not supported with gsync lcd panel supplier

Information on this error message is REALLY sketchy online. Some say that the G-Sync LCD panel is hardwired to the dGPU and that the iGPU is connected to nothing. Some say that dGPU is connected to the G-Sync LCD through the iGPU. Some say that they got the MUX switch working after an intention ordering of bios update, iGPU drivers then dGPU drivers on a clean install.

I"m suspecting that if I connect an external 60hz IPS monitor to one of the display ports on the laptop and make it the only display, the Fn+F7 key will actually switch the graphics because the display is not a G-Sync LCD panel. Am I right on this?

If I"m right on this, does that mean that if I purchase this laptop, order a 15inch Alienware 60hz IPS screen and swap it with the FHD 120+hz screen currently inside, I will also continue to have MUX switch support and no G-Sync? The price for these screens is not outrageous.

not supported with gsync lcd panel supplier

At first i thought that maybe i was sent a laptop with a g-sync display but when i checked in device manager the display is listed as "generic pnp display" no mention of g-sync yet i cant seem to be able to turn off the gpu and whenever i press fn+f7 i get the following message "not supported with g-sync ips display" even though the display is not a g-sync display.

not supported with gsync lcd panel supplier

If you want smooth gameplay without screen tearing and you want to experience the high frame rates that your Nvidia graphics card is capable of, Nvidia’s G-Sync adaptive sync tech, which unleashes your card’s best performance, is a feature that you’ll want in your next monitor.

To get this feature, you can spend a lot on a monitor with G-Sync built in, like the high-end $1,999 Acer Predator X27, or you can spend less on a FreeSync monitor that has G-Sync compatibility by way of a software update. (As of this writing, there are 15 monitors that support the upgrade.)

However, there are still hundreds of FreeSync models that will likely never get the feature. According to Nvidia, “not all monitors go through a formal certification process, display panel quality varies, and there may be other issues that prevent gamers from receiving a noticeably improved experience.”

But even if you have an unsupported monitor, it may be possible to turn on G-Sync. You may even have a good experience — at first. I tested G-Sync with two unsupported models, and, unfortunately, the results just weren’t consistent enough to recommend over a supported monitor.

The 32-inch AOC CQ32G1 curved gaming monitor, for example, which is priced at $399, presented no issues when I played Apex Legends and Metro: Exodus— at first. Then some flickering started appearing during gameplay, though I hadn’t made any changes to the visual settings. I also tested it with Yakuza 0,which, surprisingly, served up the worst performance, even though it’s the least demanding title that I tested. Whether it was in full-screen or windowed mode, the frame rate was choppy.

Another unsupported monitor, the $550 Asus MG279Q, handled both Metro: Exodus and Forza Horizon 4 without any noticeable issues. (It’s easy to confuse the MG279Q for the Asus MG278Q, which is on Nvidia’s list of supported FreeSync models.) In Nvidia’s G-Sync benchmark, there was significant tearing early on, but, oddly, I couldn’t re-create it.

Before you begin, note that in order to achieve the highest frame rates with or without G-Sync turned on, you’ll need to use a DisplayPort cable. If you’re using a FreeSync monitor, chances are good that it came with one. But if not, they aren’t too expensive.

First, download and install the latest driver for your GPU, either from Nvidia’s website or through the GeForce Experience, Nvidia’s Windows 10 app that can tweak graphics settings on a per-game basis. All of Nvidia’s drivers since mid-January 2019 have included G-Sync support for select FreeSync monitors. Even if you don’t own a supported monitor, you’ll probably be able to toggle G-Sync on once you install the latest driver. Whether it will work well after you do turn the feature on is another question.

Once the driver is installed, open the Nvidia Control Panel. On the side column, you’ll see a new entry: Set up G-Sync. (If you don’t see this setting, switch on FreeSync using your monitor’s on-screen display. If you still don’t see it, you may be out of luck.)

Check the box that says “Enable G-Sync Compatible,” then click “Apply: to activate the settings. (The settings page will inform you that your monitor is not validated by Nvidia for G-Sync. Since you already know that is the case, don’t worry about it.)

Nvidia offers a downloadable G-Sync benchmark, which should quickly let you know if things are working as intended. If G-Sync is active, the animation shouldn’t exhibit any tearing or stuttering. But since you’re using an unsupported monitor, don’t be surprised if you see some iffy results. Next, try out some of your favorite games. If something is wrong, you’ll realize it pretty quickly.

There’s a good resource to check out on Reddit, where its PC community has created a huge list of unsupported FreeSync monitors, documenting each monitor’s pros and cons with G-Sync switched on. These real-world findings are insightful, but what you experience will vary depending on your PC configuration and the games that you play.

Vox Media has affiliate partnerships. These do not influence editorial content, though Vox Media may earn commissions for products purchased via affiliate links. For more information, seeour ethics policy.

not supported with gsync lcd panel supplier

Make sure the monitor supports Nvidia’s G-Sync technology - a list of supported monitors at the time of this article can be found on Nvidia"s website.

Make sure a DisplayPort cable is being used - G-Sync is only compatible with DisplayPort. It must be a standard DisplayPort cable using no adapters or conversions. HDMI, DVI and VGA are not supported.

Under the Display tab on the left side of the Nvidia Control Panel, choose Set up G-Sync, followed by Enable G-Sync, G-Sync Compatible checkbox. Note: If the monitor has not been validated as G-Sync Compatible, select the box under Display Specific Settings to force G-Sync Compatible mode on. See the warning NOTE at the end of the article before proceeding.

NOTE: If the monitor supports VRR (Variable Refresh Rate) technologies but is not on the list above, use caution before proceeding. It may still work, however there may be issues when using the technology. Known issues include blanking, pulsing, flickering, ghosting and visual artifacts.

not supported with gsync lcd panel supplier

It’s difficult to buy a computer monitor, graphics card, or laptop without seeing AMD FreeSync and Nvidia G-Sync branding. Both promise smoother, better gaming, and in some cases both appear on the same display. But what do G-Sync and FreeSync do, exactly – and which is better?

Most AMD FreeSync displays can sync with Nvidia graphics hardware, and most G-Sync Compatible displays can sync with AMD graphics hardware. This is unofficial, however.

The first problem is screen tearing. A display without adaptive sync will refresh at its set refresh rate (usually 60Hz, or 60 refreshes per second) no matter what. If the refresh happens to land between two frames, well, tough luck – you’ll see a bit of both. This is screen tearing.

Screen tearing is ugly and easy to notice, especially in 3D games. To fix it, games started to use a technique called V-Syncthat locks the framerate of a game to the refresh rate of a display. This fixes screen tearing but also caps the performance of a game. It can also cause uneven frame pacing in some situations.

Adaptive sync is a better solution. A display with adaptive sync can change its refresh rate in response to how fast your graphics card is pumping out frames. If your GPU sends over 43 frames per second, your monitor displays those 43 frames, rather than forcing 60 refreshes per second. Adaptive sync stops screen tearing by preventing the display from refreshing with partial information from multiple frames but, unlike with V-Sync, each frame is shown immediately.

VESA Adaptive Sync is an open standard that any company can use to enable adaptive sync between a device and display. It’s used not only by AMD FreeSync and Nvidia G-Sync Compatible monitors but also other displays, such as HDTVs, that support Adaptive Sync.

AMD FreeSync and Nvidia G-Sync Compatible are so similar, in fact, they’re often cross compatible. A large majority of displays I test with support for either AMD FreeSync or Nvidia G-Sync Compatible will work with graphics hardware from the opposite brand.

This is how all G-Sync displays worked when Nvidia brought the technology to market in 2013. Unlike Nvidia G-Sync Compatible monitors, which often (unofficially) works with AMD Radeon GPUs, G-Sync is unique and proprietary. It only supports adaptive sync with Nvidia graphics hardware.

It’s usually possible to switch sides if you own an AMD FreeSync or Nvidia G-Sync Compatible display. If you buy a G-Sync or G-Sync Ultimate display, however, you’ll have to stick with Nvidia GeForce GPUs. (Here’s our guide to the best graphics cards for PC gaming.)

G-Sync and G-Sync Ultimate support the entire refresh range of a panel – even as low as 1Hz. This is important if you play games that may hit lower frame rates, since Adaptive Sync matches the display refresh rate with the output frame rate.

For example, if you’re playing Cyberpunk 2077 at an average of 30 FPS on a 4K display, that implies a refresh rate of 30Hz – which falls outside the range VESA Adaptive Sync supports. AMD FreeSync and Nvidia G-Sync Compatible may struggle with that, but Nvidia G-Sync and G-Sync Ultimate won’t have a problem.

AMD FreeSync Premium and FreeSync Premium Pro have their own technique of dealing with this situation called Low Framerate Compensation. It repeats frames to double the output such that it falls within a display’s supported refresh rate.

Other differences boil down to certification and testing. AMD and Nvidia have their own certification programs that displays must pass to claim official compatibility. This is why not all VESA Adaptive Sync displays claim support for AMD FreeSync and Nvidia G-Sync Compatible.

This is a bunch of nonsense. Neither has anything to do with HDR, though it can be helpful to understand that some level of HDR support is included in those panels. The most common HDR standard, HDR10, is an open standard from the Consumer Technology Association. AMD and Nvidia have no control over it. You don’t need FreeSync or G-Sync to view HDR, either, even on each company’s graphics hardware.

Both standards are plug-and-play with officially compatible displays. Your desktop’s video card will detect that the display is certified and turn on AMD FreeSync or Nvidia G-Sync automatically. You may need to activate the respective adaptive sync technology in your monitor settings, however, though that step is a rarity in modern displays.

Displays that support VESA Adaptive Sync, but are not officially supported by your video card, require you dig into AMD or Nvidia’s driver software and turn on the feature manually. This is a painless process, however – just check the box and save your settings.

AMD FreeSync and Nvidia G-Sync are also available for use with laptop displays. Unsurprisingly, laptops that have a compatible display will be configured to use AMD FreeSync or Nvidia G-Sync from the factory.

A note of caution, however: not all laptops with AMD or Nvidia graphics hardware have a display with Adaptive Sync support. Even some gaming laptops lack this feature. Pay close attention to the specifications.

VESA’s Adaptive Sync is on its way to being the common adaptive sync standard used by the entire display industry. Though not perfect, it’s good enough for most situations, and display companies don’t have to fool around with AMD or Nvidia to support it.

That leaves AMD FreeSync and Nvidia G-Sync searching for a purpose. AMD FreeSync and Nvidia G-Sync Compatible are essentially certification programs that monitor companies can use to slap another badge on a product, though they also ensure out-of-the-box compatibility with supported graphics card. Nvidia’s G-Sync and G-Sync Ultimate are technically superior, but require proprietary Nvidia hardware that adds to a display’s price. This is why G-Sync and G-Sync Ultimate monitors are becoming less common.

not supported with gsync lcd panel supplier

When buying a gaming monitor, it’s important to compare G-Sync vs FreeSync. Both technologies improve monitor performance by matching the performance of the screen with the graphics card. And there are clear advantages and disadvantages of each: G-Sync offers premium performance at a higher price while FreeSync is prone to certain screen artifacts like ghosting.

So G-Sync versus FreeSync? Ultimately, it’s up to you to decide which is the best for you (with the help of our guide below). Or you can learn more about ViewSonic’s professional gaming monitors here.

In the past, monitor manufacturers relied on the V-Sync standard to ensure consumers and business professionals could use their displays without issues when connected to high-performance computers. As technology became faster, however, new standards were developed — the two main ones being G-Sync and Freesync.

V-Sync, short for vertical synchronization, is a display technology that was originally designed to help monitor manufacturers prevent screen tearing. This occurs when two different “screens” crash into each other because the monitor’s refresh rate can’t keep pace with the data being sent from the graphics card. The distortion is easy to spot as it causes a cut or misalignment to appear in the image.

This often comes in handy in gaming. For example, GamingScan reports that the average computer game operates at 60 FPS. Many high-end games operate at 120 FPS or greater, which requires the monitor to have a refresh rate of 120Hz to 165Hz. If the game is run on a monitor with a refresh rate that’s less than 120Hz, performance issues arise.

Although V-Sync technology is commonly used when users are playing modern video games, it also works well with legacy games. The reason for this is that V-Sync slows down the frame rate output from the graphics cards to match the legacy standards.

Despite its effectiveness at eliminating screen tearing, it often causes issues such as screen “stuttering” and input lag. The former is a scenario where the time between frames varies noticeably, leading to choppiness in image appearances.

Although the technology works well with low-end devices, V-Sync degrades the performance of high-end graphics cards. That’s the reason display manufacturers have begun releasing gaming monitors with refresh rates of 144Hz, 165Hz, and even 240Hz.

While V-Sync worked well with legacy monitors, it often prevents modern graphics cards from operating at peak performance. For example, gaming monitors often have a refresh rate of at least 100Hz. If the graphics card outputs content at low speeds (e.g. 60Hz), V-Sync would prevent the graphics card from operating at peak performance.

Since the creation of V-Sync, other technologies such as G-Sync and FreeSync have emerged to not only fix display performance issues, but also to enhance image elements such as screen resolution, image colors, or brightness levels.

Released to the public in 2013, G-Sync is a technology developed by NVIDIA that synchronizes a user’s display to a device’s graphics card output, leading to smoother performance, especially with gaming. G-Sync has gained popularity in the electronics space because monitor refresh rates are always better than the GPU’s ability to output data. This results in significant performance issues.

The most notable benefit of G-Sync technology is the elimination of screen tearing and other common display issues associated with V-Sync equipment. G-Sync equipment does this by manipulating the monitor’s vertical blanking interval (VBI).

To keep pace with changes in technology, NVIDIA developed a newer version of G-Sync, called G-Sync Ultimate. This new standard is a more advanced version of G-Sync. The core features that set it apart from G-Sync equipment are the built-in R3 module, high dynamic range (HDR) support, and the ability to display 4K quality images at 144Hz.

Although G-Sync delivers exceptional performance across the board, its primary disadvantage is the price. To take full advantage of native G-Sync technologies, users need to purchase a G-Sync-equipped monitor and graphics card. This two-part equipment requirement limited the number of G-Sync devices consumers could choose from It’s also worth noting that these monitors require the graphics card to support DisplayPort connectivity.

Released in 2015, FreeSync is a standard developed by AMD that, similar to G-Sync, is an adaptive synchronization technology for liquid-crystal displays. It’s intended to reduce screen tearing and stuttering triggered by the monitor not being in sync with the content frame rate.

Since this technology uses the Adaptive Sync standard built into the DisplayPort 1.2a standard, any monitor equipped with this input can be compatible with FreeSync technology. With that in mind, FreeSync is not compatible with legacy connections such as VGA and DVI.

The “free” in FreeSync comes from the standard being open, meaning other manufacturers are able to incorporate it into their equipment without paying royalties to AMD. This means many FreeSync devices on the market cost less than similar G-Sync-equipped devices.

As FreeSync is a standard developed by AMD, most of their modern graphics processing units support the technology. A variety of other electronics manufacturers also support the technology, and with the right knowledge, you can even get FreeSync to work on NVIDIA equipment.

Although FreeSync is a significant improvement over the V-Sync standard, it isn’t a perfect technology. The most notable drawback of FreeSync is ghosting. This is when an object leaves behind a bit of its previous image position, causing a shadow-like image to appear.

A key difference between FreeSync and FreeSync 2 devices is that with the latter technology, if the frame rate falls below the supported range of the monitor, low framerate compensation (LFC) is automatically enabled to prevent stuttering and tearing.

If you want low input lag and don’t mind tearing, then the FreeSync standard is a good fit for you. On the other hand, if you’re looking for smooth motions without tearing, and are okay with minor input lag, then G-Sync equipped monitors are a better choice.

not supported with gsync lcd panel supplier

It’s difficult to buy a computer monitor, graphics card, or laptop without seeing AMD FreeSync and Nvidia G-Sync branding. Both promise smoother, better gaming, and in some cases both appear on the same display. But what do G-Sync and FreeSync do, exactly – and which is better?

Most AMD FreeSync displays can sync with Nvidia graphics hardware, and most G-Sync Compatible displays can sync with AMD graphics hardware. This is unofficial, however.

The first problem is screen tearing. A display without adaptive sync will refresh at its set refresh rate (usually 60Hz, or 60 refreshes per second) no matter what. If the refresh happens to land between two frames, well, tough luck – you’ll see a bit of both. This is screen tearing.

Screen tearing is ugly and easy to notice, especially in 3D games. To fix it, games started to use a technique called V-Syncthat locks the framerate of a game to the refresh rate of a display. This fixes screen tearing but also caps the performance of a game. It can also cause uneven frame pacing in some situations.

Adaptive sync is a better solution. A display with adaptive sync can change its refresh rate in response to how fast your graphics card is pumping out frames. If your GPU sends over 43 frames per second, your monitor displays those 43 frames, rather than forcing 60 refreshes per second. Adaptive sync stops screen tearing by preventing the display from refreshing with partial information from multiple frames but, unlike with V-Sync, each frame is shown immediately.

VESA Adaptive Sync is an open standard that any company can use to enable adaptive sync between a device and display. It’s used not only by AMD FreeSync and Nvidia G-Sync Compatible monitors but also other displays, such as HDTVs, that support Adaptive Sync.

AMD FreeSync and Nvidia G-Sync Compatible are so similar, in fact, they’re often cross compatible. A large majority of displays I test with support for either AMD FreeSync or Nvidia G-Sync Compatible will work with graphics hardware from the opposite brand.

This is how all G-Sync displays worked when Nvidia brought the technology to market in 2013. Unlike Nvidia G-Sync Compatible monitors, which often (unofficially) works with AMD Radeon GPUs, G-Sync is unique and proprietary. It only supports adaptive sync with Nvidia graphics hardware.

It’s usually possible to switch sides if you own an AMD FreeSync or Nvidia G-Sync Compatible display. If you buy a G-Sync or G-Sync Ultimate display, however, you’ll have to stick with Nvidia GeForce GPUs. (Here’s our guide to the best graphics cards for PC gaming.)

G-Sync and G-Sync Ultimate support the entire refresh range of a panel – even as low as 1Hz. This is important if you play games that may hit lower frame rates, since Adaptive Sync matches the display refresh rate with the output frame rate.

For example, if you’re playing Cyberpunk 2077 at an average of 30 FPS on a 4K display, that implies a refresh rate of 30Hz – which falls outside the range VESA Adaptive Sync supports. AMD FreeSync and Nvidia G-Sync Compatible may struggle with that, but Nvidia G-Sync and G-Sync Ultimate won’t have a problem.

AMD FreeSync Premium and FreeSync Premium Pro have their own technique of dealing with this situation called Low Framerate Compensation. It repeats frames to double the output such that it falls within a display’s supported refresh rate.

Other differences boil down to certification and testing. AMD and Nvidia have their own certification programs that displays must pass to claim official compatibility. This is why not all VESA Adaptive Sync displays claim support for AMD FreeSync and Nvidia G-Sync Compatible.

This is a bunch of nonsense. Neither has anything to do with HDR, though it can be helpful to understand that some level of HDR support is included in those panels. The most common HDR standard, HDR10, is an open standard from the Consumer Technology Association. AMD and Nvidia have no control over it. You don’t need FreeSync or G-Sync to view HDR, either, even on each company’s graphics hardware.

Both standards are plug-and-play with officially compatible displays. Your desktop’s video card will detect that the display is certified and turn on AMD FreeSync or Nvidia G-Sync automatically. You may need to activate the respective adaptive sync technology in your monitor settings, however, though that step is a rarity in modern displays.

Displays that support VESA Adaptive Sync, but are not officially supported by your video card, require you dig into AMD or Nvidia’s driver software and turn on the feature manually. This is a painless process, however – just check the box and save your settings.

AMD FreeSync and Nvidia G-Sync are also available for use with laptop displays. Unsurprisingly, laptops that have a compatible display will be configured to use AMD FreeSync or Nvidia G-Sync from the factory.

A note of caution, however: not all laptops with AMD or Nvidia graphics hardware have a display with Adaptive Sync support. Even some gaming laptops lack this feature. Pay close attention to the specifications.

VESA’s Adaptive Sync is on its way to being the common adaptive sync standard used by the entire display industry. Though not perfect, it’s good enough for most situations, and display companies don’t have to fool around with AMD or Nvidia to support it.

That leaves AMD FreeSync and Nvidia G-Sync searching for a purpose. AMD FreeSync and Nvidia G-Sync Compatible are essentially certification programs that monitor companies can use to slap another badge on a product, though they also ensure out-of-the-box compatibility with supported graphics card. Nvidia’s G-Sync and G-Sync Ultimate are technically superior, but require proprietary Nvidia hardware that adds to a display’s price. This is why G-Sync and G-Sync Ultimate monitors are becoming less common.

not supported with gsync lcd panel supplier

When buying a gaming monitor, it’s important to compare G-Sync vs FreeSync. Both technologies improve monitor performance by matching the performance of the screen with the graphics card. And there are clear advantages and disadvantages of each: G-Sync offers premium performance at a higher price while FreeSync is prone to certain screen artifacts like ghosting.

So G-Sync versus FreeSync? Ultimately, it’s up to you to decide which is the best for you (with the help of our guide below). Or you can learn more about ViewSonic’s professional gaming monitors here.

In the past, monitor manufacturers relied on the V-Sync standard to ensure consumers and business professionals could use their displays without issues when connected to high-performance computers. As technology became faster, however, new standards were developed — the two main ones being G-Sync and Freesync.

V-Sync, short for vertical synchronization, is a display technology that was originally designed to help monitor manufacturers prevent screen tearing. This occurs when two different “screens” crash into each other because the monitor’s refresh rate can’t keep pace with the data being sent from the graphics card. The distortion is easy to spot as it causes a cut or misalignment to appear in the image.

This often comes in handy in gaming. For example, GamingScan reports that the average computer game operates at 60 FPS. Many high-end games operate at 120 FPS or greater, which requires the monitor to have a refresh rate of 120Hz to 165Hz. If the game is run on a monitor with a refresh rate that’s less than 120Hz, performance issues arise.

Although V-Sync technology is commonly used when users are playing modern video games, it also works well with legacy games. The reason for this is that V-Sync slows down the frame rate output from the graphics cards to match the legacy standards.

Despite its effectiveness at eliminating screen tearing, it often causes issues such as screen “stuttering” and input lag. The former is a scenario where the time between frames varies noticeably, leading to choppiness in image appearances.

Although the technology works well with low-end devices, V-Sync degrades the performance of high-end graphics cards. That’s the reason display manufacturers have begun releasing gaming monitors with refresh rates of 144Hz, 165Hz, and even 240Hz.

While V-Sync worked well with legacy monitors, it often prevents modern graphics cards from operating at peak performance. For example, gaming monitors often have a refresh rate of at least 100Hz. If the graphics card outputs content at low speeds (e.g. 60Hz), V-Sync would prevent the graphics card from operating at peak performance.

Since the creation of V-Sync, other technologies such as G-Sync and FreeSync have emerged to not only fix display performance issues, but also to enhance image elements such as screen resolution, image colors, or brightness levels.

Released to the public in 2013, G-Sync is a technology developed by NVIDIA that synchronizes a user’s display to a device’s graphics card output, leading to smoother performance, especially with gaming. G-Sync has gained popularity in the electronics space because monitor refresh rates are always better than the GPU’s ability to output data. This results in significant performance issues.

The most notable benefit of G-Sync technology is the elimination of screen tearing and other common display issues associated with V-Sync equipment. G-Sync equipment does this by manipulating the monitor’s vertical blanking interval (VBI).

To keep pace with changes in technology, NVIDIA developed a newer version of G-Sync, called G-Sync Ultimate. This new standard is a more advanced version of G-Sync. The core features that set it apart from G-Sync equipment are the built-in R3 module, high dynamic range (HDR) support, and the ability to display 4K quality images at 144Hz.

Although G-Sync delivers exceptional performance across the board, its primary disadvantage is the price. To take full advantage of native G-Sync technologies, users need to purchase a G-Sync-equipped monitor and graphics card. This two-part equipment requirement limited the number of G-Sync devices consumers could choose from It’s also worth noting that these monitors require the graphics card to support DisplayPort connectivity.

Released in 2015, FreeSync is a standard developed by AMD that, similar to G-Sync, is an adaptive synchronization technology for liquid-crystal displays. It’s intended to reduce screen tearing and stuttering triggered by the monitor not being in sync with the content frame rate.

Since this technology uses the Adaptive Sync standard built into the DisplayPort 1.2a standard, any monitor equipped with this input can be compatible with FreeSync technology. With that in mind, FreeSync is not compatible with legacy connections such as VGA and DVI.

The “free” in FreeSync comes from the standard being open, meaning other manufacturers are able to incorporate it into their equipment without paying royalties to AMD. This means many FreeSync devices on the market cost less than similar G-Sync-equipped devices.

As FreeSync is a standard developed by AMD, most of their modern graphics processing units support the technology. A variety of other electronics manufacturers also support the technology, and with the right knowledge, you can even get FreeSync to work on NVIDIA equipment.

Although FreeSync is a significant improvement over the V-Sync standard, it isn’t a perfect technology. The most notable drawback of FreeSync is ghosting. This is when an object leaves behind a bit of its previous image position, causing a shadow-like image to appear.

A key difference between FreeSync and FreeSync 2 devices is that with the latter technology, if the frame rate falls below the supported range of the monitor, low framerate compensation (LFC) is automatically enabled to prevent stuttering and tearing.

If you want low input lag and don’t mind tearing, then the FreeSync standard is a good fit for you. On the other hand, if you’re looking for smooth motions without tearing, and are okay with minor input lag, then G-Sync equipped monitors are a better choice.

not supported with gsync lcd panel supplier

Bring your gameplay to the next level with LG UltraGear™ Gaming Monitors. Find wide monitor screens with the latest gamer-approved features like NVIDIA G-SYNC™ compatibility, and vibrant IPS monitor display.

not supported with gsync lcd panel supplier

The Dell Alienware AW2721D and the ASUS ROG Swift PG279QM are very similar, each with strengths and weaknesses. The Dell has a better vertical viewing angle and better ergonomics, and it"s brighter in both SDR and HDR. The ASUS, on the other hand, has better reflection handling and a wider color gamut, and it has built-in speakers.

The Samsung Odyssey G7 C32G75T and the ASUS ROG Swift PG279QM use different panel technologies, each with strengths and weaknesses. The Samsung uses a VA panel and is better suited for gaming in a dark room. The Samsung also has a few extra features, including an optional backlight strobing feature, commonly known as black frame insertion, and it supports Picture-in-Picture and Picture-by-Picture. The ASUS, on the other hand, has much better viewing angles, and it natively supports NVIDIA G-SYNC technology.

The Dell Alienware AW2723DF and the ASUS ROG Swift PG279QM are both 1440p, 240Hz gaming monitors with a few differences. The Dell has an overclockable refresh rate of up to 280Hz, which the ASUS doesn"t have, and it has also lower input lag. The main difference between the two is that the ASUS has native G-SYNC support, which lets you take full advantage of your NVIDIA graphics card, as you can also use its Reflex Latency Analyzer feature to measure the input lag of your entire setup.

The ASUS ROG Swift PG279QM and the LG 27GP850-B deliver very similar performance, each with strengths and weaknesses. The ASUS has better ergonomics, so it"s easier to place it in an ideal viewing position. On the other hand, the LG has a faster response time at the max refresh rate, and it has an optional backlight strobing feature to improve the appearance of motion.

The MSI Optix MAG274QRF-QD and the ASUS ROG Swift PG279QM offer very similar performance, each with strengths and weaknesses. The ASUS is a bit better for HDR, as it has a local dimming feature, and it"s a bit brighter in HDR. The MSI has better ergonomics and an optional backlight strobing feature, which can help improve the appearance of motion in some games.

The ASUS ROG Strix XG279Q and the ASUS ROG Swift PG279QM offer very similar performance overall. The XG279Q has an optional backlight strobing feature, which can improve the appearance of motion, and it has slightly better ergonomics. The PG279QM, on the other hand, has a slightly faster refresh rate and low input lag. There"s also a difference in supported variable refresh rates, as the PG279QM natively supports G-SYNC, resulting in a more visually consistent gaming experience if you have an NVIDIA graphics card.

The Acer Predator XB273U GXbmiipruzx is better for gaming than the ASUS ROG Swift PG279QM. The Acer has a faster response time, resulting in clearer motion with less blur behind fast-moving objects. The Acer has an optional backlight strobing feature, commonly known as black frame insertion, but you can"t use it if the variable refresh rate feature is enabled. On the other hand, the ASUS has native hardware support for NVIDIA"s G-SYNC technology, ensuring a more visually consistent gaming experience at any refresh rate.

The ASUS ROG Swift PG279QM is slightly better than the ASUS TUF VG27AQ. The PG279QM has a much faster response time, especially at 60Hz, resulting in clearer motion overall. The VG27AQ has an optional backlight strobing feature to improve the appearance of motion, but it still doesn"t look as good as the PG279QM. There"s also a difference in supported variable refresh rates, as the PG279QM natively supports G-SYNC, resulting in a more visually consistent gaming experience if you have an NVIDIA graphics card.

The Gigabyte AORUS FI27Q-X is a bit better than the ASUS ROG Swift PG279QM. The Gigabyte has a much wider vertical viewing angle, ensuring the top and bottom of the screen remain uniform if you"re sitting up-close. The Gigabyte has a wider range of extra gaming features, and it has a faster response time. There"s also a difference in supported variable refresh rates, as the PG279QM natively supports G-SYNC, resulting in a more visually consistent gaming experience if you have an NVIDIA graphics card.

The Dell S3222DGM and the ASUS ROG Swift PG279QM use different panel technologies, each with strengths and weaknesses, but the ASUS is much better overall. The ASUS has better viewing angles, better ergonomics, and much better colors. The ASUS also supports HDR, and it has much better gradient handling. Finally, the ASUS has better motion handling, with a faster response time and no black smearing behind dark objects.

not supported with gsync lcd panel supplier

The MAG series was born through rigorous quality testing and designed to be a symbol of sturdiness and durability. Focused on providing the best user experience, the MAG series has a simple installation process coupled with a friendly user interface making it the best choice for entry level gamers.

Rapid IPS display provides gamers with an ultra-fast 1ms GTG response time, which will significantly reduce monitor blur occurrence. The crystal clear image will certainly give you a competitive edge for precise decisions in fast-moving games.

The liquid crystal molecules of Rapid IPS display rotate as fast as the tornado. With the speed going up to 4x faster than normal liquid crystal molecules, the response time can be shortened to 1ms GTG (gray to gray) to eliminate monitor blur and provide crystal clear images.

Take on any game without tearing, stuttering, flicker, or artifacts. G-SYNC compatible dynamically matches the refresh rate of the display to the frame rate of the GPU. Unlike other solutions, its unrestricted refresh rate supports from zero Hertz up to the maximum supported by the LCD panel—so you can count on exceptional performance in every game.

The Optix series gaming monitor is equipped with HDR technology which produces images with more details, a wide range of color, and appears more similar to what is seen by the human eye when compared to traditional monitors.

Easily configure your gaming monitor settings with the Gaming OSD (On Screen Display) app. Effortlessly change your settings with your Keyboard and Mouse and program hotkey options to quickly switch settings in-between games.

With MSI Mystic Light, the Optix MAG series gaming monitor lights provide a soft ambient light that can easily be synced with any other Mystic Light enabled gaming product. Select any of the colors from the palette using your smartphone or the Mystic Light App to match your system style to your taste. Or just turn on gaming echo, letting your monitor back light dance to music you play on the computer.

By having a large viewing angle, MSI gaming monitors has more leeway for placing your monitor in your setup without giving up the optimal viewing experience. Colors and details will stay sharp at more angles compared to other monitors with less viewing angles.

The monitor utilizes the HDMI CEC (Consumer Electronics Control) function. After the built-in HDMI CEC technology is connected to the PlayStation or Switch controllers, the controllers can be used to wake up the screen with different modes that can be adjusted for different devices.