color.
So the old adage that you get what you pay for holds true when it comes to LCD monitors, but manufacturers need to be honest with their customers. I purposely avoided singling out any single manufacturer because they all do the same thing, but this kind of deceptive advertising needs to stop.
Contrary to what you may think, not all LCD TVs are built around the same core panel technology. They can actually have at their hearts one of two really quite different technologies: VA or IPS.
Each, as we’ll see, has its own distinct advantages and disadvantages – so much so that we personally think the type of panel a particular TV uses should be presented right at the top of its specifications list, rather than typically left off altogether. Especially as some brands have been known to actually mix and match VA and IPS panels at different screen sizes within the same TV series.
The VA initialism stands for Vertical Alignment. This name is derived from the way VA panels apply voltage to vertically aligned liquid crystals that have been mounted perpendicularly to the panel’s glass substrate, making them tilt as required to let the necessary amount of light through for each image frame.
The main advantage of VA panels is contrast. Their perpendicular crystal alignment provides greater control over the light passing through each pixel, meaning dark scenes and dark areas look less grey / enjoy better black levels.
The extent to which this strength is exploited can vary greatly between different manufacturers, and depends on any number of secondary factors. The type and position of LED lighting a particular VA screen might be using can have an impact, for instance. There are multiple variations on the VA theme available from different manufacturers, too. As a basic principle, though, black levels and contrast are consistently and often considerably better on LCD TVs that use VA panels.
Because of their ability to control light better, high-end VA panels generally deliver more brightness in real world conditions than IPS ones do. This further enhances their contrast capabilities, and arguably makes them more consistently able to do fuller justice to the wider light range associated with high dynamic range technology.
Being able to deliver dark scenes with relatively little overlying low-contrast greyness additionally means that VA panels tend to achieve more consistent colour vibrancy and toning.
VA panels for use in LCD TVs come from a number of panel manufacturers, including Samsung Display (which makes a so-called SVA variant) and AU Optronics (which makes an AMVA variant). TV brands are able to buy in panels from these and other VA panel manufacturers as they see fit.
Samsung Electronics is the most consistent user of VA panels in its LCD TVs. In fact, until recently pretty much every Samsung TV at every price level used a VA panel. For the past couple of years, though, IPS panels have unexpectedly cropped up in one or two parts of Samsung’s TV range, including 2021’s high-end QN85 series.
Sony predominantly uses VA panels on its most premium TVs, but it also habitually mixes IPS and VA panels across its wider mid-range and entry level LCD ranges. The same goes for most of the other big brands, too, including Panasonic and Philips.
IPS stands for In-Plane Switching. Like VA panels, IPS panels work by manipulating voltage to adjust how liquid crystals are aligned. Unlike VA, though, IPS panels orient their crystals in parallel with (rather than perpendicular too) the glass substrates present in every LCD panel, and rotate their crystals around to let the desired amount of light through rather than tilting them.
By far the biggest and most talked about advantage of IPS technology is its support for wider viewing angles. In fact, one way of identifying IPS panels has traditionally been to look for quoted viewing angles of 178 degrees.
When we talk about wide viewing angle support in relation to LCD TVs, we’re talking about how much of an angle from directly opposite the screen you can go before the picture starts to lose contrast, colour saturation and, sometimes, brightness.
With VA panels the angle you can watch them before the picture starts to deteriorate sharply can be really quite limited – as little as 20 degrees off axis. While we’d say the 178-degree claims for regular IPS panels are rather exaggerated, you can typically sit at a significantly wider angle than you can with VA and still enjoy a watchable picture.
We’ve even seen occasional evidence of the edges of really big (75-inch plus) VA screens suffering from the technology’s viewing angle limitations when viewed straight on, whereas this never happens with IPS technology.
The VA/IPS viewing angle situation is muddied a little by the introduction into a few high-end VA TVs of wide angle technologies based around filters or sub pixel manipulation. These technologies can be associated with other problems, though, such as reduced resolution, and can still struggle to suppress backlight blooming around stand-out bright objects with LCD TVs that use local dimming backlight systems.
Traditionally IPS panels have been associated with – on high-end screens, at least – wider colour gamuts than VA panels can readily manage. They retain this colour gamut better, too, when viewing the screen from an angle. This is why many professional designers, for instance, have tended to prefer IPS technology to VA. There can be some pretty extreme variance in the range of colour supported across different IPS price points, though, and improvements in premium VA solutions – especially the widespread use of Quantum Dot technologies – have largely evened things up, at least at the premium end of the VA market. In fact, with dark scenes, at least, IPS’s issues with black levels and ‘grey wash’ effect can give good VA panels a colour advantage.
As with VA, there are different variations on the basic IPS theme made by different panel manufacturers. LG Display is by far the biggest manufacturer of IPS LCD panels for TVs, but AU Optronics also makes them, as well as, more surprisingly, Samsung – though some of the non-LG Display IPS products seem to be more focused on PC monitors than TVs.
Given how dominant LG Display is in manufacturing IPS LCD panels, it’s not surprising to find that pretty much every LCD TV LG Electronics makes features an IPS panel at its heart. Other TV brands that use IPS panels on at least a few of their TVs each year include Panasonic, Philips, Sony and Hisense. In fact, the only big brand that has tended to shun IPS is Samsung (perhaps because of arch rival LG Display’s dominance of the IPS market).
If you’re able to actually get your hands on an LCD TV, try knocking gently on its screen. If it’s an IPS panel it will feel solid and the picture will only be slightly affected – or completely unaffected – by the impact of your knocks. If it’s a VA panel, the picture will distort quite noticeably around points of impact.
It’s tempting to assume that any TVs with obviously low contrast are IPS while any screen with a narrow viewing angle is VA. As well as depending on having a wide experience of lots of panels, though, there’s just too much variation in the high and low-end fringes of each technology for this approach to be reliable.
Arguably your best bet is to check out a TV model you’re interested in on an industry website called Displayspecifications.com(opens in new tab), which includes usually reliable information on the core panel of pretty much every TV released.
You might want to consider IPS TV if your room layout means one or more viewers regularly find themselves having to watch the screen from a wide angle (though don’t forget that a small number of high-end VA TVs feature wide viewing angle technology). IPS’s black level limitations tend to be less obvious in bright rooms too, if that fits with the sort of environment your TV is likely to be used in for the majority of the time.
Our long experience of testing VA and IPS TVs, though, has led us to conclude that in general, the sort of person most likely to be turning to us for buying advice will be happier with an LCD TV based on VA technology.
VA’s ability to deliver typically much deeper, more convincing black levels and more HDR-friendly contrast helps them deliver a much more consistent and immersive modern AV experience. Especially if you’re the sort of person who likes to dim the lights for serious movie or TV viewing nights.
If you usually watch TV alone from directly in front, you most likely don"t need a wide viewing angle. You should just turn the television to face you directly. However, if you watch TV with multiple people in a wide seating arrangement, you should benefit from wide viewing angles as those viewing off-center still see an accurate image.
Also, viewing angles have an effect if you sit very close, and in particular if you use the screen as a computer monitor. If you sit too close to the screen of a TV with narrow viewing angles, the edges of the screen might look darker and washed out. If it has wide viewing angles, however, the image remains accurate no matter where you sit.
There are a few competing TV technologies and panel types that each present their advantages and disadvantages regarding viewing angles. For LED-backlit LCD TVs, the LCD panel technology used is a big determining factor for how well a TV retains picture quality at an angle. There are two main types used in TVs: IPS and VA, and the differences between each panel type are noticeable; you can learn more about them here.
IPS panels are superior to VA panels when it comes to viewing angles. They"re generally recommended for wide seating arrangements because the image remains accurate when viewing from the side. On the other hand, the image on a VA panel quickly loses accuracy as you move off-center, and it can get pretty noticeable when sitting at a wide angle. This doesn"t mean IPS panels are perfect, however, as they have a lower contrast ratio than VA panels, so choosing one type over the other is a trade-off between viewing angles and contrast.
OLED is a different technology that uses self-emissive pixels. Each pixel turns itself on and off and emits light in all directions. This means that OLEDs have very wide viewing angles, even better than IPS panels, and they also have a near-infinite contrast ratio.
To improve viewing angles on VA panel TVs, companies have introduced viewing angle technology, like Samsung"s "Ultra Viewing Angle" and Sony"s "X-Wide Angle". This improves the viewing angles a bit at the cost of its contrast, but the contrast still isn"t as low as IPS panels. These TVs meet a common ground between viewing angles and contrast, without a decrease in overall picture quality. Samsung and Sony are the only two major manufacturers that have introduced such technology, and they"re generally only available on higher-end models.
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
Contrast ratio is one of the most important factors when it comes to picture quality. It determines how well a TV displays blacks, so one with a good contrast displays deep blacks when viewed in the dark. However, if your TV has a low contrast ratio, you"ll notice that blacks look gray when viewed in the dark.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Below you can see the viewing angle videos for the Samsung Q90T and the Sony X950H. The image remains accurate at fairly wide angles on each TV, but the Samsung does a better job overall at making sure the image is still fairly accurate when viewing from the side.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
It is intended to support Public Display where high brightness, super wide viewing angle, high color gamut,high color depth and fast response time are important.
Our Factory - JFCVision is factory specialized in capacitive touch screen, LCD panel, high brightness LCD panel production development and marketing for more than 10 years
We have our own warehouses in Shenzhen, and Hongkong, with comprehensive supplying network of LCD panels & open cells for LG, Samsung, AUO, CMO, and other brands.
We have been in original LCD panels industry for more than 10 years and know the main brands" LCD panel price system very well. What"s more, we have our own engineer team to provide our customers guideline for choosing panels for their new projects.
4. During the warranty, if panels’ electronic functions problems occur, customers provide the photos to illustrate the panel’s problem. Once our engineering department has confirmed it is the original factory’s electronic problem, we will take back the panels with problem and replace it with new panels. All freight will be taken by us.
A3: 12months after delivery. During the warranty, if panel"s original factory problems occur, we will take back the panels with problem and replace it with new panels.
One of the most important aspects of any display you can understand is the panel technology being used. Specifications alone won’t give you the full picture of a displays performance, and we all know that manufacturers can exaggerate specs on paper to suit their marketing. With an understanding of the panel technology being used you will get a feel for the overall performance characteristics of the display and how it should perform in real terms. Our extensive panel search database helps you identify the panel technology (and manufacturer and part number where known) of many screens in the market. This article which follows will help you understand what the different panel technologies can offer you. A lot of manufacturers now list the panel technology as well in their specs, something which wasn’t included a in the past.
TN Film panels are the mostly widely used in the desktop display market and have been for many years since LCD monitors became mainstream. Smaller sized screens (15″, 17″ and 19″) are almost exclusively limited to this technology in fact and it has also extended into larger screen sizes over the last 7 years or so, now being a popular choice in the 20 – 28″ bracket as well. The TN Film panels are made by many different manufacturers, with the big names all having a share in the market (Samsung, LG.Display, AU Optronics) and being backed up by the other companies including most notably Innolux and Chunghwa Picture Tubes (CPT). You may see different generations of TN Film being discussed, but over the years the performance characteristics have remained similar overall.
TN Film has always been so widely used because it is comparatively cheap to produce panels based on this technology. As such, manufacturers have been able to keep costs of their displays down by using these panels. This is also the primary reason for the technology to be introduced into the larger screen sizes, where the production costs allow manufacturers to drive down retail costs for their screens and compete for new end-users.
The other main reason for using TN Film is that it is fundamentally a responsive technology in terms of pixel latency, something which has always been a key consideration for LCD buyers. It has long been the choice for gaming screens and response times have long been, and still are today, the lowest out of all the technologies overall. Response times typically reach a limit of around 5ms at the ISO quoted black > white > black transition, and as low as 1ms across grey to grey transitions where Response Time Compensation (overdrive) is used. TN Film has also been incorporated into true 120Hz+ refresh rate desktop displays, pairing low response times with high refresh rates for even better moving picture and gaming experiences, improved frame rates and adding 3D stereoscopic content support. Modern 120Hz+ refresh rate screens normally also support NVIDIA 3D Vision 2 and their LightBoost system which brings about another advantage for gaming. You can use the LightBoost strobed backlight system in 2D gaming to greatly reduce the perceived motion blur which is a significant benefit. Some screens even include a native blur reduction mode instead of having to rely on LightBoost ‘hacks’, providing better support for strobing backlights and improving gaming experiences when it comes to perceived motion blur. As a result, TN Film is still the choice for gamer screens because of the low response times and 120Hz+ refresh rate support.
The main problem with TN Film technology is that viewing angles are pretty restrictive, especially vertically, and this is evident by a characteristic severe darkening of the image if you look at the screen from below. Contrast and colour tone shifts can be evident with even a slight movement off-centre, and this is perhaps the main drawback in modern TN Film panels. Some TN Film panels are better than others and there have been improvements over the years to some degree, but they are still far more restrictive with fields of view than other panel technologies. The commonly quoted 170/160 viewing angles are an unfair indication of the actual real-life performance really, especially when you consider the vertical contrast shifts. Where viewing angles are quoted by a manufacturer as 160/160 or 170/160 that is a clear sign that the panel technology will be TN Film incidentally.
Movie playback is often hampered by ‘noise’ and artifacts, especially where overdrive is used. Black depth was traditionally quite poor on TN Film matrices due to the crystal alignment, however, in recent years, black depth has improved somewhat and is generally very good on modern screens, often surpassing IPS based screens and able to commonly reach contrast ratios of ~1000:1. TN Film is normally only a true 6-bit colour panel technology, but is able to offer a 16.7 million colour depth thanks to dithering and Frame Rate Control methods (6-bit + FRC). Some true 8-bit panels have become available in recent years (2014 onwards) but given the decent implementation of FRC on other 6-bit+FRC panels, the real-life difference is not something to concern yourself with too much.
Most TN Film panels are produced with a 1920 x 1080 resolution, although some larger sizes have become available with higher resolutions. A new generation of Quad HD 2560 x 1440 27″ TN Film panels emerged in 2014. We’ve also seen the introduction of 28″ Ultra HD 3840 x 2160 resolution TN Film panels become available, and adopted in many of the lower cost “4k” models in the market. Where used, the Anti-Glare (AG) coating used on most TN Film panels is moderately grainy – not as grainy as some older IPS panel coatings, but not as light as modern IPS, VA or equivalents. Also at the time of writing there are no ultra-wide (21:9 aspect ratio) or curved format TN Film panels in production.
VA technology was first developed by Fujitsu in 1996. However the limited viewing angles were its main disadvantage, and so further investment focused on addressing this problem. It was eventually solved by dividing each pixel into domains which worked synchronously. This lead the birth of the following technologies:
MVA technology, was later developed by Fujitsu in 1998 as a compromise between TN Film and IPS technologies. On the one hand, MVA provided a full response time of 25 milliseconds (that was impossible at the time with IPS, and not easily achievable with TN), and on the other hand, MVA matrices had wide viewing angles of 160 – 170 degrees, and thus could better compete with IPS in that parameter. The viewing angles were also good in the vertical field (an area where TN panels suffer a great deal) as well as the horizontal field. MVA technology also provided high contrast ratios and good black depth, which IPS and TN Film couldn’t quite meet at the time.
In MVA panels, the crystals in the domains are oriented differently, so if one domain lets light pass through, the neighboring domain will have the crystals at an angle and will shutter the light (of course, save for the display of white color, in which case all the crystals are placed almost in parallel to the matrix plane).
As MVA developed over the years the problem became that the response times were not as good as TN film panels and was very difficult to improve. Sadly, the response time grows dramatically when there’s a smaller difference between the pixel’s initial and final states (i.e. the more common grey to grey transitions). Thus, such matrices were unsuitable for dynamic games. With the introduction of RTC and overdrive technologies, the manufacturers launched a new breed of MVA discussed in the following sections.
Premium MVA (P-MVA) panels were produced by AU Optronics, and Super MVA (S-MVA) panels by Chi Mei Optoelectronics (now Innolux) and Fujitsu from 1998 onwards. AU Optronics have since entered a more recent generation referred to as AMVA (see the next section) and S-MVA panels are rarely used in mainstream monitors nowadays. When they were launched they were able to offer improved response times across grey to grey (G2G) transitions which is a great improvement in the MVA market. While responsiveness was still not as fast as TN Film panels using similar RTC technologies, the improvement was obvious and quite drastic. This was really the first time that MVA matrices could be considered for gaming, and arrived at the time when overdrive was being more widely implemented in the market.
While some improvements have been made, the color-reproduction properties of these modern MVA technologies can still be problematic in some situations. Such panels give you vivid and bright colors, but due to the peculiarities of the domain technology many subtle color tones (dark tones often) are lost when you are looking at the screen strictly perpendicularly. When you deflect your line of sight just a little, the colors are all there again. This is a characteristic “VA panel contrast shift” (sometimes referred to as ‘black crush’ due to the loss of detail in dark colours) and some users pick up on this and might find it distracting. Thus, MVA matrices are somewhere between IPS and TN technologies as concerns color rendering and viewing angles. On the one hand, they are better than TN matrices in this respect, but on the other hand the above-described shortcoming prevents them from challenging IPS matrices, especially for colour critical work.
Traditionally MVA panels offered 8-Bit colour depth (a true 16.7 million colours) which is still common place today. We have yet to see any new breed of 10-bit capable MVA panel even using Frame Rate Control (8-bit + FRC). Black depth is a strong point of these P-MVA /S-MVA panels, being able to produce good static contrast ratios as a result of around 1000 – 1200:1 in practice. Certainly surpassing IPS matrices of the time as well as most TN Film panels. This has improved since with more recent AMVA panels to 3000 – 5000:1 (see next section).
MVA panels also offer some comparatively good movie playback with noise and artifacts quite low compared with other technologies. The application of overdrive doesn’t help in this area, but MVA panels are pretty much the only ones which haven’t suffered greatly in movie playback as a result. Many of the MVA panels are still pretty good in this area, sadly something which overdriven TN Film, IPS and PVA panels can’t offer. While CMO are still manufacturing some S-MVA matrices, AU Optronics no longer produce P-MVA panels and instead produce their newer generation of MVA, called AMVA (see below).
AU Optronics have more recently (around 2005) been working on their latest generation of MVA panel technology, termed ‘Advanced Multi Domain Vertical Alignment’ (AMVA). This is still produced today although a lot of their focus has moved to the similarly named, and not to be confused AHVA (Advanced Hyper Viewing Angle, IPS-type) technology. Compared with older MVA generations, AMVA is designed to offer improved performance including reduced colour washout, and the aim to conquer the significant problem of colour distortion with traditional wide viewing angle technology. This technology creates more domains than conventional multi-domain vertical alignment (MVA) LCD’s and reduces the variation of transmittance in oblique angles. It helps improve colour washout and provides better image quality in oblique angles than conventional VA LCD’s. Also, it has been widely recognized worldwide that AMVA technology is one of the few ways to provide optimized image quality through multiple domains.
AMVA provides an extra-high contrast ratio of greater than 1200:1, reaching 5000:1 in manufacturer specs at the time of writing for desktop monitor panels by optimized colour-resist implementation and a new pixel design and combining the panels with W-LED backlighting units. In practice the contrast ratio is typically nearer to 3000:1 from what we’ve seen, but still far beyond IPS and TN Film matrices. The result is a more comfortable viewing experience for the consumer, even on dimmer images. This is one of the main improvements with modern AMVA panels certainly, and remains way above what competing panel technologies can offer.
AMVA still has some limitations however in practice, still suffering from the off-centre contrast shift you see from VA matrices. Viewing angles are therefore not as wide as IPS technology and the technology is often dismissed for colour critical work as a result. As well as this off-centre contrast shift, the wide viewing angles often show more colour and contrast shift than competing IPS-type panels, although some recent AMVA panel generations have shown improvements here (see BenQ GW2760HS for instance with new “Color Shift-free” technology). Responsiveness is better than older MVA offerings certainly, but remains behind TN Film and IPS/PLS in practice. The Anti-Glare (AG) coating used on most panels is light, and sometimes even appears “semi glossy” and so does not produce a grainy image.
At the time of writing AMVA panels are typically offered with an HD 1920 x 1080 resolution, although some are available in sizes up to 32″ maximum, at a resolution of 2560 x 1440 (Quad HD). At this time there are no native 120Hz+ AMVA panels from AU Optronics in production although at one point AUO were looking into them. Also at the time of writing there are no ultra wide (21:9 aspect ratio) or curved format MVA-type panels in production.
AUO developed a series of vertical-alignment (VA) technologies over the years. This is specifically for the TV market although a lot of the changes experienced through these generations applies to monitor panels as well over the years. Most recently, the company developed its AMVA5 technology not only to improve the contrast ratio, but also to enable a liquid crystal transmission improvement of 30% compared to AMVA1 in 2005. This was accomplished by effectively improving the LC disclination line using newly developed polymer-stabilized vertical-alignment (PSA) technology. PSA is a process used to improve cell transmittance, helping to improve brightness, contrast ratio and liquid crystal switching speeds.
We have included this technology in this section as it is a modern technology still produced by Sharp as opposed to the older generations of MVA discussed above. Sharp are not a major panel manufacturer in the desktop space, but during 2013 began to invest in new and interesting panels using their MVA technology. Of note is their 23.5″ sized MVA panel which was used in the Eizo Foris FG2421 display. This is the first MVA panel to offer a native 120Hz refresh rate, making it an attractive option for gamers. Response times had been boosted significantly on the most part, bringing this MVA technology in line with modern IPS-type panels when it comes to pixel latency. The 120Hz support finally allowed for improved frame rates and motion smoothness from VA technology, helping to rival the wide range of 120Hz+ TN Film panels on the market.
Of particular note also are the excellent contrast ratios of this technology, reaching up to an excellent 5000:1 in practice, not just on paper. Viewing angles are certainly better than TN Film and so overall these MVA panels can offer an attractive all-round option for gaming, without some of the draw-backs of the TN Film panels. Viewing angles are not as wide as IPS panel types and there is still some noticeable gamma shift at wider angles, and the characteristic VA off-centre contrast shift still exists.
The liquid crystals in a PVA matrix have the same structure as in a MVA matrix – domains with varying orientation of the crystals allow keeping the same color, almost irrespective of the user’s line of sight and viewing angle. Viewing angles are not perfect though, as like with MVA matrices when you are looking straight at the screen, the matrix “loses” some shades, which return after you deflect your line of sight from the perpendicular a little. This ‘off-centre’ contrast shift, or ‘black crush’ as it is sometimes called is the reason why some colour enthusiasts prefer IPS-type displays. The overall viewing angles are also not as wide as IPS-type panels, showing more obvious colour and contrast shifts as you change your line or sight.
There was the same problem with traditional PVA matrices as with MVA offerings – their response time grew considerably when there’s a smaller difference between the initial and final states of the pixel. Again, PVA panels were not nearly as responsive as TN Film panels. With the introduction of MagicSpeed (Samsung’s overdrive / RTC) with later generations (see below), response times have been greatly improved and are comparable to MVA panels in this regard on similarly spec-ed panels. They still remain behind TN Film panels in gaming use, but the overdrive really has helped improve in this area. There are no PVA panels supporting native 120Hz+ refresh rates and Samsung have no plans to produce any at this time. In fact Samsung’s investment in PVA seems to have been cut back significantly in favour of their IPS-like PLS technology.
The contrast ratio of PVA matrices is a strong point, as it is with MVA. Older PVA panels offered contrast ratios of 1000 – 1200:1 typically, but remained true to their spec in many cases. As such at the time of their main production they were better than TN Film, IPS and even MVA in this regard. Movie playback is perhaps one area which is a weak point for PVA, especially on Samsung’s overdriven panels. Noise and artifacts are common unfortunately and the panels lose out to MVA in this regard. Most PVA panels were true 8-bit modules, although some generations (see below) began to use 6-bit+FRC instead. There are no 10-bit supporting PVA panels available, either native 10-bit or 8-bit+FRC. Panel coating is generally light on PVA panels, quite similar to a lot of MVA panels.
The introduction of overdrive to PVA panels lead to the next generation of Super Patterned Vertical Alignment (S-PVA) technology in 2004. Like P-MVA panels were to MVA, these are really just an extension of the existing PVA technology, but with the MagicSpeed (overdrive) technology, they have managed to make them more suitable for gaming than the older panels. One other difference is that the liquid crystal cell structure is a boomerang shape, splitting each sub pixel into two different sections with each aligned in opposite directions. This is said to help improve viewing angles and colour reproduction when viewed from the side. Limitations still exist with S-PVA and they don’t offer as wide viewing angles as IPS-type panels, and still suffer from the off-centre contrast shift we’ve described. Most S-PVA panels offered a true 8-bit colour depth, but some did feature Frame Rate Control (FRC) to boost a 6-bit panel (6-bit+FRC).
It is this two-zone structure that differentiates S-PVA from older PVA matrixes which used to have a monolithic sub-pixel divided into four domains. An S-PVA matrix has two zones with four domains in each, for a total of eight domains per each sub-pixel. This helps fight the gamma shift effect which occurs when not only the contrast ratio but also the gamma (i.e. the correlation between the video signal sent to the monitor and the resulting screen brightness) changes when the screen is viewed from a side. The pixel zones of S-PVA matrixes have such shape, position and voltage (in the most expensive matrixes that are installed into some TV-sets, the two zones of one sub-pixel can even be controlled independently) as to mutually compensate the gamma shift effect for each other. Unfortunately, the gamma shift effect is not absolutely eliminated even in S-PVA matrixes. Besides, these matrixes have one more difference from PVA. Their viewing angles are asymmetric: the gamma shift is bigger from one side.
In late 2009 Samsung started to produce their latest generation of so called “cPVA” panels. These new panels featured a simpler sub-pixel structure in comparison with S-PVA, but allowed Samsung to produce the panels at a lower cost, and drive down the retail cost of their new screens. It’s unclear what the “c” stands for. This is a similar approach to e-IPS which we discuss a little later on.
In practice, cPVA do not look any worse than S-PVA panels and in fact offer even better contrast ratios in early cPVA panel tests. Other performance characteristics including the off-centre contrast shift remained the same as S-PVA panels. Some cPVA panels are in fact using Frame Rate Control to produce their 16.7m colour depth (6-bit+FRC) as opposed to true 8-bit panels. See this news piece for more information about these 6-bit + AFRC cPVA panels.
There is very little official information about this technology but some Samsung monitors started to be labelled as having an A-PVA panel around 2012 onwards. We suspect that nothing has really changed from S-PVA / cPVA panels, but that the term “Advanced” has been added in to try and distinguish the new models, and perhaps compete with LG.Display’s successful IPS technology and AU Optronics AMVA technology where they have also added the word “Advanced” for their latest generations (see AMVA and AH-IPS).
During 2014 Samsung started to label their PVA panels as SVA, although the definition is currently unknown. In fact these are probably the only remaining mass-produced PVA panels on the market. Little information is available regarding any possible changes although we expect some improvements to response times and contrast ratios. We believe PSA has been used for these panels as well, much like AU Optronics have used it for their more recent AMVA generations. PSA is a process used to improve cell transmittance, helping to improve brightness, contrast ratio and liquid crystal switching speeds.
At the time of writing we have only seen this term used for their latest curved VA panels, so it may be something linked to that format. Contrast ratios of 3000:1 are now quoted for modern VA panels like this. Resolutions are offered at 1920 x 1080 and also 3440 x 1440 in ultra-wide 21:9 aspect ratio and curved formats. High refresh rate support is not offered at the moment so PVA variants are limited to 60Hz maximum.
In Plane Switching (IPS – also known as ‘Super TFT’) technology was developed by Hitachi in 1996 to try and solve the two main limitations of TN Film matrices at the time, those being small viewing angles and low-quality color reproduction. The name In-Plane Switching comes from the crystals in the cells of the IPS panel lying always in the same plane and being always parallel to the panel’s plane (if we don’t take into account the minor interference from the electrodes). When voltage is applied to a cell, the crystals of that cell all make a 90-degrees turn. By the way, an IPS panel lets the backlight pass through in its active state and shutters it in its passive state (when no voltage is applied), so if a thin-film transistor crashes, the corresponding pixel will always remain black, unlike with TN matrices.
IPS matrices differ from TN Film panels not only in the structure of the crystals, but also in the placement of the electrodes – both electrodes are on one wafer and take more space than electrodes of TN matrices. This leads to a lower contrast and brightness of the matrix. IPS was adopted for colour professional displays due to its wide viewing angles, good colour reproduction and stable image quality. However, response times were very slow originally, making IPS unsuitable for dynamic content.
The original IPS technology became a foundation for several improvements: Super-IPS (S-IPS), Dual Domain IPS (DD-IPS), and Advanced Coplanar Electrode (ACE). The latter two technologies belong to IBM (DD-IPS) and Samsung (ACE) and are in fact unavailable in shops. The manufacture of ACE panels is halted, while DD-IPS panels are coming from IDTech, the joint venture of IBM and Chi Mei Optoelectronics – these expensive models with high resolutions occupy their own niche, which but slightly overlaps with the common consumer market. NEC is also manufacturing IPS panels under such brands as A-SFT, A-AFT, SA-SFT and SA-AFT, but they are in fact nothing more than variations and further developments of the S-IPS technology.
In 1998 production started for Super-IPS panels, and were mostly produced by LG.Philips (now LG.Display). They have gone through several generations since their inception. Initially S-IPS built upon the strengths of IPS by employing an advanced “multi-domain” liquid crystal alignmentt. The term S-IPS is actually still widely used in modern screens, but technically there may be subtle differences making them S-IPS, e-IPS, H-IPS, or p-IPS (etc) generations for example. See the following sections for more information.
Since their initial production in 1998 S-IPS panels have gained the widest recognition, mostly due to the efforts of LG.Philips LCD (now known as LG.Display), who were outputting rather inexpensive and high-quality 19″ – 30″ matrices. The response time was among the serious drawbacks of the IPS technology – first panels were as slow as 60ms on the “official” black-to-white-to-back transitions (and even slower on grey-to-grey ones!) Fortunately, the engineers dragged the full response time down to 25 ms and then 16ms later, and this total is equally divided between pixel rise and pixel fall times. Moreover, the response time doesn’t greatly grow up on black-to-gray transitions compared to the specification, so some older S-IPS matrices at the time could challenge TN Film panels in this parameter.
The IPS technology has always been at the top end when it comes to colour reproduction and viewing angles. Colour accuracy has always been a strong point, and even in modern displays the IPS matrices can surpass the performance of TN Film and VA equivalents. The viewing angles are a key part in this, since IPS matrices are free of the off-centre contrast shift that you can see from VA type panels. This is the reason why IPS is generally considered the preferred choice for colour critical work and professional colour displays, combining the excellent colour accuracy with truly wide viewing angles (178/178). S-IPS panels can show a purple colour when viewing dark images from a wide angle.
One main problem of the S-IPS technology traditionally was the low contrast ratio. Black depth was often a problem with S-IPS panels and contrast ratios of 500 – 600:1 were common for the early S-IPS offerings. However, these have been improved significantly, and contrast ratios are now much better as a result with modern IPS generations (see following sections). One other area which remains problematic for modern IPS panels is movie playback, again with noise being present, and only accentuated by the heavy application of overdrive technologies. S-IPS panels are sometimes criticized for their Anti-Glare (AG) coating, which can appear quite grainy and dirty looking, especially when viewing white/light backgrounds in office applications. Again that has been improved significantly in recent generations.
Moving Picture Image Sticking (MPIS) – S-IPS panels do not show any image sticking when touching a moving image. On the other hand severe image sticking happens in VA panel and lasts after the image is changed for a short time.
Sometimes you will see these ter