arduino 2.4'' tft lcd touch shield code factory
In this tutorial, you will learn how to use and set up 2.4″ Touch LCD Shield for Arduino. First, you’ll see some general information about this shield. And after learning how to set the shield up, you’ll see 3 practical projects.
The role of screens in electronic projects is very important. Screens can be of very simple types such as 7 Segment or character LCDs or more advanced models like OLEDs and TFT LCDs.
One of the most important features of this LCD is including a touch panel. If you are about to use the LCD, you need to know the coordinates of the point you touch. To do so, you should upload the following code on your Arduino board and open the serial monitor. Then touch your desired location and write the coordinates displayed on the serial monitor. You can use this coordination in any other project.
To display pictures on this LCD you should save the picture in 24bit BMP colored format and size of 240*320. Then move them to SD card and put the SD card in the LCD shield. we use the following function to display pictures. This function has 3 arguments; the first one stands for the pictures name, and the second and third arguments are for length and width coordinates of the top left corner of the picture.
If you want to display pictures without using an SD card, you can convert it to code and then display it. You can display even several photos sequentially without delay to create an animation. (Check this) But be aware that in this case, Arduino UNO may not be suitable (because of low processor speed). We recommend using the Arduino Mega or Arduino DUE.
The 2.4 ” tft lcd touch screen shield for Arduino can be used in a number of applications. However many of the shields available on the market are cloned versions which usually give many hobbyists hard time to use because they do not work properly with the common libraries for running TFT displays.
If you try uploading any of the examples in the Adafruit_GFX library for example the “graphicstest”, the lcd will just give a white screen. Nothing is displayed on the screen!
This problem is mainly due to using a newer version of the Adafruit GFX library. The 1.5.4 release of the Adafruit_GFX library broke compatibility with the Adafruit_TFTLCD library. So you have to roll back to Adafruit_GFX 1.5.3:
Another problem you may encounter with this tft lcd shield is the poor fuctioning of the touch screen. You may find the stylus pen is not well aligned with the content you are writing on the screen.
This is due to a bug in the TouchScreen library therefore you need to locate this library by following the path to where all the libraries for your Arduino IDE are stored.
First change it to return TSPoint(1023-x, 1023-y, z). Save the changes and then compile your code again and upload to check if the touch fuction is fine.
You can keep on adjusting the values of before x and y until you get an ideal point that works best for your tft lcd. Mine worked fine with return TSPoint(x, 1105-y, z)
Due to the limited processing power of the microprocessor in the Arduino, we need to store images in bmp format and they should be 320×240 pixels sizes.
In this tutorial, you will learn how to use and set up 2.4″ Touch LCD Shield for Arduino. First, you’ll see some general information about this shield. And after learning how to set the shield up, you’ll see 3 practical projects.
The role of screens in electronic projects is very important. Screens can be of very simple types such as 7 Segment or character LCDs or more advanced models like OLEDs and TFT LCDs.
One of the most important features of this LCD is including a touch panel. If you are about to use the LCD, you need to know the coordinates of the point you touch. To do so, you should upload the following code on your Arduino board and open the serial monitor. Then touch your desired location and write the coordinates displayed on the serial monitor. You can use this coordination in any other project./*TFT LCD - TFT Touch CoordinateBased on Librery Examplemodified on 21 Feb 2019by Saeed Hosseinihttps://electropeak.com/learn/*/#include
Displaying Text and Shapes on Arduino 2.4 LCD/*TFT LCD - TFT Simple drivingmodified on 21 Feb 2019by Saeed Hosseinihttps://electropeak.com/learn/*/#include
Displaying BMP pictures/*This code is TFTLCD Library Example*/#include
To display pictures on this LCD you should save the picture in 24bit BMP colored format and size of 240*320. Then move them to SD card and put the SD card in the LCD shield. we use the following function to display pictures. This function has 3 arguments; the first one stands for the pictures name, and the second and third arguments are for length and width coordinates of the top left corner of the picture.bmpdraw(“filename.bmp”,x,y);
Create A Paint App w/ Arduino 2.4 Touchscreen/*This code is TFTLCD Library Example*/#include
Final NotesIf you want to display pictures without using an SD card, you can convert it to code and then display it. You can display even several photos sequentially without delay to create an animation. (Check this)But be aware that in this case, Arduino UNO may not be suitable (because of low processor speed). We recommend using the Arduino Mega or Arduino DUE.
Ever wanted to know how to make a simple drawing program on a LCD display, or are you curious about programming touch screens? Well, in this tutorial, we will be covering on how do you program a touchscreen display using the 2.4″ Touchscreen LCD sheild with Arduino Uno, which open up many possible applications which includes making a user friendly touch interface for making purchases, a simple touch-screen base remote control, and many more.
Hooking up the 2.4″ TFT LCD Touchscreen shield is realatively easy, since it is a Arduino shield. Just plug in the whole screen into the Arduino Uno, just note where the pins are located and connect the shield accordingly. There will be 2 parts in this tutoria, the first where you will test the functionality of the screen, and the next where you test the touch functionality of the screen.
For the graphics test of the 2.4″ screen, I used the sample sketch provided by the Adafruit TFTLCD library. The library can be downloaded here or here. (NOTE: You have to have the Adafruit GFX library installed before this library is installed, as the TFTLCD library uses the Adafruit GFX library for graphics. The library can be downloaded at https://github.com/adafruit/Adafruit-GFX-Library) A great thanks to Adafruit for their libraries.
Try uploading the example ‘graphictest’ sketch of the TFTLCD library. The screen should then be running the graphics test as shown above. If the screen displays nothing or displays only static, you may want to follow the steps taken below.
The modification I made in the example sketch is that I hard coded the LCD Driver, as for my case, the Arduino was unable to detect the LCD driver (and only produced noise on the screen).
Therefore, I set identifier variable as 0x9341 (located at line 60), which means that the shield is actually using a IL9341 LCD driver. Below are some useful links that may help if you encounter any difficulties:
This is the hardcoded sketch. Please upload the ‘graphictest’ example sketch of the TFTLCD library. If there is static or no display, you may need to modify the ‘identifier’ variable depending on which LCD driver you are using. Below is a sample code of the LCD Driver hard coded.// IMPORTANT: Adafruit_TFTLCD LIBRARY MUST BE SPECIFICALLY
Open & upload the ‘tftpaint’ example sketch from the TFTLCD library. (You may want to calibrate the screen first before using it. To do so, visit this post where I written a calibration code which can be used in this example. However, please note that certain parameters have to be changed for the calibration sketch to work with this 2.4″ screen.)
If the sketch does not run properly, you may want to do the following modifications. For my case, I need to modify a few parts, which includes:Hardcoding the LCD Driver
In this Arduino touch screen tutorial we will learn how to use TFT LCD Touch Screen with Arduino. You can watch the following video or read the written tutorial below.
For this tutorial I composed three examples. The first example is distance measurement using ultrasonic sensor. The output from the sensor, or the distance is printed on the screen and using the touch screen we can select the units, either centimeters or inches.
The third example is a game. Actually it’s a replica of the popular Flappy Bird game for smartphones. We can play the game using the push button or even using the touch screen itself.
As an example I am using a 3.2” TFT Touch Screen in a combination with a TFT LCD Arduino Mega Shield. We need a shield because the TFT Touch screen works at 3.3V and the Arduino Mega outputs are 5 V. For the first example I have the HC-SR04 ultrasonic sensor, then for the second example an RGB LED with three resistors and a push button for the game example. Also I had to make a custom made pin header like this, by soldering pin headers and bend on of them so I could insert them in between the Arduino Board and the TFT Shield.
Here’s the circuit schematic. We will use the GND pin, the digital pins from 8 to 13, as well as the pin number 14. As the 5V pins are already used by the TFT Screen I will use the pin number 13 as VCC, by setting it right away high in the setup section of code.
As the code is a bit longer and for better understanding I will post the source code of the program in sections with description for each section. And at the end of this article I will post the complete source code.
I will use the UTFT and URTouch libraries made by Henning Karlsen. Here I would like to say thanks to him for the incredible work he has done. The libraries enable really easy use of the TFT Screens, and they work with many different TFT screens sizes, shields and controllers. You can download these libraries from his website, RinkyDinkElectronics.com and also find a lot of demo examples and detailed documentation of how to use them.
After we include the libraries we need to create UTFT and URTouch objects. The parameters of these objects depends on the model of the TFT Screen and Shield and these details can be also found in the documentation of the libraries.
Next we need to define the fonts that are coming with the libraries and also define some variables needed for the program. In the setup section we need to initiate the screen and the touch, define the pin modes for the connected sensor, the led and the button, and initially call the drawHomeSreen() custom function, which will draw the home screen of the program.
So now I will explain how we can make the home screen of the program. With the setBackColor() function we need to set the background color of the text, black one in our case. Then we need to set the color to white, set the big font and using the print() function, we will print the string “Arduino TFT Tutorial” at the center of the screen and 10 pixels down the Y – Axis of the screen. Next we will set the color to red and draw the red line below the text. After that we need to set the color back to white, and print the two other strings, “by HowToMechatronics.com” using the small font and “Select Example” using the big font.
Ok next is the RGB LED Control example. If we press the second button, the drawLedControl() custom function will be called only once for drawing the graphic of that example and the setLedColor() custom function will be repeatedly called. In this function we use the touch screen to set the values of the 3 sliders from 0 to 255. With the if statements we confine the area of each slider and get the X value of the slider. So the values of the X coordinate of each slider are from 38 to 310 pixels and we need to map these values into values from 0 to 255 which will be used as a PWM signal for lighting up the LED. If you need more details how the RGB LED works you can check my particular tutorialfor that. The rest of the code in this custom function is for drawing the sliders. Back in the loop section we only have the back button which also turns off the LED when pressed.
In order the code to work and compile you will have to include an addition “.c” file in the same directory with the Arduino sketch. This file is for the third game example and it’s a bitmap of the bird. For more details how this part of the code work you can check my particular tutorial. Here you can download that file:
I"ll show you how to get started with a very popular variant of the TFT touch screen, including how to make a "button" (spoiler alert: it"s not a button just an area of screen that looks like one, that you can then receive touches from).
This TFT LCD display can display colour graphics and is a touch sensitive screen. It has an SD card slot too for storing images.This display board can be inserted directly on to the Arduino pins, without using any wires. That’s why it is called a shield.
Wiring is so easy – just plug the display shield on to the Arduino pins. While plugging it in, make sure that the 5V of the LCD goes to the 5V of the Arduino UNO board and also remember to stick a piece of insulation tape on the Arduino’s USB port to avoid short circuits.
Adafruit_GFX library – It’s the core graphics library. Go to Sketch -> Include Library -> Library Manager menu in the Arduino IDE and search for Adafruit_GFX. It can be installed from the library manager or can be downloaded from this link : https://github.com/adafruit/Adafruit-GFX-Library/archive/master.zip
Adafruit_TFTLCD library – It’s the LCD’s hardware specific library. The original version of the Adafruit_TFTLCD library did not work for me. So, I used a modified version of it. Someone has modified the library for various chipsets and I found it from the arduino forum for my display board. The modified version can be found here : https://forum.arduino.cc/index.php?action=dlattach;topic=288475.0;attach=107569. Download it to the libraries folder of the Arduino IDE.
It’s better to know the TFT display’s driver ID. To find that out, I wrote a program (available at the end of this note). The program will print the LCD’s driver ID into the serial monitor and will also display colours on the LCD screen. After uploading the program, just make sure that the serial monitor is open and the baud rate is set to 9600.
Adafruit_TFTLCD has some examples along with the library. They can be compiled and uploaded to try the display. Examples like tftpaint marks out the point were we touch.
Voltage type: 5v or 3v voltage input voltage,input is selectable. Because TFT can only work under 3.3 V voltage, so when the input voltage VIN is 5V, need through the 3.3 V voltage regulator IC step down to 3.3V , when the input voltage of 3.3 V, you need to use the zero resistance make J2 short , is equivalent to not through the voltage regulator IC for module and power supply directly.
The 2.4 inch TFT LCD Touch Display Shield is a Bright, 4 white-LED backlight, on by default but you can connect the transistor to a digital pin for backlight control. So spice up your Arduino UNO project is a beautiful large touchscreen display shield with a built-in microSD card connection. This TFT display is big (2.4″ diagonal) bright (4 white-LED backlights) and colorful (18-bit 262,000 different shades)!
2.4 inch TFT LCD Touch Display Shield for ArduinoUno is fully assembled, tested and ready to go. Add the touch display without wiring, no soldering! Simply plug it in and load up a library – you ‘ll have it running in under 10 minutes! Works best with any classic Arduino ATMEGA328 Board.
The 2.4 inch TFT LCD Touch Display comes with 240×320 pixels with individual pixel control. It has way more resolution than a black and white 128×64 display. As a bonus, this display has a resistive touchscreen attached to it already, so you can detect finger presses anywhere on the screen.
Display worked perfect! No dead pixels, backlight was bright and touch screen had minimal lag and was very responsive. Recommended if you need a touchscreen.
This touch display works 100% right out of box . Touch screen and SD card reader functions works as designed. You just "plug and play" into the UNO module.