view angle lcd panel factory
Viewing angle is a very important factor when evaluating LCD display"s performance. Understanding how to locate the optimum viewing angle and choose the right LCD display will make your product looks sharp without extra cost.
LCD viewing angle is the maximum angle from which customer can view the screen well. "Viewing well" is commonly recognized as having at least 10:1 contrast and without grayscale inversion.
At time of manufacturing, LCD manufacturer designs LCD panel in a way that it is best viewed from an angle (called Bias) offset from the perpendicular by certain degrees, to accommodate as many applications as possible. Viewing angle is the angle covers both side of Bias angle, where the LCD is still "viewing well".
When reading an LCD"s specification, you will see the term "viewing direction". Viewing direction is defined following the format of a clock. Like figure below, Z axis is Normal, X axis is Horizontal and Y axis is Vertical. An LCD"s viewing angle "above" Z axis is having 12 o"clock viewing direction. So 6 o"clock viewing direction LCD is best viewed from "below" Z axis.
Theoretically, LCD manufacturer can produce LCD with 3, 12, 9 and 6 o"clock viewing direction. But in practice, we usually look at LCD display from 12 or 6 o"clock angle.
Using a simple TN type TFT LCD as example, its viewing angle is typically 45~65 degrees. Adding extra wide polarizer film (EWP) to the TN type LCD, the viewing angle may be increased about 10 degrees. Similarly, an O-film enhancement polarizer will widen the viewing angle to 75 degree in each direction. However, these enhancements bring along contrast reduction. Adjusting LCD contrast is necessary.
Using a liquid crystal display with proper viewing angle is very important to your product"s success. And we should keep in mind that optimized contrast is crucial, too. Both parameters define the visual appearance of the LCD display and the appeal of your product. Choices are based on cost performance trade offs.
For example, if your project requires a wide viewing angle 2.4" TFT LCD. TN TFT panel with O-film solution might be better than using IPS LCD. Topway engineers are here to help you making those design decisions.
The view direction is the right direction marked with Φ which is with respect to the X-axis. The original location is the center point of the display panel surface, the Z axis is Normal, the X-axis is Horizontal and Y-axis is Vertical.
Normally it was defined 4 angles to correspond with 3, 12, 9, and 6 o’clock respectively. So, you can find the 6 o’clock or 12 o’clock parameter in the LCD datasheet.
Viewing Angle is the angle with respect to the Z-axis in a certain direction and marked by θ (θU means upper View Angle). LCD Viewing Angle describes the maximum watching angle, and it is one of the key indicators with the display module.
The LCD bias angle is the angle perpendicular from which the display is best viewed. (See Fig.2) This angle is determined when the display is designed and can be set at any angle or orientation. The orientation of the bias angle of LCD displays is often stated with reference to a clock face. If the offset is above the display, it is referred to as a 12:00 or Top view.
The LCD viewing angle is the angle formed on either side of the bias angle, where the contrast of the display is still considered acceptable. Generally, this contrast is specified as 2:1 for monochrome LCD and 10:1 for color LCD.
For example, assume the display is a 12:00 (topview) type. When the display is viewed from 25 degrees above the vertical, it will be at its maximum contrast and best look. If the viewer moves their eyes further above the display by an additional 30 degrees, they will see a contrast reduction, but the display will still be readable. Moving the view position any further above the display will reduce the contrast to an unacceptable degree.
Adjusting the contrast voltage, VL, effects the Bias Angle to some extent, but not the Viewing Angle. A top view 12:00 display can be optimized for a bottom view 6:00 viewing position by adjusting the contrast voltage. A 12:00 display set for a 6:00 viewing position will not have as great a contrast as a 6:00 display set for 6:00 viewing position and vice versa.
Generally, displays are optimized for straight-on viewing. Either a 6:00 or 12:00 module may be used, and the contrast voltage can be adjusted slightly to optimize the display for that viewing position. In the above example, the viewing angles of both 6:00 and 12:00 modules actually overlap the perpendicular (or straight on) viewing position.
The LCD is positioned at the nominal viewing position and the pot is adjusted to obtain the desired LCD appearance. The voltage on the VL pin is now measured and a pair of resistors are chosen to produce this voltage in the production units.
By adjusting driving voltage and contrast is the most cost-effective way to improve the viewing angle. Different viewing angles need different driving voltage. It is compromising. In discussing the best viewing angle, we have to fix the voltage angle first.
– Positive LCD to Negative LCD (When the LCD is used indoor or dark environment, the contrast will increase a lot, but it will not display well with ambient light only, it is also more expensive)
When a LCD is high density with the segments/icons or very crowded, some customers also complains the viewing angle or contrast are not good. The reason is for crowded display, the layout can be long and thin. The voltage drop along the layout can be big. The solutions are:
Want to find out more about LCD, OLED & TFT solutions? – Check out our knowledge base, where ypu can find tips on electronics operating temperature and differences between LCD and TFT!
When we introduced IPS in a previous article, we mentioned one of the biggest advantages was in viewing angle. In fact, there are a couple of different characteristics with respect to the direction of viewing. You may have heard of displays that boast of "Full Viewing Angles" or "Big Viewing Angle" in marketing. Today, we"ll unpack some of the elements of viewing angle and viewing direction.
The view direction is the sight direction marked with Φ which is with respect to the X-axis. The original location is the center point of the display panel surface, the Z axis is Normal, the X-axis is Horizontal and Y-axis is Vertical.
Normally it was defined 4 angles to correspond with 3, 12, 9, and 6 o’clock respectively. So you can find the 6 o’clock or 12 o’clock parameter in the display‘s datasheet.
View Angle is the angle with respect to the Z-axis in a certain direction and marked by θ (θU means upper View Angle). View Angle describes the maximum watching angle and it is one of the key indicators with the display module.
LCD uses light emission characteristic and control of the light brightness to form the grayscale. Based on the relationship of the light direction and the LC (Liquid Cristal molecule, same as below) direction, you can see that the left of Figure 3 shows the case if you look from a different direction. The light is parallel to LC long axis, the Phase Delay and Transmission Rate are small and it is dark if you look from below (6 o’clock).
The right side of Figure 3 shows the Gray Scale Inversion case. When looking from a certain angle and increasing the Electrode voltage, The LC will rotate to a larger angle and It will cause the angle of light and LC are close under maximum voltage and minimum voltage. It means that the Gray Scale is the same and we can see the scene of bright becoming dark and then bright following the voltage increase.
Because the LC angle and distribution are not fully symmetric, you can see the Gray Scale Inversion from a large angle. Gray Scale Inversion will cause bad display effect.
Normally we use Contrast Ratio, Gray Scale Inversion or Color Shift to define the View Angle. The View Angle is the critical angle in which the Gray Scale Inversion does not happen if you select the Gray Scale Inversion to defined it. They are not the same definition but the result is close. So, we should not care about the definition but our requirement.
View Direction can determine the best view direction and avoid putting the display in the wrong place. Normally the LCD View Angle is Vertical symmetry but not up and down. If you usually look down, the 12 o’clock is suitable. Of course, the view direction os great from this angle. (no difference of UDLR).
There is another method to mark the View Angle except Figure 1. For example, 160 degree means the total angle is 160 degree for up/down or left/right direction.
Sometimes we confuse the mark of View Direction. For example, we record 45/35/65/65 sort by U/D/L/R, someone says it is 6 o’clock (point out the Gray Scale Inversion direction), but another one says that it is 12 o’clock. So It is necessary to check in the datasheet to confirm the detail if you get a new display module. In one thought, the bigger angle is the best direction we should look at the screen from. From this, we can select the proper screen for our application.
In the end, that"s why all of this matters. For some applications, the viewing direction of the screen might be different from others. So, it"s very important to understand how the display will be used and what environment it will serve in. Characteristics like viewing angle and viewing direction become important differentiators, in the end, only if they match the final use case.
I was in a large computer store looking at computer LCD monitors and a lady was asking about which one was the better one to buy. A man (presumably her family) told her that the ones which indicated TFT (Thin Film Transistor) were the ones to buy. I then interjected that everything was TFT and it"s been that way since the extinction of those ugly STN passive matrix LCDs 8 years ago they use to sell with the cheaper laptops. Of course this invariably invited more questions as to which LCD was the better buy and better quality so I spent a few minutes showing them some of the shortcomings to many of these displays.
The first thing I noted was the poor viewing angle of every LCD on the display with the exception of a single model. To see this in effect, simply lower your head a few inches in front of the monitor and you will see the brightness of the entire display dim dramatically. Looking at the display from the bottom makes the image almost darken to the point of being black with some weird hues showing. Many of these displays don"t even look right when viewed at a slightly down angle since the color will change drastically. Case in point, look at the photos below of a typical LCD monitor which uses the most common TN (twisted nematic) technology.
What"s extremely frustrating is that the manufacturer claims that this display has a vertical viewing angle of 160 degrees. Yet the image above came from a photograph shot at 50 degrees above and below which indicates a 100 degrees spread. If we wanted to be extremely generous, we could say that the top-down view pictured bottom left is barely acceptable (it isn"t as far as I"m concerned), but the bottom-up view is flat out atrocious and there is no way in hell you can tell me that"s an acceptable image at this viewing angle.
In reality, the usable viewing angle of this display vertically is about positive 35 degrees to negative 10 degrees at best and that"s being generous. But looking at the vendor specifications, there is no way that you as the consumer would know this when you"re making the purchase. Now I don"t have a problem with the actual specs at the price they"re selling it at, but I do have a big problem with the deceptive advertising.
Only one of the LCD monitors out of about 30 models being shown on the show floor was viewable from all angles and it was most likely using PVA (Patterned Vertical Alignment) technology but it was about 30% more expensive than other displays of comparable size. It looked like something like the image below which is actually quite viewable at any angle. Furthermore, these displays typically offer true 8 bit per color or even 10 bits per color whereas the TN type displays are limited to 6 bits per color.
So the old adage that you get what you pay for holds true when it comes to LCD monitors, but manufacturers need to be honest with their customers. I purposely avoided singling out any single manufacturer because they all do the same thing, but this kind of deceptive advertising needs to stop.
This monitor will display a 250:1 contrast ratio when viewed head on or at a 90° angle from the surface of the monitor. The contrast ratio will decline as you view the display from the side eventually going down to 10:1 or 5:1 contrast ratio at an angle of 70° from head on. As you move away from the maximum contrast at the straight on viewing position, the brightness of the white may increase or decrease and the black may increase or decrease. However, the contrast (ratio of the two) will decrease as you move away from normal viewing. Please note, this is just a general representation and not factual for every monitor with 140° viewing angle. All values are estimates.
Other factors such as the display"s brightness, ambient light and contrast conditions all play a part in the readability of the display. As mentioned above, viewing angle is defined using only the contrast ratio. However, even within this standard viewing angle, the colors or tones on the display panel may look different from the real color/tone, or they may become invisible, depending on the combination of displayed colors (background color, text color and switch color). For example, if the background color is bright and you look at the screen from below, the colors may appear inverted so that the text color and switch color darken to the point where they become invisible. Or, when the background color is dark and you look at the screen from above, the colors may again appear inverted, so that the text color and switch color brighten to the point that they become invisible. As a result, be sure to choose your screen colors carefully, so they produce an effective combination for the LCD panel"s operation environment.
A TN or Twisted Nematic TFT LCD is a cost-effective high performance LCD. It offers good brightness performance and fast response times. However, it suffers in one key area and that is its viewing cone. TN LCD’s typically have three good viewing angle directions. In these directions the image is typically clear and colors are consistent up to 80 degrees from the center of the LCD. The remaining viewing direction is usually good through 40-50 degrees from center. Afterwards, the image is likely to invert, almost appearing like an x-ray.
Use is increasing of mobile devices, such as mobile phones, notebook PCs and PDAs, to view personal information, so there is a growing need to protect the information and maintain confidentiality.
The switchable viewing-angle LCD gives the user the ability to switch between normal wide-angle display and narrow-angle display that guards against unwanted viewing from the side.
This new LCD technology provides protection that can be turned on and off according to the situation and will help boost future demand for mobile devices.
In addition, by incorporating the 3 basic light colors in the same capsule, there is no visual interference when viewing contents from wide angles. In the screens with DIP LEDs, these angles are reduced due to the LED’s structure. Since the three basic colors are in separate LEDs, a slight loss of visibility of one of the colors may happen when viewing contents from extreme angles. This means that a color may dominate the image perceived by the spectator, degrading the image’s fidelity.
In addition, by incorporating the 3 basic light colors in the same capsule, there is no visual interference when viewing contents from wide angles. In the screens with DIP LEDs, these angles are reduced due to the LED’s structure. Since the three basic colors are in separate LEDs, a slight loss of visibility of one of the colors may happen when viewing contents from extreme angles. This means that a color may dominate the image perceived by the spectator, degrading the image’s fidelity.
Updated: Oct 28, 2019:Despite all the advances in LCD display technology viewing angle is still an important topic, panel viewing angles are still poor, good, better and best, but none are 100% perfect.
The viewing angle of an LCD panel is typical given based on the normal aspect ratio which is generally landscape for the types of LCD panels we work with. It is quoted for both horizontal and vertical in degrees from perpendicular to the display or as a total of left & right and up & down. So for example the newer IPS panels now claim up to 89 degree viewing angle from perpendicular for both horizontal and vertical.
Specifications are no replacement for actually seeing and evaluating an LCD panel, the reason is that there can be characteristics that the specifications don’t mention. For example I have seen an LCD panel with excellent viewing angle specifications but when testing it I could see a color shift at around 45 degrees from perpendicular.
Further to the previous point, even though LCD panel specification may quote H (horizontal) & V (vertical) viewing angles the performance in portrait model may be quite different to landscape mode.
I realize not every application needs or even suits having a wide viewing angle. Digital signage displays clearly benefit from a wide viewing angle if used in a poster or menu board but some overhead information displays need a good 6 o’clock viewing angle, ie when viewed from below, but the 12 o’clock viewing angle may not be critical.
IPS panels have had quite a few years of being a leading technology for excellent viewing angle with not only impressive specifications but genuinely excellent results. More recently companies like AUO have been showing panels with a new technology that appears to provide not only equivalent viewing angles but also excellent color fidelity over the range of viewing angles.
At this time the viewing angle of a LCD panel is not a tunable setting, it is a fixed part of the LCD panel design. Filters can be added by reworking the panel or adding to the front but these will typically limit rather than extend the viewing angle.
LCD is a backlight display device. The light is provided by the backlight behind the LCD module. When the backlight passes through the polarizer, liquid crystal, and orientation layer, the output light has directivity. That means most of the light is coming straight out of the screen. Therefore, when you look at the LCD from a large Angle, you can’t see the original color, some time even just white or black color can be seen. The Angle (left and right, up and down) at which the original color appears on the screen is called the Viewing Angle of TFT LCD display Screens.
There are different visual effects from different view angle when viewed from the middle and side of the LCD display screen, the intensity of light entering the human eye is different. For the same picture, there is light and dark part, and the contrast is different. With the definition of perspective, the corresponding perspective of the LCD screen is perspective within the acceptable contrast range of human eyes.
As long as the horizontal viewing angle reaches 120 degrees and the vertical viewing angle reaches 140 degrees, the LCD on the market can fit the application needs of most users. The latest LCD screens are made with wide-angle technology, which can reach up to about 150 degrees, reducing the inconvenience caused by the small viewing angle.
There are 3 popular techniques for a wide display viewing angle so far, which are TN+FILM, IPS(in-plane -SWITCHING), and MVA(multi-domain VERTICAL alignment).
Add a layer of wide-viewing angle compensation film. This compensation film can increase the visual Angle to about 150 degrees, which is a simple and easy method and is widely used in LCD.TN+FILM may not be the best solution for manufacturers, but it is the cheapest solution, so most Taiwanese manufacturers use this method to build 15-inch LCDs.
The technology is the LCD panel technology introduced by Hitachi in 2001. The biggest feature of the IPS panel is that its two poles are on the same surface. Since the electrode is in the same plane and the liquid crystal molecules are always parallel to the screen in any state, the opening rate and the light transmittance will be reduced. Therefore, the application of IPS in LCD TV requires more backlights.
The advantage of the IPS panel is high visual Angle, fast response, accurate color restoration, cheap price. However, the disadvantage is that the light leakage problem. And the black purity is not enough, which is slightly worse than PVA. So it needs to rely on the compensation of optical film to achieve better black purity. Compared with other types of panels, the screen of the IPS panel is relatively “hard”, and it is not easy to appear water pattern deformation with a gentle stroke of the hand, so it is called a hard screen.
The idea is to add protrusions to form multiple visible areas. The liquid crystal molecules are not arranged vertically at rest, but horizontally when a voltage is applied, allowing light to pass through the layers. MVA technology improves viewing angles above 160 degrees and provides a shorter response time than IPS and TN+FILM.
In the MVA (multi-domain vertical alignment) display technology, horizontal and vertical viewing angles are wider than those of the first two technologies, and there is basically no blind Angle or bright spot. The viewing Angle is divided into horizontal and vertical viewing angles. The horizontal viewing angle is the viewing range from the center of the vertical central axis to the left and right. The vertical viewing angle is the viewing range from the center of the horizontal center axis to the up and down. Viewing Angle takes “degree” as the unit. Currently, the commonly used annotation form is to mark the total horizontal and vertical range directly, such as 150/120 °. At present, the lowest visual Angle is 120/100 ° (horizontal/vertical), which cannot be accepted if it is lower than this value.
If you are interested in STONE TFT LCD module manufacturers or have any questions, please feel free to contact us, we will wholeheartedly for your service.
For Mass production, we usually make delivery among 2-8weeks, special size may need some longer time. In summary, based on our years of big output, we have been keeping good relationship with Taiwan LCD panel and IC suppliers, we had a steady supply even when there was heavy shortage of materials.
If you usually watch TV alone from directly in front, you most likely don"t need a wide viewing angle. You should just turn the television to face you directly. However, if you watch TV with multiple people in a wide seating arrangement, you should benefit from wide viewing angles as those viewing off-center still see an accurate image.
Also, viewing angles have an effect if you sit very close, and in particular if you use the screen as a computer monitor. If you sit too close to the screen of a TV with narrow viewing angles, the edges of the screen might look darker and washed out. If it has wide viewing angles, however, the image remains accurate no matter where you sit.
There are a few competing TV technologies and panel types that each present their advantages and disadvantages regarding viewing angles. For LED-backlit LCD TVs, the LCD panel technology used is a big determining factor for how well a TV retains picture quality at an angle. There are two main types used in TVs: IPS and VA, and the differences between each panel type are noticeable; you can learn more about them here.
IPS panels are superior to VA panels when it comes to viewing angles. They"re generally recommended for wide seating arrangements because the image remains accurate when viewing from the side. On the other hand, the image on a VA panel quickly loses accuracy as you move off-center, and it can get pretty noticeable when sitting at a wide angle. This doesn"t mean IPS panels are perfect, however, as they have a lower contrast ratio than VA panels, so choosing one type over the other is a trade-off between viewing angles and contrast.
OLED is a different technology that uses self-emissive pixels. Each pixel turns itself on and off and emits light in all directions. This means that OLEDs have very wide viewing angles, even better than IPS panels, and they also have a near-infinite contrast ratio.
To improve viewing angles on VA panel TVs, companies have introduced viewing angle technology, like Samsung"s "Ultra Viewing Angle" and Sony"s "X-Wide Angle". This improves the viewing angles a bit at the cost of its contrast, but the contrast still isn"t as low as IPS panels. These TVs meet a common ground between viewing angles and contrast, without a decrease in overall picture quality. Samsung and Sony are the only two major manufacturers that have introduced such technology, and they"re generally only available on higher-end models.
Many TVs use LCD (Liquid Crystal Display) panels that are lit by LED backlights. There are two popular types of LCD panels: In-Plane Switching (IPS) and Vertical Alignment (VA), and there are two main differences between each type. A VA panel usually has a high contrast ratio and narrow viewing angles. However, an IPS panel has low contrast and wide viewing angles. These are the main differences between each, and for the most part, panel type doesn"t affect other aspects of picture quality, like peak brightness, color gamut, or color accuracy.
For the purposes of this article, we"re going to compare two LED-backlit LCD TVs: the Sony X800H, which has an IPS panel, and the Hisense H9G, which has a VA panel. Due to their different panel types, there are three noticeable differences in picture quality: viewing angles, contrast, and black uniformity, so we"re going to look at each one.
Viewing angle refers to the angle at which you can watch the TV without seeing a noticeable drop in picture quality. IPS TVs are the clear winner here, as the image remains accurate when viewing from the side - you can see the differences in the videos above. This is their main advantage over VA panels. Most VA panel TVs have a noticeable loss in image accuracy when viewing from the side. The narrow viewing angle of VA-type TVs is also problematic when the TV is used as a PC monitor from up close since the edges of the display look washed out.
Contrast ratio is one of the most important factors when it comes to picture quality. It determines how well a TV displays blacks, so one with a good contrast displays deep blacks when viewed in the dark. However, if your TV has a low contrast ratio, you"ll notice that blacks look gray when viewed in the dark.
VA panels are far superior to IPS panels when it comes to this, so if you tend to watch movies in the dark, you likely want to get a TV with a VA panel. Most TVs use VA panels due to this main advantage, and high-end models may have a local dimming feature that further enhances black levels. On the other hand, IPS panels normally have low contrast, so blacks look closer to gray, but you may not notice the difference in contrast in bright environments.
Our black uniformity tests determine how well a TV displays a dark scene with a bright image in the center. Ideally, you want to see a completely black screen with the center cross being the only part that"s lit up, and this is important for people watching movies. No LED TV has perfect uniformity, and unlike viewing angles and contrast, the panel type doesn"t completely determine its black uniformity. However, most VA panels that we"ve tested have good black uniformity, while most IPS panels have sub-par black uniformity. This doesn"t mean that every VA panel TV has good uniformity, as this can change between units, and you can also improve uniformity using the local dimming feature.
LCDs function by having liquid crystals in little groups to form the pixels. These crystals react and change position when charged with electricity and, depending on their position, they allow a certain color of light to pass through.
There"s also another type of IPS panel, called Plane-to-Line Switching (PLS), which can be seen with the Sony X800H. This panel type was designed by Samsung and technically performs the same as an IPS panel. When you compare the pixels visually, IPS panels look like chevrons, VA looks like very straight rectangles, and PLS looks like round-edged capsules. You can learn more about pixels here.
The way the pixels are laid out can also affect text clarity. Many IPS panels, like the ones on the Sony X800H or the LG SK9000, use RGB sub-pixel layouts, while many VA panels have a BGR layout, like on the Hisense H9G. The sub-pixel layout doesn"t directly affect picture quality unless you"re using it as a PC monitor. Some applications may expect an RGB layout, so if you have a BGR sub-pixel layout, text may not look clear. You may need to increase the text scaling to read it properly, but this issue isn"t common with an RGB layout. You can learn more about it here.
Unlike LED TVs, OLEDs don"t use a backlight and instead have self-emitting pixels. This allows the pixels to individually turn on and off, resulting in perfect blacks. This means that they also have perfect black uniformity as there"s no blooming around bright objects like on some LED TVs. They also have wide viewing angles, sometimes even wider than some IPS panels, so OLEDs are a good choice for wide seating arrangements.
Samsung released quantum dot TVs in 2015, which they later labeled as QLED in 2017. These TVs include a quantum dot layer between the LED backlights and the LCD panel to achieve a wider color gamut. Other companies like Vizio and TCL also use this quantum dot technology on their TVs. Adding this extra quantum dot layer doesn"t change the characteristics of the panel type; the VA panel on the TCL 6 Series/S635 2020 QLED still has a high contrast ratio and narrow viewing angles. Although most QLED TVs use VA panels, you can easily use an IPS panel as well.
Manufacturers have tried different techniques to improve the viewing angles on VA panels over the years, aiming to produce a perfect LCD panel with both wide viewing angles and high contrast. While they have yet to achieve that goal, a few TVs have hit the market that try to combine the best of both panel types. The first TVs with this viewing angle technology came out in 2018, and only a few high-end models like the Samsung Q90/Q90T QLED and the Sony X950H had this technology in 2020. These TVs are a bit unique, delivering noticeably better viewing angles than their pure VA counterparts, but still worse than true IPS panels. This comes at the expense of a lower contrast ratio, as these TVs have worse native contrast than most VA panels, but they"re still better than IPS panels. Combined with their local dimming features, they still produce deep blacks.
Below you can see the viewing angle videos for the Samsung Q90T and the Sony X950H. The image remains accurate at fairly wide angles on each TV, but the Samsung does a better job overall at making sure the image is still fairly accurate when viewing from the side.
Between IPS and VA panels, neither technology is inherently superior to the other as they both serve different purposes. In general, IPS TVs have wide viewing angles suitable for when you want to watch the big game or your favorite show in a large seating arrangement. They"re also beneficial for use as a PC monitor since the edges remain accurate if you sit up close. However, VA panels are a better choice for watching content in dark rooms, as their improved contrast allows them to display deep blacks. Choosing between the two is a series of trade-offs and qualities, so choosing the best TV for your needs depends on your usage.
Kingtech is one of the leading TFT LCD display OEM/ODM manufacturers in China since 2003. Customization is allowed for projects such as industrial devices, medical, POS, logistics devices, smart home applications and etc.
To provide a one-stop LCD display solution. During the last 17 years, based on LCD manufacturing as our center, we gradually expand to the TFT capacitive touchscreen, driving board, software hardware design, and complete industrial computer solution.
As a professional LCD screen supplier/ LCD display supplier/ LCD panel company/ LCD module manufacturer, Kingtech LCD aims to provide a one-stop service and solve your problems. With a strong LCD Display module R & D team and strict quality management of IS09001, IS01400ATF16949 certificates.
In display technology parlance, viewing angle is the angle at which a display can be viewed with acceptable visual performance. In a technical context, the angular range is called viewing cone defined by a multitude of viewing directions. The viewing angle can be an angular range over which the display view is acceptable,
The image may seem garbled, poorly saturated, of poor contrast, blurry, or too faint outside the stated viewing angle range, the exact mode of "failure" depends on the display type in question. For example, some projection screens reflect more light perpendicular to the screen and less light to the sides, making the screen appear much darker (and sometimes colors distorted) if the viewer is not in front of the screen. Many manufacturers of projection screens thus define the viewing angle as the angle at which the luminance of the image is exactly half of the maximum. With LCD screens, some manufacturers have opted to measure the contrast ratio, and report the viewing angle as the angle where the contrast ratio exceeds 5:1 or 10:1, giving minimally acceptable viewing conditions.
The viewing angle is measured from one direction to the opposite, giving a maximum of 180° for a flat, one-sided screen. A display may exhibit different behaviour in horizontal and vertical axes, requiring users and manufacturers to specify maximum usable viewing angles in both directions. Usually the screens are designed to facilitate greater viewing angle in horizontal level, and smaller angle in the vertical level, should the two of them be different in magnitude.
Narrow viewing cones of some types of displays have also been used to bring a measure of security in businesses, where employees handle private information in the presence of customers, banks being one example. Rectangular filters fitting to the computer monitors have also been sold as accessories for this purpose.